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I. INTRODUCTION

A. Background

Statistical mechanics is an extremely powerful set of ideas and tools with a broad range

of applications throughout physics[1–7]. The subject was founded in mid 1800s by scien-

tific giants like Gibbs, Boltzmann, Maxwell,. . . Formulated in terms of system’s microscopic

degrees of freedom, that are governed by basic principles of Newtonian and quantum mechan-

ics, electricity and magnetism, relativity, etc., it allows one to derive macroscopic behavior

of extensive systems. These include gases, liquids, crystals, magnets, superfluids and su-

perconductors, and many other states of matter. It thus provides a microscopic theory of

thermodynamics for natural phenomena.

Recall that much older phenomenological theory of thermodynamics postulates four

laws[1, 2]:

• 0th law: temperature exists, TA = TB, TB = TC → TA = TC

• 1st law: energy conservation, ∆U = W +Q

• 2nd law: entropy of a closed system increases, TdS ≥ 0

• 3rd law: vanishing entropy at zero temperature, S(T = 0) = 0,

that led to much of early understanding of gases, liquids, and solids.

A much more powerful microscopic probabilistic theory is statistical mechanics that

posits a single basic underlying postulate of ergodicity, i.e., that in equilibrium time aver-

ages of physical observables can be replaced by an ensemble average, with all microstates of

a closed, isolated system are accessible with equal probability, from which all of thermody-

namics emerges via detailed calculations.

B. Fundamentals

There are a number of statistical ensembles that can be used to calculate system’s

properties: microcanonical (for closed system with fixed energy E, number of constituents

N , volume of the system V ,. . . , and all other extensive variables) and canonical (for open
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systems, with fixed temperature T , etc) determined by which macroscopic observables are

kept fixed in the calculation. In the thermodynamic limit of N � 1, satisfied by (most)

macroscopic systems, central limit theorem dictates that fluctuations around the average

are small (scaling as
√
N � N), thus the choice of an ensemble is a matter of convenience,

leading to equivalent average predictions for a bulk system.

For a closed classical system, described by a microcanonical ensemble, the central quan-

tity is “multiplicity” (density of states)[1, 2],

Ω(E) =
∑
{qn}

δ(E −H({qn})), (1)

a total number of microstates at energy E, whose logarithm gives the entropy of the system

S(E) = kB ln Ω(E), (2)

thereby connecting it to thermodynamics, with 1/T ≡ β = ∂S/∂E; we will typically work

in units in which the Boltzmann constant kB = 1, i.e., temperature is measured in units of

energy. Above, {qn} denotes a generic set of microstates of the system characterized by a

classical Hamiltonian, H. An equilibrium long-time value of a physical observable O({qn})

is given by ensemble average over {qn} with a microcanonical probability distribution PE =

1/Ω(E). The thermodynamic entropy can be written in a more general form, when expressed

in therms of PE, namely,

S(E) = −kB
∑
{qn}

PE lnPE, (3)

= −kBTr [PE lnPE] ≡ −kB〈lnPE〉PE
. (4)

Amazingly, such microcanonical description is believed to extend to a generic closed

quantum many-body system in a single eigenstate, a postulate known as the Eigenstate

Thermalization Hypothesis (ETH), put forth in early 90s by Mark Srednicki[8] and indepen-

dently by Josh Deutsch[9]. As consequence ETH posits that a quantum mechanical average

of an observable Ô for a system in a generic quantum many-body state |Ψ(t)〉, under uni-

tary evolution, in a long time limit “relaxes” to equilibrium, described by the microcanonical

ensemble at energy E = 〈Ψ|Ĥ|Ψ〉,

1

t

∫ t

0

dt′〈Ψ(t′)|Ô|Ψ(t′)〉t→∞ = 〈Ô〉PE
. (5)
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To see this we can express |Ψ(t)〉 in terms of many-body eigenstates |n〉 and note that for a

generic state, contributions off-diagonal in n, n′ will dephase after some time (set by minimum

gaps) for a generic spectrum with no large gaps or degeneracies. This is the “relaxation” to a

stationary time-independent state. The diagonal terms appear to depend on the initial state

|Ψ(0)〉 through the expansion coefficients, cn, according to
∑

n |cn|2Onn. ETH proposes that

for generic state with a finite excitation energy density (not a ground state) E = E/V , the

diagonal matrix element of a local operator is independent of n, depending only on E . Thus

Onn can be taken out of the sum, which then reduces to 1, with the result reducing to the

microcanonical ensemble. Namely, in a long time limit the expectation value relaxes to an

ensemble average of Onn over eigenstates around energy E in a range of fixed energy density

E .

It appears somewhat paradoxical that a closed quantum system evolving under pure

unitary, norm-preserving evolution, nevertheless exhibits “relaxation”, with accompanying

growth of sub-system’s entanglement entropy (see below). The resolution is that local ob-

servables gets “dressed” and thereby spread into operators that are nonlocal in coordinate

and in operator space. Thus, while there is no loss of information or many-body norm,

under growth of entanglement the information delocalizes and thereby becomes unobserv-

able through local low-order operators measured in typical experiments. Thus from the

perspective of accessible local observables, the system relaxes to equilibrium value of these

observables.

There are notable exceptional closed quantum systems (typically in the presence of local

random heterogeneities, i.e., “quenched disorder”), that are not ergotic. They do not equi-

librate and thus violate ETH, exhibiting the so-called “many-body localization” (MBL)[10],

that is currently vigorously studied[11]. More generally, “integrable” systems have infinite

number of conserved quantities (that thereby cannot relax) violate ETH, with MBL being

only one example where such integrability is emergent.

We will assume ETH throughout and will typically use the canonical ensemble (in which

calculations are usually simpler), with a Boltzmann probability weight for a state {qn}, given

by

PT ({qn}) =
e−βH({qn})

Z
, (6)
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where all of thermodynamics is defined by a classical partition function,

Z =
∑
{qn}

e−βH({qn}) = e−βF , (7)

and the corresponding free energy F . For quantum system, Ĥ and {q̂n} are generically non-

commuting operators and the partition function is a Hilbert-space trace of the corresponding

(unnormalized) Boltzmann density matrix operator,

Z = Tr
[
e−βH({q̂n})

]
, (8)

=
∑
ψn

e−βEn , (9)

where the Ĥ eigenstates, |ψn〉 play the role of the classical microstates {qn}. The quantum-

thermodynamic average of observables is computed via

〈Ô〉 = Z−1Tr
[
Ôe−βH({q̂n})

]
, (10)

= Tr
[
Ôρ̂
]
, (11)

= Z−1
∑
ψn

〈ψn|Ô|ψn〉e−βEn , (12)

with the first line valid for a classical version as well, as the trace “Tr” then reduces to a sum

over commuting degrees of freedom (diagonal operators), {q̂n} labeling the microstates.

Finally, we note that a closed quantum mechanical system in a (normalized) state |Ψ〉 is

characterized by a pure density matrix ρ̂ = |Ψ〉〈Ψ|. By splitting the full closed system A+B

into subregions A and B and tracing over degrees of freedom in region B (spanned by basis

|ψB〉), we can then define a “reduced density matrix” for subsystem A,

ρ̂A = TrB [ρ̂] ≡
∑
ψB

〈ψB|ρ̂|ψB〉, (13)

which generically will be a density matrix for a mixed state, i.e., Tr [ρ2A] < 1. Correspond-

ingly, we can define the entanglement entropy, SE

SE = −kBTr [ρ̂A ln ρ̂A] , (14)

that is a quantum-mechanical analog of the thermodynamic entropy, that measures the

extent of entanglement in a state |Ψ〉 between regions A and B. For example, for a fully en-

tangled two-spin singlet state |Ψ〉 = 1
21/2

[| ↑〉A| ↓〉B − | ↓〉A| ↑〉B], the entanglement entropy
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is maximum, SE = kB ln 2, quantifying the fact that in such a state there is no local informa-

tion about a single spin. In contrast, a fully unentangled product state |Ψ〉 = | ↑〉A| ↓〉B has

a vanishing entanglement entropy, SE = 0. For a more general case of an N spin-chain, start-

ing with an initial state that is unentangled, the initial entropy SE(t = 0, LA) = 0, but will

evolve in time in an ergotic ETH system to SE(t >> tequil, LA) = LAs, that is extensive and

given by the thermodynamic entropy. We note that since SE(L) = 0, SE(LA) = SE(L−LA),

maximized at LA = L/2.

As is clear from (9),(12), a canonical Hamiltonian approach to computation of thermo-

dynamic averages for quantum systems requires an additional step of a diagonalization of the

Hamiltonian. As we will see in more detail in subsequenty lectures, an alternative approach

allows one to bypass the diagonalization step, but at the cost of working with a path-integral

over (imaginary) time-dependent microscopic degrees of freedom {qn(τ)}, with an exponen-

tial of the corresponding Euclidean classical action, SE[{qn(τ)}] =
∫ β~
0
dτLE[{qn(τ)}] as

the counter-part of the Boltzmann weight, with LE[{qn(τ)}] = 1
2
m(∂τqn)2 + V [{qn(τ)}] the

classical Euclidean Lagrangian, with it ≡ τ . Namely, for a quantum system the partition

function can be written as a path-integral,

Z =
∑
{qn(τ)}

e−SE [{qn(τ)}]/~, (15)

where the imaginary time ranges over a finite interval, 0 ≤ τ ≤ β~. This thereby reduces

quantum statistical mechanics of a d-dimensional system to a d+ 1-dimension path-integral

formulation over commuting degrees of freedom. We also note that in the limit of high

temperature (much higher than any natural frequencies of the system), {qn(τ)}] are τ inde-

pendent and the Euclidean action reduces to
∫ β~
0
dτL[{qn(τ)}]→ βH[{qn}], and the partition

function reduces to the classical one in Eq. (7).

C. Relation to information theory

Amazingly, as was first discussed by “the father” of information theory, Claude Shannon

in his landmark 1948 paper, “A Mathematical Theory of Communication”, thermodynamic

entropy as defined by the microcanonical ensemble is intimately related to information con-

tained in e.g., a transmitted signal or text of a book. The profound Shannon’s assertion

is that “information” (Shannon entropy) is the von Neumann entropy of the signal or data,
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viewed as stochastic data characterized by probability distribution.

To see this more explicitly, we consider a binary signal of N bits of 0s and 1s

. . . 0001101111000110000 . . . (16)

with probability p0 of a 0 bit and p1 = 1 − p0 of a 1 bit appearing in the signal. We then

would like to define “Information” to be consistent with the colloquial intuition, namely,

the most predictible signal of, e.g., all 1s, p1 = 1 carrying no, i.e., zero information (since

each bit is completely predictable to be a 1) and the least predictable signal of random 0s

and 1s, p0 = p1 = 1/2 carrying maximum Information. Following Shannon we then define

Information S (Shannon entropy of the signal) in terms of the number of possible length N

bit signals that can be created subject to the statistics of the signal characterized by p0,1.

The latter is nothing but the multiplicity,

Ω =
N !

M0!M1!
=

N !

(p0N)!(p1N)!
, (17)

=
NN

(p0N)p0N(p1N)p1N
≡ 2NS, (18)

= p−p0N0 (1− p0)−(1−p0)N , (19)

where in the second line we used Stirling approximation. This then gives Shannon’s infor-

mation per bit, S = N−1log2Ω,

S = −p0 log2(p0)− (1− p0) log2(1− p0), (20)

just like the entropy of a Ising magnet at fixed magnetization. In the more general case of

m (rather than just 2) letters ai, with i = 1, . . . ,m and corresponding probability for each

letter pi, Shannon’s information is given by,

S = −
m∑
i=1

pi log2 pi. (21)

This and many other aspects of classical and quantum infor-

maitons are well discussed by J. Preskill in his Caltech notes

https://www.lorentz.leidenuniv.nl/quantumcomputers/literature/preskill 1to 6.pdf as

well as by Ed Witten in his “mini-review of information theory”, that appeared on the

arXiv.
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II. OVERVIEW

A. Technicalities

With the background in place, we now overview the systems that we will cover in this

course. These will include particle systems, such as gases, liquids and solids, whose micro-

scopic variables are a set of continuous positions vectors, {~ri}, of N particles labelled by a

discrete index i. The classical partition function will then involve dN -dimensional integrals

over these particle coordinates. (For a classical system the corresponding momenta variables,

{~pi} decouple and can be integrated out of the full phase-space integral, leaving only the co-

ordinate averages). For the quantum particle systems, the averages are (d+1)N -dimensional

traces over {~ri(τ)} coordinates.

For classical magnetism, the microscopic degrees of freedom are fixed-length spins, {~Si},

integrated over surface of N , d-dimensional spheres. For quantum magnetism the trace can

be performed in the Sz basis, corresponding to a discrete 2S + 1-dimensional Hilbert space

of −S,−S + 1, . . . , S − 1, S for each spin i.

In some applications, it will be convenient to transition to a continuum limit of (effec-

tively) infinite number of degrees, with n→ x, for example labelling phonon displacements

of a continuum description of an elastic medium, ~u(x). With this, the trace over the macro-

scopic degrees of freedom will reduce to a d- and d + 1-dimensional path-integral in the

classical and quantum limits, respectively. In these cases, we will have to pause to review

the path-integral calculus.

B. Topics

In this course we will discuss a number of systems, as outlined in the syllabus. We

will begin with magnetism, reviewing paramagnetism of decoupled spins[1] and demonstrat-

ing how ferromagnetism (and other magnetic orders) emerges from interacting lattice of

spins. We will first treat such magnetic system using a microscopic Weiss mean-field (MF)

approximation[4, 7], that will predict a continuous, finite temperature paramagnet (PM) to

ferromagnet (FM) phase transition.

Building on this microscopic analysis, we will derive Landau MF theory (MFT) of contin-

uous phase transitions, utilizing path-integral formulation and, following Landau by simply
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postulating it based on symmetry. Motivated by this and guided by symmetries, we will dis-

cuss a number of other Landau MFTs, such as the Ising, XY, Heisenberg and N-component

O(N) PM-FM[7, 14], liquid-gas, liquid-crystal, isotropic-nematic liquid, normal-superfluid,

and other phase transitions. We will leave more detailed analysis of these for later lectures.

We will then study the regime of validity of Landau MFT, uncovering the so-called

Ginzburg regime, where fluctuations, neglected by MFT are large and thus cannot be

neglected[4, 7, 14].

While for harmonic (noninteracting, Gaussian,. . . ) systems taking fluctuations into ac-

count is not a problem, the challenge comes when the Hamiltonian is nonlinear (interacting),

as partition function cannot then generically be computed. Because of strong fluctuations,

the perturbation theory in nonlinearities (interactions) diverges and nonperturbative ap-

proach is necessary. We will learn how to deal with this challenge, by following its founding

fathers, Migdal, Kadanoff, Wilson, Fisher,. . . [12, 13], and develop the renormalization group

(RG) to treat these nonlinearities in the presence of strong fluctuations, necessary near con-

tinuous phase transitions[4, 7, 14] and other exotic regimes.

To this end, we will first digress to develop field-theoretic path integral methods[7,

14], that are necessary to calculate partition function and thermodynamic averages over

continuum fields φ(x).

We them move on to a variety of other systems, such as superfluids, bulk and films,

studying Kosterlitz-Thouless transition and its dual roughenning transition described by

the sine-Gordon model. To this end, we will develop particle-vortex (topological defects)

and other type of duality methods. We will also discuss fluctuations in two-dimensional

crystals and their melting into a hexatic and isotropic fluids by unbinding of dislocations

and disclinations, respectively. We will then study a charged superconductor and its associ-

ated vortex states of matter[15]. We will explore the physics of basic liquid crystal phases,

nematic, cholesteric, smectic-A, smectic-C and their associated phases transitions.[16].

We will then turn to a study of phases and phase transitions, utilizing RG field-theoretic

methods in the presence of local random heterogeneities, “quenched disorder”, that is an

unavoidable ingredient in most condensed matter systems[17]. This will allow us to treat

quenched disorder in a variety of systems such as random-field XY ferromagnets, randomly-

pinned charge-density waves (CDW) and vortex lattices, liquid crystals in aerogel and on a

dirty substrate, and disordered polymerized membranes.
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Time permitting, we will conclude this course with studies of equilibrium and non-

equilibrium dynamics, utilizing stochastic quantization of a stochastic Langevin equation,

derivation and study of the Fokker-Planck equation and development of the dynamic renor-

malization group[4, 7, 18, 19].
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