Resonant atomic gases

Leo Radzihovsky

for details see: *Gurarie*, *L.R.*, *Annals of Physics*, 322, 2-119 (2007) *Sheehy*, *L.R.*, *Annals of Physics*, 322, 1790 (2007)

\$: NSF

Giorgini, et al., RMP, 80, 885 (2008) Ketterle and Zwierlein, Varenna lectures (2006)

Mysore, India, Dec 2010

Finite angular momentum superfluidity

Motivation:

• p-wave Feshbach resonances exist

- examples of ³He and high-Tc superconductors
- multiple superfluids phases

- anisotropic gap with gapless excitations
- conventional (thermal and quantum) and topological phase transitions with detuning
- non-Abelian vortex excitations \Rightarrow topological QC?

P-wave Feshbach resonant scattering

P-wave resonant superfluidity $\mathcal{H}_{2ch} = \psi^{\dagger} rac{\hat{p}^2}{2m} \psi + ec{\phi^{\dagger}} ig(rac{\hat{p}^2}{4m} + \epsilon_0 ig) ec{\phi} - ig ec{\phi} \cdot \psi^{\dagger}
abla \psi^{\dagger}$ dimensionless coupling: $\gamma \sim \left(\frac{g\sqrt{n}k_F}{\epsilon_F}\right)^2 \sim g^2 \epsilon_F^{1/2} \sim \frac{n^{1/3}}{\sigma_F}$ • <u>*narrow*</u> resonance $\gamma \ll 1 \rightarrow \text{MFT} : \vec{\phi}(x) = \vec{B}$ • *complex vector* order parameter: $\vec{B} = \vec{u} + i \vec{v} \iff \psi_0 = B_z, \ \psi_{\pm} = \pm (B_x \pm i B_y)$ $ec{B}\cdotec{k}=\sum_{m=0,\pm k}\psi_m Y_{1,m}(\hat{k})k$ • sample states: $v = 0 \iff |m = 0\rangle$ along \vec{u} $(k_x \quad \beta - state \ in \ ^3He)$ $u = v \iff |m = 1\rangle$ along $\vec{u} \times \vec{v}$ $L_z = \pm 1, 0$ $(k_x + ik_y \text{ "axial" Anderson} - Morel state in {}^{3}He)$

Mean-field theory
$$(\gamma \sim g^2 \epsilon_F^{1/2} \ll 1)$$

$$H_p = \sum_{\mathbf{k}} \frac{k^2}{2m} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \sum_{\mathbf{q},\alpha} (\frac{q^2}{4m} + \epsilon_{0\alpha}) b_{\mathbf{q},\alpha}^{\dagger} b_{\mathbf{q},\alpha} + \sum_{\mathbf{k}} [\Delta_{\mathbf{k}}(\vec{B}) a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger} + h.c.]$$

• superfluid ground state:

 $\begin{array}{c} \text{molecular BEC} |\vec{B}\rangle \ + \ \begin{array}{c} \text{Cooper pairing} \ |\text{BCS}_{\vec{B}}\rangle = \Pi_k(u_{\mathbf{k}} + v_{\mathbf{k}}a_{-\mathbf{k}}^{\dagger}a_{\mathbf{k}}^{\dagger})|0\rangle \\ (closed) \ \qquad (open) \end{array}$

• excitation spectrum: $H_{ex} = \sum_{\mathbf{k}} E_{\mathbf{k}}^{(a)} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + \sum_{\mathbf{k},\alpha} E_{\mathbf{k},\alpha}^{(m)} \beta_{\mathbf{k},\alpha}^{\dagger} \beta_{\mathbf{k},\alpha}$

$$E_{\mathbf{k}}^{(a)} = \sqrt{arepsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}, \qquad E_{\mathbf{k},\alpha}^{(m)} = \sqrt{\epsilon_{\mathbf{k}}^2 + \mu_{lpha}\epsilon_{\mathbf{k}}} \qquad with \; gap: \; \Delta_k = 2g|\vec{B}\cdot\vec{k}|$$

• \vec{B} , n_b , n_a , μ determined by :

> energy minimization (gap equation) $\rightarrow \frac{\partial E(\vec{B})}{\partial B_{\alpha}} = 0$

 \succ atom number equation $\rightarrow 2n_b + n_a = n$

$$\underbrace{Isotropic resonance at T=0}_{\omega_{0}} \quad (\omega_{\alpha} = \omega_{0})$$

$$E = (u^{2}+v^{2}) [\omega_{0} - 2\mu + a_{1} \ln \{a_{0} (u+v)\}] + a_{1} \frac{u^{3} + v^{3}}{u+v} + a_{2} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$BCS \quad BCS \quad (\omega_{0} \gg 2\epsilon_{F}) : \qquad BCS \quad BEC: \quad (\vec{B}^{*} \cdot \vec{B})^{2} + \frac{1}{2} |\vec{B} \cdot \vec{B}|^{2}$$

$$\Rightarrow \mu \approx \epsilon_{F} + \mathcal{O}(\gamma)$$

$$\Rightarrow \frac{E_{k_{x} + ik_{y}}}{E_{k_{x}}} = \frac{1}{2}e > 1 \qquad (Anderson - Morel A_{1} phase)$$

$$u = v \sim e^{-(\omega_{0} - 2\epsilon_{F})/\gamma\epsilon_{F}} \Longrightarrow k_{x} + ik_{y} (m = 1)$$

• BEC $(\omega \ll 2\epsilon_F)$:

P-wave superfluid phases

$$E = \sum_{\alpha} (u_{\alpha}^{2} + v_{\alpha}^{2}) \left[\omega_{0\alpha} - 2\mu + a_{1} \ln \left\{ a_{0} \left(u + v \right) \right\} \right] + a_{1} \frac{u^{3} + v^{3}}{u + v} + a_{2} \left[\left(u^{2} + v^{2} \right)^{2} + \frac{1}{2} \left(u^{2} - v^{2} \right)^{2} \right]$$

• k_x - state: β -phase of ³He ($m_{\parallel}=0$)

- $u \approx u_0 e^{\delta}$, v = 0
- equatorial node line for $\mu > 0 \implies C \sim T^{\alpha}$, ...
- fully gapped for $\mu < 0 \implies C \sim e^{-|B-B_0|^2/T}$, ...
- spontaneously broken symmetries: U(1)

- $k_x + i \sigma k_y$ state: "deformed" A_1 -phase of ³He ($m_1 = 1$)
 - $u \approx u_0 (1+\delta) e^{\delta/2}$, $v \approx u_0 (1-\delta) e^{\delta/2} \implies |m_\perp = 1 > +\delta |m_\perp = -1 > 1$
 - polar point nodes for $\mu > 0 \Rightarrow C \sim T^{\alpha}$, ...
 - fully gapped for $\mu < 0 \implies C \sim e^{-|B-B_0|^2/T}$, ...
 - spontaneously broken symmetries: U(1), O(2), T

G. E. Volovik, JETP Lett. 80, 343 (2004)

<u>p_x+ i p_y superfluid in 2D</u>

- Pfaffian (Moore-Read) state from FQH $|p_x + ip_{y_{BCS}}\rangle = \prod_p \left[u_p + v_p a_{-p}^{\dagger} a_p^{\dagger} \right] |0\rangle$ $\Psi (z_1, z_2, \dots, z_{2N}) = \sum_P (-1)^P \frac{1}{z_{P_1} - z_{P_2}} \frac{1}{z_{P_3} - z_{P_4}} \dots \frac{1}{z_{P_{N-1}} - z_{P_N}}$
- topological classification in terms of u_p and v_p

Anderson's pseudospin
$$\begin{cases} n_x + in_y = 2v^* u \\ n_z = |v|^2 - |u|^2 \end{cases} \qquad \vec{n} = \frac{1}{\sqrt{\left(\frac{p^2}{2m_a} - \mu\right)^2 + 4B^2 \left(p_x^2 + p_y^2\right)}} \begin{pmatrix} 2gBp_x \\ -2gBp_y \\ \frac{p^2}{2m_a} - \mu \end{pmatrix}$$

Explicit calculations show that

N=0 if $\mu < 0$

N=1 if $\mu > 0$

$$\xrightarrow{p_y} N \xrightarrow{p_x} \vec{n}$$

$$N = \frac{1}{8\pi} \int d^2 p \left[\vec{n} \cdot \partial_\alpha \vec{n} \times \partial_\beta \vec{n} \ \epsilon_{\alpha\beta} \right]$$

topological invariant

• Pfaffian (Moore-Read) state from FQH
$$|p_{x} + ip_{y_{BCS}}\rangle = \prod_{p} \left[u_{p} + v_{p}a_{-p}^{\dagger}a_{p}^{\dagger} \right] |0\rangle$$

$$\Psi \left(z_{1}, z_{2}, \dots, z_{2N} \right) = \sum_{P} (-1)^{P} \frac{1}{z_{P_{1}} - z_{P_{2}}} \frac{1}{z_{P_{3}} - z_{P_{4}}} \cdots \frac{1}{z_{P_{N-1}} - z_{P_{N}}}$$

- topological classification in terms of u_p and v_p
- gapped (N=1, BCS) \Rightarrow gapped (N=0, BEC) superfluid transition at $\mu=0$ Read and Green, PRB 61, 10267 (2000)
- vortex excitations with non-Abelian statistics

Ivanov, PRL (2001)

one fermion (2 states –either empty or occupied fermion) per two vortices

 $2^{\frac{n}{2}}$ states per *n* vortices

• suggested to be used as qubits for quantum computers *Kitaev, Ann. Phys. 303, 2 (2003)*

Summary of p-wave superfluidity

- mapped out T, $\omega_0 \propto B$, δ phase diagram for p-wave Feshbach resonant Fermi gas
 - p_x and $p_x + i p_y$ superfluids
 - thermal, quantum and topological
 SF => SF transitions
- quantitatively accurate description for small $\gamma = \Gamma/\epsilon_F$ (low n)

- realization of topological states, majorana zero modes, and non-Abelian statistics of Pfaffian (Moore-Read) state
- p-wave Feshbach molecules observed in K⁴⁰
- ...BUT
 - *short (msec) molecular lifetime (see Levinson, et al, PRL 2007)*
 - \clubsuit what about Li^6
 - need better quantitative understanding of stability