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Randomly-pinned systems 
•  Bulk-pinned systems (well explored)�

•  Vortex lattices in type II superconductors�

•  Magnets with impurities�

•  Charge density waves in metals�

•  Surface-pinned systems (nearly unexplored)�

•  Friction and earthquakes�

•  Cracks �

•  Liquid crystal cells with patterned or “dirty” substrates�

nematic cell smectic cell 
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Motivation 

•  basic scientific interest �
•  cell geometry in all applications�
•  surface pinning is essential �
•  random heterogeneous pinning �
  if not rubbed: �
�

Schlieren	  texture	  in	  a	  Nema7c	  cell	   N.	  Aryasova	  et.	  al.,	  Mol.	  Cryst.	  Liq.	  Cryst.	  (2004)	  

differentially heated nematic cell�



Riverbottom texture 

smectic-C cell imaging stresses due to layers surface pinning �
Jones	  and	  Clark	  



Experimental realizations 



Experimental realizations 



Nematic cell 

nematic cell with a rubbed and heterogenous substrates �

Competition between bulk interactions                ordering �
         �
                                   and �
�
                       substrate random pinning         disordering�



Questions of interest 
•  stability of the ordered state to surface pinning? �
•  nature of the random state?�
•  domain size of ordered regions?�
•  statistics of random distortions�
•  effect of homogeneous substrate?�
•  elastic distortions vs topological defects?�
•  glassy dynamics?�
•  …�
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Imry-Ma energy balance 

•  Elastic energy of domain size ξ: �

�
�
•  Pinning energy of domain size ξ: �

�
•  Finite domain size for d ≤ dc=3 (for thick cell): �
  à pinning always wins, no LR nematic order                    �
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K

2

�
d2xdz(�n̂)2

Eelastic � KLd�2

Epin � Vp

�
Np � Vp(L/�0)(d�1)/2

�L � aeK2/�p (in	  3d)	  

Hpin = �
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d2xdz�(z)
�
g(r) · n̂

�2



Nematic cell model 
•  bulk Hamiltonian: �

�
•  bulk vs surface modes: �

�

 �
�
�
�
•  reduce to a substrate Hamiltonian: �

�

H =
� �

��
d2x

� w

0
dz

�
K

2
(��(r))2 � V [�(r),x]�(z)

�
.

�(q, z) = �(q)
Kq cosh[q(w � z)] + Wp sinh[q(w � z)]

KqWp cosh[qw] + K2q2 sinh[qw]

�(�)(q, z) = �0(q)e�qz, w ��

�(D)(v, z) = �0(q)
sinh [q(w � z)]

sinh (qw)
, rubbed

�(B)(v, z) = �0(q)
cosh [q(w � z)]

cosh (qw)
, smooth
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q |�0(q)|2 �
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d2x�V [�0(x�), x�]

�(�)
q = Kq, w ��

�(N)
q = Kq tanh(qw), smooth

�(D)
q = Kq coth(qw), rubbed



Director correlations 
•  short-scales director distortions on substrate, z=0: �

�
�
�
�

C(x, z, z) = �(�(x, z) � �(0, z))2�
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Director correlations 
•  director distortions at z: �
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Surface nematic order parameter 
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•  rubbed back substrate along A �
•  Mauguin limit �
•  transmission through cell w: �
�

Polarized light microscopy 

P	  
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collaboration with Yue Shi and Noel Clark: �

-‐5	  degrees	   0	  degrees	   5	  degrees	  

Recent experiments on nematic cells 

angle	  ϕ0	  (x)	  distribu7on	  

I(�(x), x) = I0 + I1 sin2[2�� �0(x)]



Recent measurements on nematic cells 

〉)(−+〈=Δ
2

00 ]')'([)( xxxxC φφDistribution of azimuthal angle 
on the disordered substrate.�

Yue Shi, Quan Zhang	  



Monte Carlo simulations 
Collaboration with Robin Selinger and Mikhail Pevnyi (KSU) �
	  



Smectic cell 

What	  are	  the	  effects	  of	  substrate	  heterogeneity	  (disorder)	  	  
on	  smec7c	  order?	  

Jones	  and	  Clark	  



Broadening of X-ray peak at low T 

Red	  dots:	  data	  from	  bulk	  sample	  (in	  
capillary).	  

Blue	  dots	  and	  line:	  data	  of	  surface	  
disordered	  cell.	  

C. D. Jones and N. A. Clark, Bull. Am. 
Phys. Soc. 49, 307 (2004).	  

Smec7c	  A	   Smec7c	  C	  

Smec7c	  A	  



Polarized light microscopy 

Sm	  C	  Sm	  A	  



Temperature cycle into Sm-A and back to Sm-C 



Temperature cycle into Nematic 

Both images are exactly the same area of the cell�



Smectic layer spacing 

MX	  8068:	  isotropic	  85ºC	  nema7c	  	  81ºC	  SmA	  62ºC	  	  SmC	  	  



Smectic cell 
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Substrate-induced distortions  

Elas7c	  distor7ons	  

Topological	  defects,	  e.g.	  disloca7ons	  



Smectic cell bulk model 

•  smectic elasticity: �

�
•  substrate pinning:    �
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�
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(bookshelf	  geometry)	  



Smectic cell substrate model 
•  smectic surface elasticity: �

�
•  substrate pinning:    �

u(qx, qz, y) = u0(qx, qz)e
� y
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Positional pinning correlations 
•  layer distortions: �



Orientational pinning correlations 

•  layer distortions: �



Smectic glass transition 
Analog of Cardy-Ostlund transition �
�

Tg
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River-bottom experiments vs theory 

Peak	  width	  by	  
single	  peak	  fi\ng	  

theore7cal	  fi\ng	  

Es7mated	  domain	  size	  	  	  	  	  	  	  	  	  ~1600	  a	  ~	  several	  microns	  
This	  provides	  a	  plausible	  explana7on	  to	  the	  peak	  broadening	  at	  lower	  
temperatures.	  

Smec7c	  A	  

Smec7c	  A	  phase	  



Model 
Two	  peaks	  fi\ng	  of	  the	  exp.	  

No7cing	  that	  the	  lower	  temperature	  peaks	  broadens	  at	  high	  q	  side,	  
we	  fit	  the	  x-‐ray	  peaks	  to	  surface	  and	  bulk	  peaks	  for	  lower	  temperatures.	  
Es7mated	  domain	  size	  	  	  	  	  	  	  	  	  ~2200	  a	  ~	  several	  microns,	  which	  is	  the	  similar	  to	  
the	  one	  peak	  fi\ng.	  
	  

surface	  peak	  width	  

Peak	  width	  of	  the	  cell	  

theore7cal	  	  
fi\ng	   Smec7c	  A	  



Nonlinear elasticity 

Elastic energy of smectic system: �

For the two types of substrate pinning: �

Heterogenous substrate induces stress via nonlinear elasticity�



Smectic cell with surface stress 

Distortions away from the surface: �

solved by �

Leading to elastic energy: �



Elastic distortion 



Dislocation nucleation 

dd = ?,    nd = ? ...�



Surface-pinning induced layer undulations 

cf Clark – Meyer ‘73; Helfrich�



In progress and future 

…Crazy out there in the left field…�



Quantum liquid crystals 

•  spins and bosons on frustrate lattices e.g., honeycomb lattice �

3

vanishing J1, and D

c

= 6J2 + 2J

2
1/J2 for the incommensu-

rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates D

c

(see Fig. 2).
Within this MFT, we also study the magnetization process

for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility vanishes. For
field applied along x (or y) axis, the zero-temperature spin
susceptibility saturates to a constant

�

?
0 =

2µ0(gµ

B

)

2

D + 12J

. (9)

In a powder sample (studied in experiments), the zero-
temperature spin susceptibility averages to �

av
0 = 2�

?
0 /3.

Mean-field theory from paramagnetic phase—It is conve-
nient to model this easy-plane system with rotor variables, by
introducing an integer-valued field n

i

and 2⇡-periodic phase
variable �

i

, which satisfy [�

i

, n

j

] = i�

ij

. With the mapping,
S

z

i

! n

i

and S

+
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! p
2e

i�i , the rotor Hamiltonian reads
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ij
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] +

X

i
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2
i

. (10)

where J

ij

takes J1 (J2) for NN interlayer (intralayer) bonds.
Although n

i

only takes the values of ±1, 0 in the spin model,
due to the substantial anisotropy D, we expect that relaxing
this restriction is unlikely to have significant effects.

Using a standard coherent state path integral, we integrate
out the field n

i

and obtain the partition function,

Z =

Z
D�D� e

�S�i

P
i

R
d⌧�i(|�i|2�1)

. (11)
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(12)
we have represented e

i�i by the unimodular field �

⇤
i

, Jk is the
2 ⇥ 2 exchange coupling matrix written in momentum space,
µ, ⌫ are the sublattice indices, and I is a 2 ⇥ 2 identity matrix.
The unimodular constraint on �

i

is enforced by the Lagrange
multiplier fields �

i

. We proceed by introducing a saddle-point
approximation; by assuming i�

i

= ��(T ) at the saddle point,
we integrate out the � field and obtain the saddle-point equa-
tion (SPE) for �(T ) in QP phase,
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FIG. 2. (Color online) Zero-temperature phase diagram determined
from the SPE in Eq. (13). Shaded region (in blue) is the expected
parameter regime for the 6H-B compound. Dashed (red) curve in-
dicates the location where D = �0/2, which is important in the
discussion of T -linear C

v

(T ) below. Possible supersolid phase[23]
deep in the ordered region is beyond of the scope of this work.
J ⌘ J1 + J2.
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
tions in k

x

-k
y

plane with k

z

= 0 at the QCP. (a) J1 = 1.5J2, Dc

=
1.357J , (b) J1 = J2, Dc

= 1.226J , (c) J1 = 0.8J2, Dc

= 1.274J ,
(d) J1 = 0, D

c

= 2.01J . The low-energy gapless contours are
marked with thick black lines in (a-c), while in (d) the low-energy
gapless points are marked with black dots. Lattice constants in xy

plane are set to be 1. (e) is the Brillouin zone (BZ) of the honeycomb
lattice. When J1 > J2, the contour line is centered in the middle
of BZ. When J1 < J2, the contour lines are centered around and
eventually shrink to the corners of BZ in the limit J1 ! 0. The “3”
points in (b) correspond to “M” points in (e) with k

z

= 0.

When the left hand side (LHS) of the SPE Eq. (13) is less
than 2 for any choice of �(T ), the rotor is condensed which
signals the presence of magnetic order. Therefore, besides
the transition temperature from the high-temperature param-
agnetic phase to the low-temperature spin spirals, we also ob-
tain the critical D

c

that separates spin spirals from QP phase

dispersion:	  

helical magnets�
superfluid liquid crystals�



Quantum liquid crystals 

•  p-wave resonant atomic superfluids: �

Q 

n̂ m̂

�̂



Quantum liquid crystals 
•  superconducting smectic in imbalanced fermionic atoms: �

a	  

- + - + - + - + - + 

Fukuda, et al., PRB 45 ’92 
(Smalyukh) 

dispiration 
in SmCA 



Summary 

•  nematic cell with “dirty” substrate�
Ø  nematic order weakly unstable for thick cell�
Ø  correlations of director distortions�
Ø  transmission through cell �

•  smectic cell with “dirty” substrate�
Ø  smectic order strongly unstable for thick cell�
Ø  correlations of smectic layer distortions �
Ø  smectic-glass phase transition at Tg �
Ø  dislocations and nonlinear elasticity?�

•  quantum liquid crystals�
Ø  helical order in frustrated magnets, Ba3NiSb2O6 , FeTe�
Ø  superfluid (BEC) at finite momentum�
Ø  superconductor at finite momentum (FFLO)�


