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Randomly-pinned systems 
•  Bulk-pinned systems (well explored)�

•  Vortex lattices in type II superconductors�

•  Magnets with impurities�

•  Charge density waves in metals�

•  Surface-pinned systems (nearly unexplored)�

•  Friction and earthquakes�

•  Cracks �

•  Liquid crystal cells with patterned or “dirty” substrates�

nematic cell smectic cell 
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Motivation 

•  basic scientific interest �
•  cell geometry in all applications�
•  surface pinning is essential �
•  random heterogeneous pinning �
  if not rubbed: �
�

Schlieren	
  texture	
  in	
  a	
  Nema7c	
  cell	
   N.	
  Aryasova	
  et.	
  al.,	
  Mol.	
  Cryst.	
  Liq.	
  Cryst.	
  (2004)	
  

differentially heated nematic cell�



Riverbottom texture 

smectic-C cell imaging stresses due to layers surface pinning �
Jones	
  and	
  Clark	
  



Experimental realizations 



Experimental realizations 



Nematic cell 

nematic cell with a rubbed and heterogenous substrates �

Competition between bulk interactions                ordering �
         �
                                   and �
�
                       substrate random pinning         disordering�



Questions of interest 
•  stability of the ordered state to surface pinning? �
•  nature of the random state?�
•  domain size of ordered regions?�
•  statistics of random distortions�
•  effect of homogeneous substrate?�
•  elastic distortions vs topological defects?�
•  glassy dynamics?�
•  …�
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Imry-Ma energy balance 

•  Elastic energy of domain size ξ: �

�
�
•  Pinning energy of domain size ξ: �

�
•  Finite domain size for d ≤ dc=3 (for thick cell): �
  à pinning always wins, no LR nematic order                    �
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HF =
K

2

�
d2xdz(�n̂)2

Eelastic � KLd�2

Epin � Vp

�
Np � Vp(L/�0)(d�1)/2

�L � aeK2/�p (in	
  3d)	
  

Hpin = �
�

d2xdz�(z)
�
g(r) · n̂

�2



Nematic cell model 
•  bulk Hamiltonian: �

�
•  bulk vs surface modes: �

�

 �
�
�
�
•  reduce to a substrate Hamiltonian: �

�

H =
� �

��
d2x

� w

0
dz

�
K

2
(��(r))2 � V [�(r),x]�(z)

�
.

�(q, z) = �(q)
Kq cosh[q(w � z)] + Wp sinh[q(w � z)]

KqWp cosh[qw] + K2q2 sinh[qw]

�(�)(q, z) = �0(q)e�qz, w ��

�(D)(v, z) = �0(q)
sinh [q(w � z)]

sinh (qw)
, rubbed

�(B)(v, z) = �0(q)
cosh [q(w � z)]

cosh (qw)
, smooth

Hs =
�

q�

�(a)
q |�0(q)|2 �

�
d2x�V [�0(x�), x�]

�(�)
q = Kq, w ��

�(N)
q = Kq tanh(qw), smooth

�(D)
q = Kq coth(qw), rubbed



Director correlations 
•  short-scales director distortions on substrate, z=0: �

�
�
�
�

C(x, z, z) = �(�(x, z) � �(0, z))2�
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Director correlations 
•  director distortions at z: �
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Surface nematic order parameter 
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•  rubbed back substrate along A �
•  Mauguin limit �
•  transmission through cell w: �
�

Polarized light microscopy 
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=
1
2
I0

�
1� �(w, 0)

�
Transmission	
  

1/2	
  

0	
   w	
  
ξ	
  

�Iw(x)Iw(x�)� � I2
0

�
c +

1
8
e��(�0(x)��0(x�))2�/2

�



collaboration with Yue Shi and Noel Clark: �
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  degrees	
  

Recent experiments on nematic cells 

angle	
  ϕ0	
  (x)	
  distribu7on	
  

I(�(x), x) = I0 + I1 sin2[2�� �0(x)]



Recent measurements on nematic cells 

〉)(−+〈=Δ
2

00 ]')'([)( xxxxC φφDistribution of azimuthal angle 
on the disordered substrate.�

Yue Shi, Quan Zhang	
  



Monte Carlo simulations 
Collaboration with Robin Selinger and Mikhail Pevnyi (KSU) �
	
  



Smectic cell 

What	
  are	
  the	
  effects	
  of	
  substrate	
  heterogeneity	
  (disorder)	
  	
  
on	
  smec7c	
  order?	
  

Jones	
  and	
  Clark	
  



Broadening of X-ray peak at low T 

Red	
  dots:	
  data	
  from	
  bulk	
  sample	
  (in	
  
capillary).	
  

Blue	
  dots	
  and	
  line:	
  data	
  of	
  surface	
  
disordered	
  cell.	
  

C. D. Jones and N. A. Clark, Bull. Am. 
Phys. Soc. 49, 307 (2004).	
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   Smec7c	
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Smec7c	
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Polarized light microscopy 

Sm	
  C	
  Sm	
  A	
  



Temperature cycle into Sm-A and back to Sm-C 



Temperature cycle into Nematic 

Both images are exactly the same area of the cell�



Smectic layer spacing 

MX	
  8068:	
  isotropic	
  85ºC	
  nema7c	
  	
  81ºC	
  SmA	
  62ºC	
  	
  SmC	
  	
  



Smectic cell 
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Substrate-induced distortions  

Elas7c	
  distor7ons	
  

Topological	
  defects,	
  e.g.	
  disloca7ons	
  



Smectic cell bulk model 

•  smectic elasticity: �

�
•  substrate pinning:    �

Hel =
�

d2x�

� �

0
dy

�
K

2
(�2
�u)2 +

B

2
(�zu)2

�
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d2x�[h(x)�xu0 + V (u0,x)]

(bookshelf	
  geometry)	
  



Smectic cell substrate model 
•  smectic surface elasticity: �

�
•  substrate pinning:    �

u(qx, qz, y) = u0(qx, qz)e
� y

�+(q)

�
��(q)
�+(q)

sin
� y

��(q)

�
+ cos

� y

��(q)

��

Hsurface[u0] =
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�q|u0(q�)|2 �
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�
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q4
x + q2

z/�2 + q2
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Positional pinning correlations 
•  layer distortions: �



Orientational pinning correlations 

•  layer distortions: �



Smectic glass transition 
Analog of Cardy-Ostlund transition �
�

Tg

!v
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1
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randomly%pinned
smectic%glass thermal smectic
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River-bottom experiments vs theory 

Peak	
  width	
  by	
  
single	
  peak	
  fi\ng	
  

theore7cal	
  fi\ng	
  

Es7mated	
  domain	
  size	
  	
  	
  	
  	
  	
  	
  	
  	
  ~1600	
  a	
  ~	
  several	
  microns	
  
This	
  provides	
  a	
  plausible	
  explana7on	
  to	
  the	
  peak	
  broadening	
  at	
  lower	
  
temperatures.	
  

Smec7c	
  A	
  

Smec7c	
  A	
  phase	
  



Model 
Two	
  peaks	
  fi\ng	
  of	
  the	
  exp.	
  

No7cing	
  that	
  the	
  lower	
  temperature	
  peaks	
  broadens	
  at	
  high	
  q	
  side,	
  
we	
  fit	
  the	
  x-­‐ray	
  peaks	
  to	
  surface	
  and	
  bulk	
  peaks	
  for	
  lower	
  temperatures.	
  
Es7mated	
  domain	
  size	
  	
  	
  	
  	
  	
  	
  	
  	
  ~2200	
  a	
  ~	
  several	
  microns,	
  which	
  is	
  the	
  similar	
  to	
  
the	
  one	
  peak	
  fi\ng.	
  
	
  

surface	
  peak	
  width	
  

Peak	
  width	
  of	
  the	
  cell	
  

theore7cal	
  	
  
fi\ng	
   Smec7c	
  A	
  



Nonlinear elasticity 

Elastic energy of smectic system: �

For the two types of substrate pinning: �

Heterogenous substrate induces stress via nonlinear elasticity�



Smectic cell with surface stress 

Distortions away from the surface: �

solved by �

Leading to elastic energy: �



Elastic distortion 



Dislocation nucleation 

dd = ?,    nd = ? ...�



Surface-pinning induced layer undulations 

cf Clark – Meyer ‘73; Helfrich�



In progress and future 

…Crazy out there in the left field…�



Quantum liquid crystals 

•  spins and bosons on frustrate lattices e.g., honeycomb lattice �

3

vanishing J1, and D

c

= 6J2 + 2J

2
1/J2 for the incommensu-

rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates D

c

(see Fig. 2).
Within this MFT, we also study the magnetization process

for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility vanishes. For
field applied along x (or y) axis, the zero-temperature spin
susceptibility saturates to a constant

�

?
0 =

2µ0(gµ

B

)

2

D + 12J

. (9)

In a powder sample (studied in experiments), the zero-
temperature spin susceptibility averages to �

av
0 = 2�

?
0 /3.

Mean-field theory from paramagnetic phase—It is conve-
nient to model this easy-plane system with rotor variables, by
introducing an integer-valued field n

i

and 2⇡-periodic phase
variable �

i

, which satisfy [�

i

, n

j

] = i�

ij

. With the mapping,
S

z

i

! n

i

and S

+
i

! p
2e

i�i , the rotor Hamiltonian reads

Hrotor =

1

2

X

ij

J

ij

[2 cos(�

i

� �

j

) + n

i

n

j

] +

X

i

Dn

2
i

. (10)

where J

ij

takes J1 (J2) for NN interlayer (intralayer) bonds.
Although n

i

only takes the values of ±1, 0 in the spin model,
due to the substantial anisotropy D, we expect that relaxing
this restriction is unlikely to have significant effects.

Using a standard coherent state path integral, we integrate
out the field n

i

and obtain the partition function,

Z =

Z
D�D� e

�S�i

P
i

R
d⌧�i(|�i|2�1)

. (11)

Here,

S =

Z
d⌧

X

k

(4DI+2Jk)

�1
µ⌫

@

⌧

�

⇤
µ,k@

⌧

�

⌫,�k+

X

ij

J

ij

�
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i

�

j

,

(12)
we have represented e

i�i by the unimodular field �

⇤
i

, Jk is the
2 ⇥ 2 exchange coupling matrix written in momentum space,
µ, ⌫ are the sublattice indices, and I is a 2 ⇥ 2 identity matrix.
The unimodular constraint on �

i

is enforced by the Lagrange
multiplier fields �

i

. We proceed by introducing a saddle-point
approximation; by assuming i�

i

= ��(T ) at the saddle point,
we integrate out the � field and obtain the saddle-point equa-
tion (SPE) for �(T ) in QP phase,

X

i=±

Z

k2BZ

d

3k

uBZ

2D + s

i,k

✏

i,k
coth(

�✏

i,k

2

) = 2, (13)

where uBZ = 16⇡

3
/

p
3 is the volume of 3D BZ, s±,k ⌘

±2|J1 cos(

kz
2 )|

q
3 +

P
{b} cos(k · b) + J2

P
{b} cos(k · b)

are the eigenvalues of Jk, and ✏±,k are the two spin excitation
modes,

✏±,k =

q
(4D + 2s±,k)(�(T ) + s±,k)

=

r
2

⇥
(s±,k + D +

�(T )

2

)
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)

2
⇤
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FIG. 2. (Color online) Zero-temperature phase diagram determined
from the SPE in Eq. (13). Shaded region (in blue) is the expected
parameter regime for the 6H-B compound. Dashed (red) curve in-
dicates the location where D = �0/2, which is important in the
discussion of T -linear C

v

(T ) below. Possible supersolid phase[23]
deep in the ordered region is beyond of the scope of this work.
J ⌘ J1 + J2.
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
tions in k

x

-k
y

plane with k

z

= 0 at the QCP. (a) J1 = 1.5J2, Dc

=
1.357J , (b) J1 = J2, Dc

= 1.226J , (c) J1 = 0.8J2, Dc

= 1.274J ,
(d) J1 = 0, D

c

= 2.01J . The low-energy gapless contours are
marked with thick black lines in (a-c), while in (d) the low-energy
gapless points are marked with black dots. Lattice constants in xy

plane are set to be 1. (e) is the Brillouin zone (BZ) of the honeycomb
lattice. When J1 > J2, the contour line is centered in the middle
of BZ. When J1 < J2, the contour lines are centered around and
eventually shrink to the corners of BZ in the limit J1 ! 0. The “3”
points in (b) correspond to “M” points in (e) with k

z

= 0.

When the left hand side (LHS) of the SPE Eq. (13) is less
than 2 for any choice of �(T ), the rotor is condensed which
signals the presence of magnetic order. Therefore, besides
the transition temperature from the high-temperature param-
agnetic phase to the low-temperature spin spirals, we also ob-
tain the critical D

c

that separates spin spirals from QP phase

dispersion:	
  

helical magnets�
superfluid liquid crystals�



Quantum liquid crystals 

•  p-wave resonant atomic superfluids: �

Q 

n̂ m̂

�̂



Quantum liquid crystals 
•  superconducting smectic in imbalanced fermionic atoms: �

a	
  

- + - + - + - + - + 

Fukuda, et al., PRB 45 ’92 
(Smalyukh) 

dispiration 
in SmCA 



Summary 

•  nematic cell with “dirty” substrate�
Ø  nematic order weakly unstable for thick cell�
Ø  correlations of director distortions�
Ø  transmission through cell �

•  smectic cell with “dirty” substrate�
Ø  smectic order strongly unstable for thick cell�
Ø  correlations of smectic layer distortions �
Ø  smectic-glass phase transition at Tg �
Ø  dislocations and nonlinear elasticity?�

•  quantum liquid crystals�
Ø  helical order in frustrated magnets, Ba3NiSb2O6 , FeTe�
Ø  superfluid (BEC) at finite momentum�
Ø  superconductor at finite momentum (FFLO)�


