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1. Three-dimensional spherical square well potential with V (r) = −V0, for r < d and 0,
for r > d.

(a) For the bound states (E < 0):

i. Find the eigenfunctions with angular momentum ` and a matching condition
determining the corresponding coefficients of the radial part of the wavefunc-
tion. Express your answer in terms of special functions, but do not try to
solve the transcendental equations for the matching coefficients. Argue based
on this general structure of the solution that the spectrum must be discrete.
Hint: note that at large r the spherical Henkel function of h

(1)
` (kr) = j`(kr)+

in`(kr) ∼ eikr/(kr).

ii. Specializing to ` = 0, use above general result to explicitly find eigenfunc-
tions in terms of elementary functions and greatly simplified transcendental
matching equation. Formulate the transcendental equation graphically.

iii. What is the critical value V
(n)
0c at which nth bound level appears? Use this

result to find the minimum value V c
0 of the potential depth V0 below which

an ` = 0 bound state is impossible. Compare your answer with that of a
1d square well potential from an earlier homework assignment. Explain the
connection and why here (in contrast to that earlier true 1d problem) a bound
state only appears if the potential well is sufficiently deep, i.e., V0 > V c

0 .

iv. Study the problem for a very deep well and arbitrary `. For states with energy
|En,`| comparable to V0 (i.e., very deeply lying low energy bound states),
determine the order in which these appear; use the |n, `〉 notation or the
spectroscopic notation 1s, 1p, 2f, etc...to list the lowest 10 states.
Hint: In this last case a considerable simplification takes place, but the eigen-
values must still be computed numerically.

(b) For the continuum states (E > 0):



i. Write down the appropriate wavefunctions for inside and outside regions and
the corresponding matching condition. Based on this make an argument that
the eigenenergies form a continuum (rather than a discrete set).

ii. Write down large r asymptotic form of these wavefunctions and use it to relate
the coefficients B and C of the outer solution to the (so-called) scattering
phase shift δ`(k), latter defined by the asymptotic form of the wavefunction
R(r →∞) ∼ (kr)−1 sin(kr − π

2
`+ δ`).

iii. Use above results to approximately compute δ0(k) for the special case of
` = 0, showing that at low energies (small k) k cot δ0(k) ≈ −a−1 + 1

2
r0k

2,
and giving explicit expressions for parameters a (scattering length) and r0
(effective range).

iv. Show that in V0 →∞ limit, a reduces to the potential range d.

v. Using your results above, demonstrate a general result that δ`(k) → 0 as
k → 0, and derive how rapidly (with k) it approaches zero for a given `.

2. Hydrogen atom

(a) An electron in the Coulomb field of a proton is in a state described by a wave
function ψ(r) = Ae−r/r0 . What is the probability that (while in this state right
before the measurement) it will be found in (i) a state with angular momentum
` 6= 0 and m 6= 0? (ii) its ground state; for the latter, compute and sketch
P (r0/a0) and show that it is maximized at 1 for r0 = a0. Why? (a0 is Bohr
radius).

(b) Show that eigenfunctions of a spherically symmetric Hamiltonian are also eigen-
states of parity with eigenvalue P = (−1)` determined only by the angular mo-
mentum quantum number `.

3. Angular momentum

(a) Derive Pauli matrices ~σ by explicitly computing matrix elements of angular mo-

mentum components ~J for the j = 1/2 representation and using ~J = 1
2
h̄~σ.

(b) Using their commutation and anticommutation relations derive Pauli matrices
identities:

i. Tr(σiσj) = 2δij, also verifying it by explicit matrices found above.

ii. (~a · ~σ)(~b · ~σ) = ~a ·~bI + i(~a×~b) · ~σ. (I is an identify matrix.)

iii. Use above identities to show that a square of the 2D Dirac Hamiltonian
HD = c(~p−e ~A/c)·~σ+mc2σz (describing a spin 1/2 particle; ~p = (px, py)) gives

the Klein-Gordon Hamiltonian HKG = H2
D = (~p− e ~A/c)2c2 +m2c4−2ce ~B · ~S

(describing a spin zero particle). Taylor expand the square-root of the latter to

lowest order in (~p−e ~A/c)2/m2c2 to show that (upto a constant, that is the rest
energy mc2) one gets the Hamiltonian for the nonrelativistic Schrodinger’s



equation, HSch =
√
HKG − mc2, with an additional “anomalous” Zeeman

term −2µB
~B · ~S term. Now you know how spin and its interaction with the

magnetic field automatically emerge from the Dirac equation!
Hint: For the last part, (1) to warm up please first try doing it with ~A = 0,

(2) for convenience use the transverse gauge where ~∇ · ~A = 0, (3) be very

careful with the order of ~p and ~A, noting that in e.g., an expression like ~p · ~A,
~p is an operator that is acting on both ~A and the wavefunction (that you have

to imagine is actually there, as in Hψ), and hence ~p · ~A is actually (~p · ~A)+ ~A·~p
(where now in the first term ~p is now only acting on ~A).

(c) By explicitly diagonalizing matrix n̂ · ~σ (with ~̂n a unit vector defined by polar
and azimuthal angles θ and φ) find its eigenvectors ψn̂

±,σ and the corresponding
eigenvalues. Show that your result for eigenvectors is nothing more than an SU(2)

rotation by a matrix U~θ = e−i~θ·~σ/2 of spinors ψẑ
+,σ = (1, 0), ψẑ

−,σ = (0, 1) (eigen-

states of σz) by angle θ about axis θ̂ = ẑ × n̂/|ẑ × n̂|. Show formally why this is
the case.

(d) i. What are the eigenvalues and eigenvectors of the operator Sx + Sz for a spin
h̄/2 system? Answer the question by direct diagonalization and checking your
answer by using the general result found above.

ii. Consider an electron that is measured to be in a spin state +1/2 using a
Stern-Gerlach apparatus with the axis of magnetic field along n̂ = (x̂+ẑ)/

√
2.

What is the probability that a subsequent measurement using a Stern-Gerlach
apparatus with the axis of magnetic field along ẑ finds an electron in +1/2
spin state?

(e) Spin precession:

i. Derive a Heisenberg equation of motion for a localized electron spin operator
~S(t) subjected to a magnetic field ~B, expressing your answer in terms of the
Bohr magneton µB = eh̄/(2mc) and electron gyromagnetic ratio g ≈ 2. Show
that it corresponds to precession of the spin around the magnetic field. What
is the precessional frequency? Solve this equation explicitly for the case of ~B
along ẑ in terms of ~S(0).

ii. Consider an s = 1/2 spin system in the presence of a ~B = Bz ẑ magnetic
field that at t = 0 starts out in its up eigenstate. Derive the time evolution
of this state, following a turning on of an additional constant magnetic field
Bxx̂, expressing your answer in terms of basis with a quantization axis along
ẑ. Compute the probability P↑(t) of finding the spin in the spin up eigenstate
(defined with respect to the basis with quantization axis along ẑ). Show
that it P↑(t) oscillates in time and find the frequency and the amplitude of
oscillation.
Hint: (a) Check simple limits ((i) Bx = 0, (ii) Bz = 0, (iii) t = 0, ...) of your
expressions, making sure your intermediate answers make sense. (b) This



problem can be either solved using spin evolution operator, or equivalently by
decomposing the initial noneigenstate into a linear combination of eigenstates,
and then evolving the latter in time via their simple oscillatory phase factors.

(f) Prove that all the wavefunctions belonging to the maximum eigenvalue of the
square of the total spin operator of a system of N electrons are symmetric in the
spin coordinate of the individual electrons.

(g) Derive the spectrum and corresponding eigenstates of the dipole-dipole magnetic
interaction energy Hd = [~µ1 ·~µ2−3(~µ1 · r̂)(~µ2 · r̂)]/r3 of a proton and an antiproton
at a fixed distance r = a (r̂ is a unit vector connecting them).

Hint: The total spin commutes with this Hamiltonian.

4. Consider a charged spinless particle moving in 3D, in a uniform constant magnetic field
~B = Bẑ.

(a) Working in a symmetric gauge (where the vector potential is given by ~A = −1
2
~r×

~B), show that the dynamics reduces to an effective 2D problem of a particle in a
harmonic potential 1

2
mω0r

2
⊥ with an effective oscillator frequency ω0 proportional

to B, together with an orbital Zeeman term −ΩLz, linear in B. Write down
explicitly the effective harmonic potential frequency ω0 and the effective rotational
frequency Ω.

(b) Recall your result (from last homework) for the spectrum of a 2D harmonic os-
cillator solved in polar coordinates in the presence of a rotation (orbital Zeeman
term) −ΩLz. Use that information to construct the spectrum for this problem
(of a particle in a uniform magnetic field), noticing a very special relation here
between ω0 and Ω.

Hint: From an even earlier homework assignment for a particle in a uniform
magnetic field, solved in Cartesian coordinates and using a Landau gauge (A =
B(−y, 0, 0)), you should know that the spectrum is that of macroscopically de-
generate Landau levels.

(c) Estimate the ratio of the quadratic in B (diamagnetic) term to the linear in B
term for a Hydrogenic electron in a uniform B field, finding the value of the
magnetic field when these two terms become comparable. By plugging in typical
values for an atom, show that the diamagnetic (quadratic in B) term is completely
negligible under standard conditions in an atomic context.


