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1. Show that any function H(x) of a scalar product x = E1 · E2 of two arbitrary vector
operators E1, E2 commutes with all components of the angular momentum opera-
tor L. This thereby demonstrates explicitly that a rotationally-invariant Hamiltonian
(i.e., one that consists only of scalar products of vector operators) commutes with the
angular momentum vector.

2. Show that the z-component of the angular momentum operator Lz = −ih̄(x∂y − y∂x)
can be written as Lz = −ih̄∂φ, where φ is the azimuthal angle of the spherical coordi-
nate system.

3. Three identical, elementary bosonic particles of mass m are confined to move on a
circle of radius r and are rigidly fixed to form an equilateral triangle, so that their
only degree of freedom is the common azimuthal angle φ. Ignoring spin, compute the
wavefunction and the corresponding energy spectrum.

Hint: Think about the symmetry of the eigenfunctions ψE(φ).

4. Express the lowest six spherical harmonics Y`,m(θ, φ) in Cartesian coordinates, x, y, z.

5. (a) A particle is described by a wavefunction ψ(ρ, φ) = Ae−ρ2/ρ2
0 cos2 φ. By expressing

ψ in terms of eigenstates of Lz, show that the probability P (`z) of finding the
particle with the z component of angular momentum equal `z is P (0) = 2/3 and
P (±2h̄) = 1/6 and zero for all other values of `z.

(b) Another particle is described by a wavefunction ψ(x, y, z) = A(xy+yz+xz)e−r/r0 .
What is the probability of finding the particle with a particular value of its square
of angular momentum? If the particle is found to have ` = 2, what are the relative
probabilities of finding this particle with m = ±2,±1, 0?

6. (Shankar 12.5.14) Rotation of ` = 1 eigenstates

7. Harmonic Oscillator



(a) Study a two-dimensional harmonic oscillator in polar (ρ, φ) coordinates.

i. Find the energy spectrum and the corresponding eigenstates. For the eigen-
states it is sufficient to establish the series solution to the corresponding differ-
ential equation and to determine the recursion relation for the series-solution
coefficients ci.
Hint: To help guide you, follow the steps outlined in problem 12.3.7 of
Shankar.

ii. Show the spectrum En by marking (with a short horizontal dashes) the energy
levels for the lowest 10 states labelled by n,m, where n is the principal (radial)
quantum number and m the eigenvalue of the z-component of the angular
momentum Lz/h̄. Make the horizontal axis the m-axis so that two states
with the same value of n but different value of m are shifted horizontally
relative to each other, with each appearing at its correct value of m along the
horizontal axis.

iii. Deduce the degeneracy of energy En, confirming that it agrees with that
obtained solving this problem via Cartesian coordinates x, y.

iv. Write down the explicit wavefunctions ψn,m(ρ, φ) for the lowest eigenstates
(n = 0,m = 0), (n = 1,m = ±1), (n = 2,m = 0,±2), and verify explicitly
that each of these is a linear combination of corresponding degenerate eigen-
states ψnx,ny(x, y) = Hnx(x)e

−x2/2Hny(y)e
−y2/2. Please make this connection

explicit.
Hint: In establishing the relation, please do not worry about any normaliza-
tion constants.

(b) The above Hamiltonian is a good model for a noninteracting (atoms do not see
each other, only the harmonic trap potential) atomic gas confined in a harmonic
trap potential. Consider what happens if one rotates such a gas at frequency Ω,
as is now routinely done by our colleagues (maybe even some of your classmates)
in JILA. The corresponding Hamiltonian for the rotating system is given by an
addition of a single term, −ΩLz to the Hamiltonian above. Find the energy
spectrum for such rotating atomic gas and plot it the way you did above, doing
it for Ω < ω. What do you think happens when Ω → ω and faster rotation?

Hint: Having found the spectrum for the stationary gas, you should simply be able
to write down the spectrum for the rotating one without doing any calculations.
Regarding Ω → ω limit, think about what happens for a corresponding classical
problem of a particle trapped in a quadratic (harmonic) potential with frequency
ω, and rotated with angular frequency Ω.

(c) Guided by the discussion of the last section of Ch. 12 in Shankar (also see prob-
lem 12.6.11) for the 3d harmonic oscillator solved in spherical coordinates and
characterized by quantum numbers n, `,m, answer the following:

i. Compute the degeneracy of the n-th energy level of a 3d harmonic oscillator,



confirming that it agrees with the result you found in a previous homework
using Cartesian coordinates D3d

n = (n+ 1)(n+ 2)/2.

ii. Using the results of discussion in Shankar (but without performing any ex-
plicit series solution calculations), write down the four lowest eigenfunctions
ψn,`,m(r, θ, φ) in spherical coordinates, and then demonstrate (in a way very
similar to that for 2d case, above) an explicit connection of these states to
wavefunctions in Cartesian coordinates,
ψnx,ny ,nz(x, y, z) = Hnx(x)e

−x2/2Hny(y)e
−y2/2Hnz(z)e

−z2/2.
Hint: For ` = n all expansion coefficients ci (in the series solution) vanish
except the lowest one, c0. In establishing the relation, please do not worry
about any normalization constants.


