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1. Harmonic Oscillator

(a) Verify explicitly in coordinate representation that 2nd and 0th eigenfunctions of
a harmonic oscillator are orthogonal.

(b) Use creation/annihilation operator algebra [â, â†] = 1 and the corresponding num-
ber eigenstates |n〉 to demonstrate explicitly the orthonormality of these states,
i.e., 〈n|m〉 = δn,m.

(c) Consider a particle in a potential V (x) = 1
2
mω2

0x
2, for x > 0 and V (x) = ∞ for

x ≤ 0. Find the spectrum and eigenfunctions.

Hint: This problem should not require you to do any new computations, just a
bit of thinking.

(d) Find eigenfunctions and spectrum for a particle in a potential V (x) = 1
2
mω2

0(x
2−

2cx).

Hint: This problem should not require you to do too many new computations,
just a bit of thinking.

(e) Using the representation of x and p in terms of the creation and annihilation
operators a† and a, compute the following expectation values:

i. 〈n|x|n〉
ii. 〈n|p|n〉
iii. 〈n|x2|n〉
iv. 〈n|p2|n〉
v. ∆xrms∆prms =

√
〈n|(x− 〈x〉)2|n〉

√
〈n|(p− 〈p〉)2|n〉, where ∆xrms and ∆prms

are root-mean-squared (rms) deviations of x and p from their average values.

(f) Show that 〈n|x4|n〉 =
x4
0

4
(3 + 6n(n + 1)), where x0 =

√
h̄/mω0 is the quantum

oscillator length.



(g) Compute 〈n|x2|n〉 directly in coordinate representation using a generating func-
tion for Hermite polynomials, similarly to the way we computed normalization
factors in class. Compare to your answer with the above one where you used a
and a† representation.

(h) At time t = 0 a particle in a harmonic oscillator potential starts out in a state
|ψ(0)〉 = 1√

2
(|0〉+ |1〉). Find:

i. |ψ(t)〉,
ii. 〈x(0)〉 = 〈ψ(0)|x|ψ(0)〉, 〈p(0)〉, 〈x(t)〉, 〈p(t)〉,
iii. 〈ẋ(t)〉 and 〈ṗ(t)〉 using Ehrenfest’s theorem and solve for 〈x(t)〉 and 〈p(t)〉

and compare with part (ii).

2. Coupled Harmonic Oscillators

Consider two particles characterized by a familiar Hamiltonian H =
p2
1

2m
+

p2
2

2m
+

1
2
mω2

0(x
2
1 + x2

2 + (x1 − x2)
2).

(a) Find the spectrum and eigenstates of this Hamiltonian by first going to normal
modes of vibration, y1 and y2 that decouple it into two independent harmonic
oscillators (with different frequencies) and then solving each by using two types
of annihilation and creation operators, b1,2 and b†1,2 that correspond to y1,2.

(b) Compute the expectation value of x2
1 in the ground state of this coupled harmonic

oscillator system.

3. Baker-Campbell-Hausdorff Formula

Derive the Baker-Campbell-Hausdorff formula eAeB = eA+B+ 1
2
[A,B] for the simplest

case where the two operators A and B have a commutator [A,B] that commutes with
A and B, i.e., is a c-number.

Do this in two ways:

(a) First (only suggestive), by looking at the Taylor expansion in A and B of the two
sides of the equation, verifying the equality at least to quadratic order in A and
B.

(b) Second by considering instead operators eAt, eBt and deriving and solving a simple
(first order in t) differential equation for eAteBt.

Hint: Consider differentiating this product with respect to t, and then follow your
nose.

4. Coherent States

Using the (non-normalized) representation of a coherent state |z〉 = eza†|0〉 show:

(a) a|z〉 = z|z〉,



(b) 〈z1|z2〉 = ez∗1z2 ,

Hint: You can use Baker-Campbell-Hausdorff formual twice

(c) that the evolution operator for a harmonic oscillator in coherents state basis is
given by U(z, z′; t) = exp[z∗z′e−iω0t],

(d) completeness relation 1 =
∫∞
−∞

dxdy
π
e−|z|

2|z〉〈z|.
Hint: Since you already know the completeness relation for Fock states |n〉, you
might find it useful for proving above completeness relation by reducing it to that
of |n〉 states.

(e) that the wave function of a coherent state is given by

ψz(x) ≡ 〈x|z〉 = 1

π1/4x
1/2
0

e−z2/2−x2/2x2
0+21/2zx/x0 .

Hint: (i) Again, you might find the relation between the coherent states |z〉 and
Fock states |n〉 as well as the generating function for Hermite polynomials useful.
(ii) Alternatively, you might want to use the defining equation of a coherent state
a|z〉 = z|z〉, written in coordinate representation, and solving it in the same way
that in class we found the wave function for the ground state ψ0(x) = 〈x|0〉 (which
is a special coherent state) of harmonic oscillator.

If you can, please solve this last problem using both (i) and (ii) approaches de-
scribed in the Hint.

(f) Notice that for the normalized coherent state |z〉 = e−
1
2
|z|2eza†|0〉 above general co-

herent wavefunction, ψz(x) reduces to a shifted Gaussian wavepacket from home-

work 3, problem 6, ψz(x) ≡ ψ(x, 0) =
(

1
πx2

0

) 1
4 e−(x−

√
2z)2/2x2

0 , where z = c/
√

2 is

real. Use this fact and the evolution operator U(z, z′; t) found above to compute
ψ(x, t), thereby verifying the result from homework 3.

5. Path Integrals

Compute a time evolution operator U(xf , xi; tf ) using its path integral representation
for a particle in a potential V (x):

(a) V (x) = 0, free particle

i. Using explicit Gaussian form of the evolution operator for a free particle
U0(xf , xi; tf , ti) first demonstrate the closure relation

U(x3, x1; t3, t1) =
∫ ∞

−∞
dx2U(x3, x2; t3, t2)U(x2, x1; t2, t1).

ii. Apply above (single Gaussian integration) result to the computation of the
path integral (N infinitesimal Gaussian integrals) for a free porticle to com-
pute its evolution operator.
Guide: (i) write down the coordinate path integral for a free particle in its
explicit discrete form (from class lectures), with the infinitesimal “ε” normal-
ization prefactors. (ii) to simplify the algebra, change variables for each xn



integration to make all N − 1 integrals dimensionless. (iii) use closure prop-
erty of Gaussian integrals to evaluate recursively all N − 1 integrals; in the
process you will demonstrate the following identity of Gaussian integrals

∫ ∞

−∞
dyN−1dyN−2 . . . dy1e

i
∑N

k=1
(yk−yk−1)2 =

[
(iπ)N−1

N

]1/2

ei(yN−y0)2/N .

With all this you have finally explicitly derived both the exponential eiS[xc]/h̄ and
the A(t) prefactor of the free particle evolution operator.

(b) V (x) = −fx, corresponding to a particle under a constant force f ,

(c) V (x) = 1
2
mω2

0x
2, corresponding to a particle in a harmonic potential.

Suggestions:

i. Expand the path integration in y(t) about a classical path xc(t), thereby
obtaining most of the answer from the classical action S[xc(t)], with xc(t)
that satisfies boundary conditions xc(0) = xi, xc(tf ) = xf . Note that for the
harmonic oscillator you have already solved this latter part of the problem
on homework 1, problem 2.

ii. The remaining path integration contribution (which you should find only
depends on tf but not on xi,f ) is a notoriously tricky problem.
For a particle under force (a) you should not have to do any computation as
it should reduce to a path integral that we have already computed in class.
For a particle in the harmonic potential (b), some additional computations
are necessary:

A. In the remaining part of the path integral over y(t), make a change of
variables (that is linear and therefore does not introduce any complicated
Jacobian, J) from y(t) to the Fourier series representation variable ỹ(ωn),
using y(t) =

∑∞
n=1 ỹ(ωn) sin(ωnt), where ωn is a discrete set of frequencies

(n ∈ Z), chosen so that y(t) satisfies appropriate boundary conditions
that you should be able to deduce from those on x(t) and xc(t). This
nicely decouples the path integral into N (→ ∞) independent Gaussian
integrals over ỹ(ωn) (in contrast to working with x(ti) where nearest time
variables x(ti) and x(ti±1) are coupled).

B. Show that this remaining product of independent Gaussian integrals gives

c
∏∞

n=1 (1− ω2
0/ω

2
n)
−1/2

, with the final infinite product series computable
once you have determined ωn and using an identity∏∞

n=1 (1− a2/n2) = sin(πa)/πa.
The unknown prefactor product of constant c and the Jacobian J (asso-
ciated with transformation from y(t) to ỹ(ωn)) that are independent of
ω0, xf , xt (and are easiest to not compute until the end) can then be
determined by requiring that the final answer for U(xf , xi; tf ) reduces to
that of a free particle in the limit ω0 → 0.



(d) For an initial wavepacket state ψ(x, 0) =
(

1
πx2

0

) 1
4 e−(x−c)2/2x2

0 from homework 3,

problem 6, derive its form ψ(x, t) at a later time t now using the coordinate rep-
resentation of the evolution operator for the harmonic oscillator that you derived
above.

(e) (Bonus 10 points) Recall that the evolution operator can be expressed in terms
of the eigenstates of the Hamiltonian

U(x, x′; t) =
∑
n

ψn(x)ψ∗n(x′)e−iEnt/h̄.

Use it to extract the spectrum and eigenfunctions of the harmonic oscillator.

Hints:

i. Set x = x′ = 0 inside

U(x, x′; t) =
(

mω

2πih̄ sinωt

)1/2

e
imω

2h̄ sin ωt [(x2+x′2) cos ωt−2xx′],

and expand both sides in harmonics in time, e−inωt. You should find that En =
1
2
h̄ω, 5

2
h̄ω, 9

2
h̄ω, . . . , etc. Why are you missing the energy levels in between?

ii. Now extract the eigenfunctions e.g., for n = 0, 1 by setting x = x′, again
expanding in powers of eiωt and identifying the coefficients with |ψn(x)|2.


