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1. Consider a particle in the ground state of a box (infinite square-well) of length L.

(a) Calculate the probability distribution of momentum in this state.

(b) Imagine suddenly the potential is shut off. Write down, but do not evaluate
(the resulting complicated integral) the expression for the wavefunction ψ(x, t) at
subsequent time.

(c) Consider instead a situation where this box potential expands suddently (symmet-
rically) to twice its size, leaving the wave function undisturbed. Show that the
probability of finding the particle in the ground state of the new box is (8/3π)2.

2. (a) Show that for any normalized state |ψ〉, 〈ψ|H|ψ〉 ≥ E0, where E0 is the lowest-
energy eigenvalue.

Hint: expand |ψ〉 in the eigenbasis of H.

(b) Prove the following theorem: Every attractive potential in one dimension has at
least one bound state.

Hint: Since V (x) is attractive, if we define V (∞) = 0, it follows that V (x) =
−|V (x)| for all x. To show that there exists a bound state with E < 0, consider a

variational wavefunction ψα(x) =
(

α
π

)1/4
e−αx2/2 and calculate E(α) = 〈ψα|H|ψα〉,

H = − h̄2

2m
d2

dx2 −|V (x)|. Show that E(α) can be made negative by a suitable choice
of α. The desired result follows from the theorem proved above.

3. Consider V (x) = −U0δ(x) potential.

(a) Show that it admits a bound state of energy E = −mU2
0/2h̄

2, finding the corre-
sponding wavefunction. Are there any other bound states?

Hint: Solve Schrodinger’s equation outside the potential for E < 0, keeping only
the solution that has the right behavior at infinity and is continuous at x = 0.
Integrate the Schrodinger’s equation over an infinitesimal region ε → 0 around



the potential at x = 0, to determine the slope discontinuity of a cusp in the
wavefunction around the origin, and thereby finding the energy of the bound
state.

(b) Use similar proceedure to explicitly determine wavefunctions of all positive energy
solutions. Is the spectrum discrete or continuous here?

Hint: Use similar proceedure as in (a) above to determine the slope discontinuity,
that should allow you to compute the coefficients appearing in the wavefunction.

(c) Sketch the bound state and a typical odd and an even positive energy solutions,
indicating their qualitatively important features.

(d) Consider now a case of the repulsive potential, i.e., U0 < 0. What changes from
the attractive case above? Remember to think about both bound and continuum
states.

Hints: For problems above, because the potential is an even function, the Hamil-
tonian commutes with the parity operator and therefore all wavefunctions can be
separated into odd and even ones, that should be considered separately.

For continuum solutions, how are the odd eigenfunctions modified by this partic-
ularly simple potential?

4. Consider a particle in a finite square-well potential

V (x) =
{

0, |x| ≤ a
V0, |x| > a.

(1)

As discussed in class, a finite V0 > 0 now allows both bound and continuum set of
states.

(a) Consider a parity operator P̂ whose action on a function is P̂ f(x) = f(−x).
Show that P̂ commutes with the Hamiltonian for this problem. Hence prove that
eigenfunctions of the Hamiltonian are also eigenfunctions of the parity operator
with eigenvalues ±1, and can therefore be classified into two classes (labelled by
two eigenvalues of P̂ ) corresponding to even and odd eigenfunctions.

(b) Show that even bound state solutions have energies that satisfy the transcendental
equation k tan ka = κ, while the odd ones have energies that satisfy k cot ka = −κ,
where k and iκ are the real and complex wavenumbers inside and outside the well,
respectively. Find k and κ and note that they are related by k2 + κ2 = 2mV0/h̄

2.

(c) The spectrum of bound states En can be found by solving above simultaneous
equations for k and κ graphically, by looking for intersections of the curves, gen-
erated by the transcendental equation and the circle above.

Implement this graphical procedure for three of values of V0, showing how as the
strength of the potential V0 increases more bound state eigenvalues appear.



(d) Sketch three lowest bound eigenfunctions.

(e) Show that there is always one even bound state solution (consistent with the the-
orem you proved above) and that there is no odd solution unless V0 ≥ h̄2π2/8ma2.
What is E when V0 just meets this requirement?

(f) For this critical value of V0 = h̄2π2/8ma2 compute explicitly the coefficients de-
termining the normalized ground state wavefunction; you will need to use Math-
ematica, or a calculator to actually find the numerical solution.

(g) Verify that in limit of V0 →∞, the bound-state eigenfunctions and eigenenergies
reduces to those of the infinite square-well potential found in class.

(h) Now consider continuum states (with E > V0) write down the general form of the
wavefunctions and derive the expressions for the coefficients entering these wave-
functions. Note, you will need to consider even and odd eigenfunctions separately.

(i) Show that in the limit a → 0 and V0 → ∞, with V02a = U0 = constant, the
lowest bound state and the continuum states reduce to that of the attractive
δ-function potential analyzed above. Please verify this for both the eigenvalues
and eigenfunctions (determined by the constant coefficients) of both bound and
continuum states.

Hint: Note that before taking these limits, it is convenient to first shift the zero
of energy by a constant amount V0, namely take the zero energy to be outside the
potential-well. In such convention it is obvious that κ → const. but k →

√
V0 ∼√

U0/a→∞. Your job should be simplified by the fact that you know what you
are looking for, given your solution to problem 3.

5. Consider ψ = Aeipx/h̄ +Be−ipx/h̄ in one dimension. Show that the current j = (|A|2 −
|B|2)p/m, namely that it is the velocity in state p times the difference in probabilities
of the particle in the p state moving to the right and to the left. The absence of the
cross terms between the right- and left-moving pieces in ψ allows us to associate the
two parts of j with the corresponding parts of ψ.

6. Harmonic oscillator

(a) Wavepacket oscillations

Consider an initial wavepacket state ψ(x, 0) =
(

1
πx2

0

) 1
4 e−(x−a)2/2x2

0 , corresponding

(what’s called) a “coherent state” of the oscillator, displaced from its equilibrium
position at x = 0 to position x = a (think of a stretched spring) and width

x0 =
√
h̄/mω0 identical to that of the ground state (corresponding to a = 0).

Since for a 6= 0 the state is not a ground (or any eigen-) state, for t > 0 the
system will evolve nontrivially. Below we study its evolution.

i. Write down a formal expression for the wavefunction ψ(x, t) at subsequent
time t > 0.



ii. Write down the expression for the coefficients cn ≡ 〈En|ψ(x, 0)〉 entering
ψ(x, t) in terms of the eigenfunctions of the 1d harmonic oscillator ψn(x) =

NnHn(x/x0)e
−x2/2x2

0 , (Nn = (x0π
1
2 2nn!)−

1
2 is the normalization constant found

in class). Use the generating function for Hermite polynomials (Z(x, s) =

e−s2+2sx =
∑∞

n=0
Hn(x)

n!
sn) and Gaussian-integrals calculus to show that the

initial state expansion coefficients are given by cn = 1√
2nn!

(a/x0)
ne−(a/2x0)2 .

iii. Substituting this cn into your formal expression for the wavefunction ψ(x, t),
and taking advantage of the generating function Z(x, s), show that

ψ(x, t) =

(
1

πx2
0

) 1
4

e−
1
2
(x̂−â cos(ω0t))2e−iφ, (2)

where φ = 1
2
ωct + x̂â sinωct − 1

4
â2 sin 2ωct and x̂ = x/x0, â = a/x0. This

shows that, as expected from correspondence principle, an initially displaced
wavepacket evolves in time with fixed shape, but having its center oscillate
with an amplitude a according Newton’s law.

(b) Using our results for a 1d harmonic oscillator write down explicitly eigenfunctions
ψn(r), eigenvalues En and deneracy factor g(E) of energy E for the

i. 2d,

ii. 3d

isotropic harmonic oscillators.

(c) Charged particle in a magnetic field: Landau levels

Consider a charged particle of charge q moving in 3d in a uniform magnetic field
B = Bẑ.

i. Recalling that the Hamiltonian for a charged particle is given by Ĥ = (p̂ −
qA)2/2m and using a convenient (so-called) Landau gauge with the vector
potential A = Bxŷ, write down explicitly (in Cartesian component notation)
the corresponding 3d Schrodinger equation for this particle.

ii. Solve the Schrodinger equation, finding its eigenfunctions and eigenenergies.
These eigenenergies are called Landau levels, after a famous brilliant Russian
physicist Lev Landau who first solved this problem.
Hint: Note that for our clever choice of the vector potential A, above, the y
and z dependence of ψ(x, y, z) is easily separated out, reducing the problem
to (what by now should be) a familiar effective 1d problem along x.


