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1. For Hermitian operators, show that eigenvalues are real and (in the absence of degen-
eracy) eigenvectors are orthogonal.

2. Consider a two-dimensional (2d) isotropic harmonic oscillator

(a) Derive Newton’s equations using (i) Lagrangian, (ii) Hamiltonian formalism, show-
ing that they are consistent with each other.

(b) Using Poisson brackets form for evolution of an operator, dO/dt = {O,H} verify
that the canonical (angular) momenta Lφ, associated with the polar coordinate
angle φ is a constant of motion, i.e., is conserved.

3. Using the Lagrangian for a 1d harmonic oscillator, its action functional S[x(t), ẋ(t)],
and the explicit general solution xcl(t) of the corresponding equation of motion, derive
the action S(xf , xi, T ), as a function of the initial (xi ≡ x(ti)) and final (xf ≡ x(tf ))
locations of the particle and time duration T = tf − ti.

As we will see shortly, the harmonic oscillator evolution operator is then directly given
by U(xf , xi, t) ∼ e

i
h̄

S(xf ,xi,t), a very useful result.

4. Compute the de Broglie wavelength of

(a) a 1 eV electron

(b) a thermal neutron, defined as a neutron whose kinetic energy is 3kBT/2, with
T = 300oK.

5. Consider the Gaussian probability distribution

P (x) = Ae−(x−a)2/x2
0 ,

where constants A, a, x0 are positive constants. It of course arises in a ground state of
a harmonic oscillator as the square of the ground state wavefunction P (x) = |ψ0(x)|2.



To compute properties of such distribution we need to derive the Gaussian integral
calculus

(a) Derive standard moments of Gaussian distribution
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(b) Show that these moments can also be obtained from the generating function
Z(a, h) by differentiating with respect to h:
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(c) Now use Gaussian integral calculus above to compute:

i. normalization A

ii. averages 〈x〉, 〈x2〉, 〈p2〉 (where p = −ih̄∂/∂x)
iii. standard deviation

√
〈(x− 〈x〉)2〉 =

√
〈x2〉 − 〈x〉2, also demonstrating the

last equality.

6. Using Bohr-Sommerfeld quantization, whose simplified version is that angular momen-
tum in a circular orbit is quantized according to L = mvr = nh̄, estimate the spectrum
En and radius rn of a hydrogenic atom with atomic number Z.

Make the units of En and rn explicit by expressing your answer in terms of the electron’s
Compton wavelength λe ≡ h/mc and the fine structure constant α ≡ e2/h̄c.

Hint: ignore electron-electron interaction and only consider circular stationary “orbits”
of a single electron moving in a Coulomb potential of the nucleus. We are looking for
a rough qualitative estimates, not worrying about prefactors of order 1 or π. The key
focus is on dimensional analysis and precise functional dependence on parameters h̄,
m, etc. and the principle quantum number n.

7. Along the same lines as in the previous problem using a combination of Heisenberg
uncertainty principle for the nth eigenstate (pnrn ≈ nh̄) estimate the spectrum En and
the extent rn of the corresponding eigenstates for the following bound state problems:

(a) a harmonic oscillator with V (x) = 1
2
mω2x2,



(b) a “quartic” oscillator with V (x) = 1
4
ax4,

(c) a hydrogenic atom with Coulomb potential V (r) = −Ze2/r,
(d) an electron in a potential V (x) = 1

s
V0(x/x1)

s. In this latter case also study the
spectrum for large s� 1 and explain the result to which En reduces.

Hint: Minimize the corresponding total energy E[rn] obtained from the Hamiltonian

H[rn, pn] = p2
n

2m
+ V (rn) when subjected to the above quantum mechanical constraint,

pnrn ≈ nh̄.

8. Show (as expected, given that it represents conserved matter) that the probability
distribution P (r, t) = |ψ(r, t)|2 satisfies a continuity equation ∂tP +∇ · J = 0.

What is the corresponding particle current J?

Hint: Take advantage of the fact that ψ(r, t) satisfies the time-dependent Schrodinger’s
equation.


