Physics 5250: QUANTUM MECHANICS - I

Fall 2015

MWF 3-3:50pm, Duane G125 Instructor: Prof. Leo Radzihovsky

http://spot.colorado.edu/ \sim radzihov

Office Hours:	Mon, Wed 2-3pm (or by appointment), Gamow Tower, Rm F623, phone: 492-5436, email: radzihov@colorado.edu
Course Description:	This graduate course will cover standard topics in nonrelativistic quantum mechanics, as outlined below
Pre/Corequisites:	electricity and magnetism, classical mechanics, basic mathematical physics, interest and desire to learn
Text:	Principles of Quantum Mechanics, R. Shankar, Springer
Additional suggested reading/references:	• Modern Quantum Mechanics, J. J. Sakurai, Addison Wesley
	• <i>Quantum Mechanics</i> , L. D. Landau and E. M. Lifshitz, Pergamon Press
	• Quantum Mechanics, L. I. Schiff, McGraw-Hill
	• Quantum Mechanics, C. Cohen-Tannoudji, B. Diu, F. Laloe
	• Quantum Physics, Eisenberg and R. Resnik
Homework (60%) :	Problem sets due every two weeks
Final Exam (40%) :	tentatively Wed, Dec 16, 1:30-4pm

COURSE OUTLINE

- 1. Introduction
 - (a) Classical mechanics
 - (b) Conflict with experiments
 - (c) Quantum mechanics ideas and coordinate formulation
- 2. Postulates and mathematical structure of quantum mechanics
 - (a) Hilbert space
 - (b) Hermitian operators
 - (c) Measurement and probabilistic interpretation
 - (d) Density matrix
 - (e) Time evolution: Schrodinger, Heisenberg and Feynman formulations
- 3. Simple problems in one dimension
 - (a) Free particle
 - (b) Particle in a box
 - (c) δ -function potential
 - (d) Harmonic oscillator
- 4. Symmetries and their consequences
 - (a) Translation in space and time
 - (b) Parity
 - (c) Time-reversal
- 5. Rotational invariance and angular momentum
 - (a) Proper rotation
 - (b) Angular momentum algebra
 - (c) Spin
 - (d) Addition of angular momenta
- 6. Applications
 - (a) Harmonic oscillator
 - (b) Hydrogen atom
 - (c) Electron in a magnetic field
 - (d) Spectrum and its degeneracy
 - (e) Spin-orbit interaction