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1. (10 points) Compute the probability current density j for a state ψ(r) = eik·r+f(θ) eikr

r
.

Argue that far away from a target (of interest in a scattering problem) and θ 6= 0, many
of the terms oscillate fast with θ and therefore average to zero, when integrated even
over a narrow range of θ (physically corresponding to acceptance/resolution window

of the detector). Thereby show that j reduces to j = h̄k
m

+ h̄k
m

|f(θ)|2
r2 r̂, with the second

contribution corresponding to the scattered current density.

2. (24 points) Diffraction from a crystal: Bragg scattering

Within Born approximation, compute a scattering amplitude f(θ, φ) and the corre-
sponding differential scattering cross section dσ

dΩ
for scattering from a large cubic crys-

tal, i.e., from a periodic array of identical “blobs” (e.g., atoms) located at lattice sites
Rn = an1x̂ + an2ŷ + an3ẑ, with −N ≤ ni ≤ N ; (2N)3 is the number of lattice sites.

The scattering potential of the crystal is given by V (r) =
∑

Rn
v(|r−Rn|), where v(r)

is an isotropic potential characterizing an atom.

(a) Work out the above scattering for

i. v(r) = v0a
3δ3(r),

ii. v(r) = v0e
−r2/a2

,

iii. v(r) = v0θ(a − r), (where the theta-function θ(r) is of course not to be
confused with the polar angle θ),

where a models a finite radius of an atom.

(b) What is the condition on q that determines the location of Bragg peaks that
characterize the scattering amplitude (as you should discover)?

(c) Show that the three cases of v(r) above only differ in the form factors, that provide
an envelope for the array of Bragg peaks.



(d) Show that the form factors for cases (ii) and (iii) become isotropic in the limit of
low angle θ scattering, such that ka → 0 and/or long wavelength and reduce in
form to that of (i).

Hints:

(a) You should find our friend, Poisson summation formula

N∑
n=−N

eiqn =
sin q(N + 1/2)

sin q/2
, (1)

N�1 =
∑
p

2Nδq,2πp (2)

=
∑
p

2πδ(q − 2πp) (3)

extremely useful.

(b) Your calculation of the scattering for the crystal should break up into computation
of a scattering amplitude for an atom (giving you a so-called “form factor”), and
a computation of coherent superposition from all atoms, with this second part
independent of v(r) and only determined by crystal structure (cubic here).

3. (20 points) Scattering amplitude properties

(a) Using the relation between scattering amplitude f`(k) for partial wave ` (angular
momentum `) and the scattering matrix S`, show that the unitarity of S` (particle
conservation) implies that f`(k) = 1/(F̃`(k) − ik), where F̃`(k) is a function of
k (or equivalently energy E = h̄2k2/2m), whose details are determined by the
potential V (r). Show that F̃`(k) = k/ tan δ`, with δ` scattering phase shift in `th
partial wave.

(b) By analyzing general properties of the Schrodinger’s equation (that determine
F̃`(k)), it can be shown that F̃`(k) = F`(k

2)/k2`, where F`(k
2) is another function

that is analytic in k2; you do not need to show this for a general case, but we will
see examples of this for specific V (r) below. Use this form of f`(k) to argue that
generically low energy scattering is dominated by s-wave (` = 0) scattering, with
other partial waves (channels) subdominant.

(c) At low energy F`(k
2) can be well approximated by its two lowest Taylor expansion

terms, F`(k
2) ≈ c0 + 1

2
c1k

2. For the dominant s-wave scattering c0 ≡ −1/a,
c1 ≡ r∗, with a the scattering length and r∗ the effective range of the potential,
giving

f0(k) =
1

−a−1 + 1
2
r∗k2 − ik

. (4)

Hence show that at low energies the total cross section is generically given by
σ = 4πa2.



(d) A weakly attractive potential V (r) is characterized by a negative scattering length.
However, as its depth V is made sufficiently deep at some point Vc, the potential
will admit a bound state. Around this point generically a(V ) ∼ 1/(V − Vc),
diverges to negative infinity, changes sign and comes back to a finite value from
a positive infinity.

Recalling that poles of the scattering amplitude (and matrix) give bound states
of V (r), show that as this shallow bound state develops, its energy is given by

Eb = − h̄2

2ma2 . By thinking about the form of the scattered part of the wavefunction,
argue that the pole corresponds to a true bound state only for a > 0, i.e., a pole
for a < 0 is unphysical, at least for |a| � r∗.

4. (23 points) Hard sphere scattering

Consider scattering from a hard (infinitely massive) sphere characterized by potential
V (r < r0) =∞ and V (r > r0) = 0.

(a) For low energy scattering, kr0 � 1, focussing on the leading order contribution
of the ` = 0, 1 (s- and p-wave) partial waves, compute the corresponding (i)
scattering phase shifts δ0,1(k), (ii) scattering amplitudes f0,1(k), and (iii) total
cross section σ(k) to lowest nontrivial order in kr0. Extract from (ii) the scattering
length a and the effective range r∗, characterizing ` = 0 case.

(b) For high energy scattering, kr0 � 1, argue on physical grounds why many partial
waves ` upto `max ≈ kr0 need to be included.

Hint: Think of the range of the potential, impact parameter and the corresponding
angular momentum.

(c) For high energy scattering, kr0 � 1, verify above expectation by computing the
scattering phase shifts δ`, focussing separately on high ` � kr0 and and low
`� kr0 partial waves.

Hint: You will find asymptotic forms of spherical Bessel and Neumann functions
(given in Shankar) very useful.

(d) After obtaining the phase shifts, δ`, in the limit kr0 � 1, compute approximately
the scattering matrix S` and show that the total cross section is given by σ ≈ 2πr2

0.

Hint: In this high energy limit, one can replace sum over ` by integral and ap-
proximate an fast oscillating function by its mean.

5. (23 points) Scattering from a soft sphere: square-well and square barrier

Consider scattering from a potential V (r) = −V0θ(r0 − r).

(a) Recalling that the general radial solution is given by a linear combination of
spherical Bessel and Neumann functions, ψ`(r) = B`j`(kr) + C`n`(kr), requiring



that the function is well behaved everywhere in the physical region, and matching
the inner and outer solutions at r = r0, show that

tan δ`(k) =
kj′`(kr0)j`(κr0)− κj`(kr0)j′`(κr0)
kn′`(kr0)j`(κr0)− κn`(kr0)j′`(κr0)

, (5)

where κ, k are inner and outer wavevectors, respectively.

(b) Show that at low energies the scattering amplitude f`(k) is indeed characterized
by a function F̃`(k) = F`(k

2)/k2`, as asserted on general grounds in problem 3,
above.

(c) Since, as discussed above, the low energy scattering is dominated by s-wave
amplitude, show that above expression reduces to (it is actually more conve-
nient to rederive this result from scratch, focussing on ` = 0 from the start)
tan(kr0 + δ0) = k

κ
tanκr0 that gives:

tan δ0 =
k tanκr0 − κ tan kr0
κ+ k tan kr0 tanκr0

(6)

(d) Use this to show that at low energies kr0 � 1, the s-wave scattering amplitude
for the attractive case of V0 > 0 is given by f0(k) ≈ (tanκr0 − κr0)/κ, and
that for strongly repulsive case V0 < 0 (|V0| > h̄2k2/2m) it is given by f0(k) ≈
(tanhκr0 − κr0)/κ.

(e) Extract the corresponding scattering lengths a and effective ranges r∗, character-
izing low energy scattering for above two cases.

(f) Show that for a weak potential |V0| � h̄2/mr2
0 both attractive and repulsive

cases give Born scattering cross section σ ≈ (4πr2
0/9)(κr0)

4, and in the strongly
repulsive case f0 ≈ −r0 and σ ≈ 4πr2

0, as expected.


