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Reading Assignment: Shankar, Ch.18, 21

1. (15 points) NMR and Rabi oscillations

Consider a spin 1/2 (for a localized electron) in the presence of a dc magnetic field
B0 = B0ẑ and subjected to a weak transverse magnetic field B⊥ = B⊥n̂(t) rotating in
the xy plane with n̂(t) = x̂ cosωt+ ŷ sinωt.

(a) Using the general Zeeman Hamiltonian for such system, show that it can be
written as H = 1

2
εσz + g(e−iωtσ+ + eiωtσ−), where σ± = 1/2(σx ± iσy) are raising

and lowering Pauli matrices. What are parameters ε and g in terms of B0 and
B⊥?

(b) For a system that starts out in a lower energy, spin down state |ψ(0)〉 = | ↓
〉, characterized by coefficients ci(0) = δi2 = (0, 1) (using ẑ quantization axis
representation), compute the probabilities at time t of finding the spin in state up
and in state down, and using these compute the average value of spin projection
along ẑ, i.e., 〈ψ(t)|sz|ψ(t)〉. Sketch these as a function of time.

More specifically:

i. Compute from these the frequency and amplitude of oscillations of the prob-
abilities.

ii. Show in terms of a semiclassical precessional picture how the amplitude de-
pends on magnitude of ε, g and ω, contrasting the on- and off-resonance
pictures.

iii. Argue qualitatively based on your answer above that if instead of a rotat-
ing transverse field, a more easily created oscillating field along x̂, B⊥(t) =
B⊥x̂ cosωt is used that the answer does not change much near a resonance.
(Hint: A linearly polarized field can be thought of as a sum of two oppositely
circularly polarized fields)

iv. Verify that total probability of finding the spin in either of the states (1 =↑
, 2 =↓) |c1|2 + |c2|2 = 1 is indeed conserved.



Suggestions: To solve this problem exactly, it is convenient to perform a time
dependent unitary transformation on the states and the Hamiltonian that trans-
forms the system into a coordinate system rotating with the transverse magnetic
field. In this coordinate system the Hamiltonian becomes time independent and
can therefore be easily diagonalized to solve the full problem. To minimize alge-
bra, it is convenient to develop (or just recall) and then take advantage of Pauli
spin algebra.

(c) Use time dependent perturbation theory to lowest nontrivial order in g and com-
pare your result with the exact solution above approximated for small g. Treat
the cases of near resonance h̄ω ≈ ε and far off resonance |h̄ω − ε| � g separately.

2. (30 points) Consider Jaynes-Cummings (JC) Hamiltonian

HJC =
1

2
εσz + h̄ω0a

†a+ g(a†σ− + aσ+), (1)

that can be thought of a generalization of above problem where the external transverse
field is replaced by a quantum field a representing a single bosonic oscillation mode.

This is a beautiful model with a rich behavior and many physical realizations. For
example it describes cavity quantum electrodynamics (QED) (an atom in a electomag-
netic cavity) system, where one focusses on only two atomic levels |1〉, |2〉 (forming an
effective pseudo-spin 1/2 system described by σ) and coupled to a single electromag-
netic radiation mode with cavity frequency ω0, whose excitations are described by a
photon creation/annihilation fields a†, a.

Equivalently, it describes a recently realized (by Rob Schoelkopf at Yale) quantum
circuit QED, a circuit version of a cavity QED consisting of a superconducting island
coupled to a single microwave mode. In this latter case a 0 and a 1 unit of charge on
the superconducting island correspond to the pseudo spin up and down, respectively
(with energy cost being the difference in capacitive, electrostatic energy).

JC Hamiltonian also describes a microscopic cantilever coupled to a quantum dot on
which electrons can hop on and off. In this case a describes a dominant (elastic)
phonon field (modes of vibration of the cantilever) and eigenstates of σz correspond to
for example charge 0 and 1 sitting on the quantum dot. The two degrees of freedom
are coupled through electrostatic interaction.

So much for the background. Here we will explore some properties of the JC model.

(a) Write down the spectrum and eigenkets (Dirac notation is fine) for the decoupled
case of g = 0? Using horizontal dash notation, draw the spectrum for a few lowest
eigen-energies of the Hamiltonian for g = 0. Label each state with quantum
numbers appropriate to the g = 0 case.

Hint: There are quantum numbers associated with the oscillator mode (phonon
number) and the spin part of the system.



(b) For far off the resonance (∆ ≡ ε − h̄ω0 6= 0) use time independent perturbation
theory to compute the modification of the spectrum to a lowest nontrivial order
in g. You should get two contributions; one of these is the analog of the Lamb
shift (coming from quantization of the oscillator field a) and another one that is
an analog of the ac Stark effect used by your JILA colleagues to trap and confine
atoms with a focussed laser field.

(c) Noting that because of the structure of HJC and because spin-1/2 Hilbert space
is just two-dimensional (i.e., σ+, σ− annihilate | ↑〉, | ↓〉 respectively), the full
infinite dimensional Hilbert space for this system breaks up into two-dimensional
subspaces that do not “talk” to each other even at finite g . Use this property to
find the exact spectrum and eigenstates of HJC .

Suggestion: To see how this goes, it is instructive to compute matrix elements of
HJC in the g = 0 basis, write out a few coupled time-independent Schrodinger
equations for the coefficients cn,σz , and also write these out in matrix form.

(d) Use the above exact solution to compute the probability of finding the system
at time t in the spin-up state that started in a spin-down state with n excited
oscillator quanta (phonons or photons, depending on the physical context) at time
t = 0.

Hint: To do this, as usual you will need to expand the initial state in terms of the
exact eigenstates found above and evolve each eigenstate according to the exact
spectrum found above.

(e) Use time dependent perturbation theory to compute phonon absorption/spin-flip
transition rate from a spin down state with n excited quanta (n phonons in the
system). Also compute phonon emission/spin-flip transition rate from a spin up
state with n phonons in the system. Note that the difference between these is
what’s called spontaneous emission due to quantum nature of the bosonic field a.

(f) Use the exact solution found in (c) to write down (in terms of an infinite sum, that
you are welcome to evaluate with Mathematica if you wish, but don’t have to) the
average value of spin 〈ψ(t)|σz|ψ(t)〉 and the oscillator field 〈ψ(t)|a|ψ(t)〉 at time
t, starting with a state of spin-down and coherence state of the oscillator labelled
by α. To considerably simplify the algebra, please evaluate these expressions on
resonance, i.e., for ε = h̄ω.

3. (20 points) Dyson Expansion

(a) Use coordinate space path integral formulation to derive Dyson series expansion
for the evolution operator U(t). Demonstrate that in this formulation, path inte-
gral automatically produces a time-ordered evolution operator, and show that it
agrees with expression derived in class and in the Shankar text.

Suggestion: Expand in powers of S1, think about the discretized (in time) defi-
nition of a path integral and be careful to locate H1(ti)’s at the correct position



in the time sequence. Note that the advantage of the path integral formulation is
that all fields are commuting classical fields, with quantum mechanics coming in
from integration over these fields.

(b) Show that for a time independent Hamiltonian the Dyson series for the evolu-
tion operator U(t) (e.g., from above derivation or derived by Shankar) simpli-
fies considerably and show that its Fourier transform U(E + iε) (ε → 0+) re-
duces to a geometric series (in operator U0(E)H1) that can be resummed into
U(E) = ih̄/(E − H), a result much more easily obtained by directly Fourier
transforming U(t) = e−i/h̄Htθ(t), where θ(t) function and ε were added to make
the Fourier transform well-defined.

Suggestion: In manipulating the above series, make sure to take care of noncom-
mutativity of operators (e.g., U0 and H), i.e., be very careful not to interchange
order of operators and to properly treat inverses of operators 1/O ≡ O−1. If it is
not obvious how the series resums, try working backwards from the above given
answer and Taylor expanding it in H1, being careful about noncommutativity of
operators.

4. (30 points) Quantum field theory: field quantization

This problem is a preview to our class discussion of quantum field theory. First let us
recall what a classical field is. It is a generalization of a single degree of freedom, (e.g.,
position q of a single particle) to a field (e.g., electric field E(r) that represents many
(potentially infinite number of) degrees of freedom, one for each point in space r. This
latter thing is not easy to imagine, so to make things well-defined we always (at least
in the back our minds) want to think about space as a discrete set of points ri (i.e., a
lattice), in which case a field E(ri) is nothing more than a one (or a finite, in case of a
vector field like electromagnetic field, or ion displacement) degree of freedom at each
lattice point ri.

Now, in studying quantum mechanics we have learned how to quantize a single (or
a small number of) degree of freedom q treating it as an operator q̂, that does not
commute with its canonically conjugate momentum p̂, etc. Quantum field theory is
nothing more than quantum mechanics for a field, E(r), which once you think of space
as discrete is nothing more than quantum mechanics for many (often coupled) degrees
of freedom, that become operators Ê(ri) that do not commute with the canonically
conjugate momenta fields Π̂(ri), i.e., [Ê(ri), Π̂(rj)] = ih̄δri,rj

. For example quantum
electrodynamics (QED) is a quantization of electromagnetic fields E(r) and B(r) (and
also of the electron field operator ψ(r), but nevermind about this for now), that become
noncommuting vector operators, at each point r in space. Now an understandable
source of confusion is to think that r is an operator as it was in quantum mechanics.
In quantum field theory r is most certainly not an operator, and is simply a label for
quantum operators, Ê(ri), that make up the quantum field Ê(r). This is particularly
clear in the above discretized form.



To illustrate these ideas let’s look at a simplest example of a quantization of vibration
of ions in a one-dimensional crystalline solid, i.e., at a quantum field theory of vibration
of a crystal

(a) Recall that for a single oscillator with a Hamiltonian H = 1
2m

Π2 + 1
2
mω2

0u
2 =

h̄ω0(a
†a + 1/2), where displacement is described by a single variable u and mo-

mentum Π, the eigenstates are labeled by single eigenvalues n of the number
operator n̂ = a†a and given by |n〉 and spectrum is given by En = h̄ω0(n+ 1/2).
In the (so called 2nd quantized) many-body language, n is the number of quanta
of vibrations (called phonons) to which the oscillator is excited. For state |n〉 we
say that we have n phonons in the system. For generalization of many oscillators,
these phonons will be genuine bosonic particles (much like photons in the case of
electromagnetic field quantization, QED) that can move around the system with
a dispersion that you will derive below.

Now imagine a crystal of N ions with a displacement of ith ion given by ui, a
canonically conjugate momentum Πi, and a Hamiltonian given by

H =
N∑

i=1

[
1

2m
Π2

i +
1

2
mω2

0u
2
i

]
. (2)

Introduce creation and annihilation operators for this problem, expressing the
Hamiltonian in terms of them, and write down the eigenstates and spectrum for
this system.

Hint: Because ions are not coupled this is a trivial generalization of a single
oscillator, and is referred to as Einstein’s model of a solid, that he introduced to
describe vibrational heat capacity of a solid.

Note: Just as a point of interest, note that in a slight generalization of notation,
where one uses xi = ci (c is lattice spacing) to label ith ion (oscillator) above

Hamiltonian can be rewritten as H =
∑Nc

xi=0

[
1

2m
Π(xi)

2 + 1
2
mω2

0u(xi)
2
]
, which in

the continuum becomes a true field theoretic Hamiltonian H =
∫ L
0

dx
c
[ 1
2m

Π(x)2 +
1
2
mω2

0u(x)
2], with L = Nc the length of the system and u(x) the phonon field.

(b) A slight generalization of Einstein model is one in which ion i has a natural
frequency of vibration ωi, that can be different. Write down the spectrum for this
generalized Einstein model.

(c) Now consider the so called Debye model of a solid where the nearest neighbor ions
are coupled together by “electromagnetic springs”, with a Hamiltonian given by

H =
Nc∑

xi=0

[
1

2m
Π(xi)

2 +
1

2
B(u(xi+1)− u(xi))

2], (3)

where B is solid’s compressional modulus. Note that in the continuum the
Hamiltonian for the corresponding field theory becomes H =

∫ L
0

dx
c
[ 1
2m

Π(x)2 +
1
2
Bc2(∂xu(x))

2],



i. Show that these N harmonic oscillators can be decoupled using Fourier series
transformation. That is, when one changes variables to normal modes given
by Fourier series coefficients ũ(kn) of field u(xi) = 1

L

∑π/c
kn=−π/c e

iknxiũ(kn) (and
same for the momentum field operator, Π(xi)) show that in terms of ũ(kn) and
Π̃(kn) the Hamiltonian decouples into N independent harmonic oscillators

H =
1

Lc

∑
kn

[
1

2m
|Πkn|2 +

1

2
mω2

kn
|ũkn|2

]
, (4)

one for each value of Fourier wavevector kn = (2π/L)n, with n integers in
finite range −N/2 < n ≤ N/2.
Hint: You will find previously discussed identity

∑N
xi=0 e

−i(kn+km)xi = Nδkn+km,0

(valid for large N) extremely useful.
What is the natural frequency ωkn for mode kn? Plot it as function of kn over
the physical range −π/c < kn ≤ π/c. Why is kn limited to this range rather
than having infinite range?
Hint: Think about what happens to the Fourier coefficient ũkn when kn falls
outside of this range?

ii. Recalling what we did next for a single harmonic oscillator, introduce anni-
hilation and creation operators âkn , â†kn

for each mode kn, such that ûkn =
δkn√

2
(âkn + â†−kn

), Π̂kn = −ih̄
δkn

√
2
(âkn − â†−kn

), and show that the Hamiltonian

then reduces to a standard form

H =
1

Lc

∑
kn

[
h̄ωkn(â†kn

âkn + Lc/2)
]
. (5)

In above what is δkn? If the commutation relation for the original displace-
ment and its momentum fields û(xi) and Π̂(xi) is the standard canonical one,
[û(xi), Π̂(xi)] = ih̄δxi,xj

, show that the resulting commutation relation for the
creation and annihilation operators is given by

[âkn , â
†
km

] = Lcδkn,km (6)

iii. What are the quantum numbers that uniquely specify the eigenstates of the
system and what is the spectrum, i.e., the total energy of the system for each
such state?

5. (5 points) Electromagnetic field

We describe the electromagnetic field in terms of a vector potential field A(r, t) =
A0ε̂ 2 cos(k · r − ωt), where ε̂ is its polarization (that is required to be transverse to
photon’s momentum k) and A0 is the amplitude. Using the expression for the Poynting
vector S = c

4π
E × B, whose magnitude is the intensity, i.e., energy per unit of time



crossing a unit of area perpendicular to direction of propagation k, determine A0 for
a field of one photon (energy h̄ωk = h̄ck) in a box of volume V . Equivalently, one can
look at the total electromagnetic energy HEM = 1

8π

∫
d3r [E2 + B2].


