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1. Consider a hydrogen atom in its ground state at t → −∞, subjected to a uniform
electric field E(t) = ẑEe−t2/τ2

. Show that the probability that at time t→ ∞ the atom
ends up in any of the n = 2 states is, to first order,
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πτ 2e−ω2τ2/2, (1)

where ω = (E2ℓm − E100)/h̄. Does the answer depend on whether or not the spin is
incorporated in the picture?

2. Shifted harmonic oscillator (revisited)

(a) Consider a charged particle (charge q, mass m) confined to move in 1D in the
presence of a harmonic potential V = 1

2
mω2x2 and subjected to a uniform, con-

stant electric field E . If at time t = 0− the particle is in its ground state but at
t = 0+ the electric field is suddenly shut off, compute the average energy change
of the oscillator at subsequent time.

(b) What is the final energy change after the electric field is instead shut off adiabat-

ically and how does it compare to that in part (a)?

(c) How does your answer compare to the classical result?

Hint: It is convenient to represent the state of the original displaced oscillator in
terms of the displacement operator (by distance α) Dα = e−α∂x acting on the state
of the undisplaced oscillator. Expressing this displacement operator in terms of
creation and annihilation operators and using Baker-Campbell-Hausdorff formula
eA+B = eAeBe−

1

2
[A,B] (valid when [A,B] is a c number) allows a very efficient

computation of the probability of finding the system in the n-th quantum state.

3. Perturbed harmonic oscillator transitions



(a) Consider, once again, a charged particle in a ground state of a 1D periodic po-
tential V (x) = 1

2
mω2x2, this time perturbed at time t = 0 by a weak oscillating

electric field E cosωet. Calculate a transition rate at time t out of the ground
state. What is the asymptotic, long-time rate?

(b) Repeat the above analysis if instead of an electric field, the perturbation is a
periodically modulated oscillator frequency, i.e., ω → ω(t) = ω+ω0 cosωet, where
the amplitude of frequency modulation is weak, ω0 ≪ ω.

4. Consider a single spin 1/2 that has been “prepared” (using e.g., a strong polarizing
magnetic field pointing along ẑ, that now has been shut off) to be in the spin-up
(“along” ẑ) eigenstate.

(a) What are the amplitudes d↑, d↓ of finding the spin in the spin-up and spin-
down eigenstate, respectively, after an application of a weak (so that 1st order
perturbation theory applies) magnetic field pulse (τ is the duration of time over
which pulse is applied, taken to be much smaller than any other scale in the
problem)

i. B = ẑB0τδ(t), i.e., along z, parallel to the initial spin configuration?

ii. B = ŷB0τδ(t), i.e., along y, transverse to the initial spin configuration?

Comment: Take for concreteness the interaction of the spin with a magnetic field
to be described by a Hamiltonian H = −µBσ · B

(b) Repeat analysis of all of the above questions for a magnetic field of magnitude B0

constant during time 0 < t < τ and zero otherwise, i.e., turned on at t = 0 and
shut off at t = τ .

Notice that this case should reduce to the previous case for a vanishing “on”
duration τ .

(c) For the last case with B0 along ŷ, deduce the duration τ∗ beyond which the per-
turbation theory breaks down, and interpret this time physically, e.g., by thinking
about the full spin dynamics (at least classically first) for this case.

(d) Solve the problem (b) exactly by explicitly finding the expression for the spinor
dσ(t) at time t, and compare the lowest order Taylor expansion with the perturba-
tive solutions above. Also for case (ii) calculate the magnetic field pulse duration
τπ for which the spin is in the spin-down eigenstate with 100% certainty, and
compare it to τ∗

5. Berry’s phase

As we discussed in class, for an extremely slowly (adiabatically) changing Hamiltonian,
H(α(t)) (where α(t) is some parameter that changes slowly in time) we expect that a
system that starts out in an eigenstate |n, α(0)〉 separated from other states by a large
gap will remain in an instantaneous eigenstate of the time-dependent Hamiltonian, i.e.,



will satisfy H(α)|n, α〉 = En(α)|n, α〉. Naturally, the state will evolve in time due to

t-dependence of α(t), as well as the usual phase factor e−i/h̄
∫

t

0
E(α(t′))dt′ .

However, as we learned in class, the state will acquire an additional (nonobvious) phase
factor, eiγ(t). The neat thing about this phase γ is that it can be nontrivial even if
the Hamiltonian and all adiabatic parameters, e.g., α(t) have returned back to their
original values (i.e. the adiabatic parameters have executed a cyclic variation). This
phase (discovered by Michael Berry, 1984) has many amazing consequences in physics
(see Shankar, Ch. 21). It is given by

γn = i
∫ t

0
dt′〈ψn(α(t′))|∂t′ |ψn(α(t′))〉, (2)

= i
∫ ~α1

~α0

d~α · 〈ψn(α)|~∇α|ψn(α)〉, (3)

≡ h̄−1
∫

d~α · ~AB, (4)

where ~AB is Berry’s vector potential corresponding to the phase γ. Notice that ~AB

can have a Berry’s magnetic field associated with it, given by ~∇× ~AB = ~BB. This field
is not real, but its effects are quite similar to those of a real magnetic field!

Consider a spin 1/2 spinor that is an “up” eigenstate of H = −B(t) ·σ, i.e., | ↑, θ, φ〉 =
(cos θ/2, eiφ sin θ/2), where θ and φ are angles defining the direction of B.

(a) Compute Berry’s phase γ↑ associated with B going slowly once around:

i. a great (vertical) circle lying in the x-z plane,

ii. the equator, lying in the x-y plane,

iii. a (horizontal) circle at a latitude θ, going once around.

Hint: The adiabatic parameter here are the polar and azimuthal angles describing
the orientation of B; notice that your answers differ in cases (i) and (ii), even
though physically they are equivalent operations on B.

(b) What is the change in the state for cases (i) and (ii) (after one complete revolution
of B, without the Berry’s phase, i.e., just due to θ, φ dependence explicit in | ↑
, θ, φ〉. Note that in the case (i) (but not in (ii)) the spinor is not single-valued
function of orientation of B, and gets multiplied by −1 after a complete revolution
of B along a great circle.

The resolution, is that indeed the Berry’s phase makes up the difference between
(i) and (ii).

(c) Show that if the state is multiplied by an arbitrary phase factor eiχ, Berry’s vector

potential ~AB transforms under a gauge transformation ~AB → ~AB − h̄~∇αχ, and
that this shifts Berry’s phase exactly by −∆χ so as to exactly cancel ∆χ due to
changes from the phase factor χ.


