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Abstract

Recent computing trends force users to relinquish physical control to unknown par-

ties, making the system vulnerable to physical attacks. Software alone is not well

equipped to protect against physical attacks. Instead software and hardware have

to enforce security in collaboration to defend against physical attacks. Many secure

processor implementations have surfaced over the last two decades (i.e. Intel SGX,

ARM Trustzone) but inefficiencies are hindering their adoption.

Secure processors use secure memory to detect and guard against physical attacks.

Secure memory assumes that everything within the chip boundary is trusted and

provides confidentiality and integrity verification for data in memory. Both of these

features, confidentiality and integrity, require large metadata structures which are

stored in memory. When a system equipped with secure memory misses at the last-

level-cache (LLC), the memory controller has to issue additional memory requests to

fetch the corresponding metadata from memory. These additional memory requests

increase delay and energy. The main goal of this dissertation is to reduce overheads

of secure memory in two dimensions: delay and energy.

First, to reduce the delay overhead we propose the first safe speculative integrity

verification mechanism, PoisonIvy, that effectively hides the integrity verification

latency while maintaining security guarantees. Secure memory has high delay over-

heads due to the long integrity verification latency. Speculation allows the system

to return decrypted data back to the processor before the integrity verification com-

pletes, effectively removing the integrity verification latency from the critical path of

a memory access. However, speculation without any other mechanism to safeguard

security is unsafe. PoisonIvy safeguards security guarantees by preventing any effect

of unverified data from leaving the trusted boundary. PoisonIvy is able to realize all
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the benefits of speculative integrity verification while maintaining the same security

guarantees as the non-speculative system.

Speculation is effective in reducing delay overhead but it has no effect on reducing

the number of additional memory accesses, which cause large energy overhead. Secure

memory metadata has unique memory access patterns that are not compatible with

traditional cache designs. In the second part of this work, we provide the first in-

depth study of metadata access patterns, MAPS, to help guide architects design more

efficient cache architectures customized for secure memory metadata.

Based on the unique characteristics of secure memory metadata observed in the

in-depth analysis, in the third part of this work we explore the design space of efficient

cache designs. We describe one possible design, Metadata Cache eXtension (MCX),

which exploits the bimodal reuse distance distribution of metadata blocks to improve

the cache efficiency thereby reducing the number of additional memory accesses. We

also explore an LLC eviction policy suitable to handle multiple types of blocks to

improve the efficiency of caching metadata blocks on-chip further.
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Chapter 1

Introduction

As more of our data becomes digital we become more vulnerable to cyber-attacks. The

largest data breach seen so far was at Yahoo in 2013 [57], which affected a total of 3 billion

people. A study done in 2018 [30] estimates that data breaches are only getting bigger,

growing at a rate of 2% per attack. That same study estimates that data breaches costs

companies an average of $3.9 million. Given the increasing impact of cyber-attacks, the

computing industry has been producing new solutions to secure our data. Specifically, in

the last decade, we have seen a surge of hardware security solutions.

In addition to the increasing impact of cyber-attacks, modern computing models provide

physical access to untrusted entities, such as datacenter operators, who might examine

sensitive code or data. Without physical control, users are vulnerable to attacks in which

a malicious party inspects the physical connection of hardware components to either spy

or modify the behavior to gain unauthorized access to the system. Indeed, such security

concerns dampen enthusiasm for computing in the cloud [3, 61].

Software alone is not capable of protecting against physical attacks. Robust solutions

against these types of attacks have to involve both software and hardware. Hardware

mechanisms that guard against physical attacks must ensure two properties—privacy and

integrity. For privacy, hardware must encrypt data whenever it crosses the processor chip

boundary. The memory controller encrypts and decrypts data when it is written to and

read from memory. The state-of-the-art in memory encryption combines one-time-pads

(OTP) and counter-mode encryption [93].

For integrity, hardware must determine whether an adversary has altered the data since

it was written to memory. A näıve mechanism computes hashes over the data when writing

and verifies them when reading [46, 47, 78, 93–95]. However, hashes alone cannot guard

against adversaries who record and replay old data and its hash [20]. Security against
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replay attacks require Merkle Trees [49]. The tree leaves hash data, the next tree level

hashes leaves, and so on. The root is on chip, which ensures its integrity.

Bonsai Merkle Trees (BMTs) reduce Merkle Tree overheads by differentiating between

the encryption counters and data [63]. A BMT uses hierarchical hashes to protect counters

employed in counter-mode encryption from replay attacks. And it uses simple hashes to

protect data from tampering. BMTs ensure integrity with much less metadata than Merkle

Trees.

1.1 Threat Model

We focus on a well studied threat model in which an attacker has physical access to the

machine. When the processor is the trusted computing base, it must safeguard its interac-

tions with off-chip memory. It ensures confidentiality with encryption and ensures integrity

with keyed-hash message authentication codes (HMAC) [41].

Security solutions that involve both the hardware and the software are equipped to

defend against both physical attacks and malicious privilege software attacks. Physical at-

tacks are enabled when users relinquish physical control over the machine to untrusted

parties [46, 47]. A malicious user in physical control over the machine can exploit charac-

teristics of traditional systems to steal secrets or gain unauthorized access to the system.

Traditional systems connect the processor and main memory by a simple data bus that

sends information back and forth in the clear [23]. Attackers can intercept this connection

to either steal secrets that travel through the bus or inject values to modify the system’s

behavior.

Malicious privilege software attacks exploit the higher capabilities of privilege software

to steal or modify data in memory to gain unauthorized access to the system. Privilege

software, such as operating systems (OS) or virtual machine monitors (VMM), run at higher

privilege levels to be able to handle the metadata needed to run applications—such as the

memory management unit and the system scheduler. However, malicious users have been
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able to exploit the higher privilege capabilities to mount attacks. An example of this type of

attack is a privilege escalation attack (i.e. jail-breaking), in which a malicious user exploits

a bug in software to escalate their application to have same privileges as the OS [14].

Today’s computing models make systems more vulnerable to these classes of attacks.

Several new computing models—such as cloud, gaming and mobile computing—force users

to both relinquish physical control over the hardware and also share resources with un-

known parties. To defend against these attacks, the system requires a robust cryptographic

platform that allows the system to attest to its own security features.

1.2 Remote Attestation

Without physical control, secure processors require a way to attest its identity. This chal-

lenge is also found in networking systems, in which two parties want to communicate

securely and do not know how to guarantee their identities. How does Alice know that it

is talking in fact with Bob if Alice is not able to see Bob? The answer is to use asymmetric

cryptography [15].

Asymmetric cryptography provides a robust algorithm, based on number factorization,

to verify the true identity of an unknown party [15]. The unknown party contains a combi-

nation of two cryptographic keys: the private key (known only to the owner) and a public

key (distributed to authorized users). Data encrypted with the public key can only be

decrypted with the private key, known only to the owner of the keys. In this way, if Alice

wants only Bob to read her message, she can use Bob’s public key to encrypt the message.

When Bob receives the message, he can decrypt it with his private key and read the mes-

sage that Alice sent. If a malicious user, Mallory, intercepts the connection, she would not

be able to read Alice’s message without the private key.

Secure processors use asymmetric cryptography to provide remote attestation capa-

bilities. Secure processors need a hardware cryptographic environment that can attest

to the security of the system. The remote attestation service allows users to validate
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system’s security mechanisms without physical access. The remote secure system has a

machine-only readable private cryptographic key embedded on the processor at manufac-

turing time [2, 9, 79]. A public key is distributed to users, and they can use the public key

to encrypt data before sending it to the secure processor.

An application’s owner uses a tool chain to protect her binary before sending it to a

vulnerable system. While industry-strength tools, such as those of Intel’s SGX, are complex,

they can be broken down into a simplified model that has three steps [2,12]. First, the tool

creates a random symmetric key and encrypts the binary image using Advanced Encryption

Standard (AES) [53]. The encrypted image includes both code and data. Second, the

tool encrypts the symmetric key with the public key of the target system using Rivest,

Shamir, Adleman (RSA) [62]. Finally, the symmetric-encrypted image and the asymmetric-

encrypted key are paired and sent to the system for computation.

The secure processor runs the application by unpacking the image in two steps. First,

the processor uses its matching asymmetric private key to decrypt the symmetric key. With

the symmetric key, the processor decrypts code and data as they are read from disk, and

re-encrypts them with its own key, then writes them to memory. A separate symmetric

key, known and used only by the processor, is used to read data from memory into caches

and vice-versa. When code and data are swapped out, the processor decrypts it with its

own key, re-encrypts it with the application symmetric key, and writes it to disk.

Once the remote system has attested to its security mechanisms, runtime data also has

to be protected. Secure processors assume that the trusted boundary is the chip boundary,

and protects data when it goes off-chip. To protect the data off-chip, the secure system has

to use secure memory to provide both data confidentiality and integrity in memory.
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1.3 Data Confidentiality

Keyed encryption is required for confidentiality, which prevents adversaries from observing

data. The processor could use XTS-mode1, which combines data with portions of its

memory address before encrypting with AES. However, XTS serializes data access and

decryption, lengthening the critical path to return data to the processor—AES latency

ranges around 40 processor cycles. Skylake’s AESDEC performs one round in 4 processor

cycles and performs the 10-14 required rounds in 40-56 cycles, depending on key length [22].

Counter-Mode Encryption. Alternatively, counter-mode encryption (CME) allows

the system to parallelize the encryption and the memory fetch. CME XORes plaintext with

a one-time pad (OTP) to produce the ciphertext. The OTP is generated by encrypting a

combination of a counter and the memory address with AES [78,93,94]. During decryption,

the ciphertext is XORed with the same OTP to produce the plaintext. If counters are

cached, the processor can generate the OTP for decryption and retrieve the ciphertext

from memory in parallel. In this situation, the decryption latency overhead is only the

XOR latency, which is one cycle long.

To preserve security of CME, the OTP, and by extension the counter, has to be used only

once. The counter corresponding to a memory address is incremented after every write.

If a counter were to overflow, the symmetric key used to encrypt counters and produce

OTPs must be regenerated. Then, counters must be reset and memory contents must be

re-encrypted. Because counter overflow is expensive, best practices increment counters at

multiple data granularity.

Block and Page Counters. Large counters avoid overflow and expensive re-

encryption, but small counters fit in cache more easily. Researchers resolve this tension

with separate counters for memory blocks and pages [63,93]. Every block write increments

the per-block counter. Overflow in the per-block counter increments the per-page counter

corresponding to the block’s page. Finally, each block’s input to OTP generation is the

concatenation of per-block and per-page counters.

1Xor Encrypt Xor (XEX) Tweakable Block Cipher with Ciphertext Stealing
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Block and page counters reduce the frequency and cost of re-encryption. When the

per-page counter increments, the memory controller loads each block from the page, de-

crypts it, and re-encrypts it with a new counter that concatenates the incremented per-page

counter and a reset per-block counter. Although page re-encryption is moderately expen-

sive, it happens infrequently and is much less expensive than re-encrypting all memory

contents. The combined counter (7-bit per-block and 64-bit per-page counters) never over-

flows in practice. It would overflow in 75,000 years if the same block were written once per

nanosecond.

Confidentiality prevents an attacker from stealing secrets when they leave the chip,

which defines the boundary of the trusted computing base. The memory controller achieves

confidentiality by encrypting data when it is stored off-chip. However, confidentiality on

data alone is unable to provide authentication capabilities. An integrity verification mech-

anism is necessary for data authentication.

1.4 Data Integrity Verification

Integrity mechanisms prevent adversaries from modifying data without a user’s knowledge.

One approach uses hashes to verify memory integrity [17, 46, 47, 78, 94, 95]. For every

write, the memory controller computes and stores a secure hash, a keyed-hash message

authentication code (HMAC) of the data [41]. For every read, it loads and compares the

previously computed hash against the current one. When hashes are equal, integrity is

verified. When hashes differ, the system detects tampering and halts.

Hashes alone do not guard against replay attacks in which adversaries inject previously

observed data and hashes onto the memory channel. As illustrated in Figure 1.1, Merkle

Trees guard against replay attacks by building a hash tree over memory contents [49].

Leaves of the tree contain one secure hash per data block. Further up, each tree node

hashes its children’s hashes. The tree’s root holds a secure hash that encompasses the whole

protected memory space. The tree’s root is held on chip, where it cannot be attacked, and
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Figure 1.1: Merkle Tree Diagram

is always trusted. A data write propagates hash writes up the tree to the root.

Bonsai Merkle Trees (BMTs) guard against replay attacks at lower cost than Merkle

Trees. BMTs construct a hash tree to protect only the counters used to generate OTPs

instead of the entire memory space. This approach reduces space overheads from 50% to

14% [63], assuming 8-byte hashes and tree arity of eight. Moreover, BMTs perform better

because counters are often cached on chip and need not be verified by the tree. Suppose

the processor requests data and its corresponding counter is cached, the counter’s integrity

was verified when it was first loaded from memory and BMT (re-)traversal is unnecessary.

Given BMTs to protect counters, simple keyed hashes are sufficient to protect the integrity

of the data [2, 10,19,79].

1.5 Secure Memory Performance Optimizations

Security adds overheads, motivating performance optimizations that cache metadata and

speculate around the integrity verification [20,64,65,73,74,78,94]. We survey recent progress

to motivate our approaches, which builds atop best practices to address remaining perfor-

mance challenges.

Secure memory adds large overheads on both latency and energy. For every memory
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access, the memory controller must decrypt data and verify the integrity of both data and

the counters. To decrypt data, the memory controller fetches the corresponding counter

from memory. To verify the counter’s integrity, the controller traverses the integrity tree

up to the root by fetching one hash from memory at each level. And finally, to verify the

data’s integrity, the memory controller fetches the data hash from memory.

Despite recent advances, security mechanisms are expensive and harm performance as

they manipulate several types of metadata, which are stored in memory along with data.

When requesting data, the memory controller must also request counters for decryption

and hashes for verification. In the worst case, a last-level cache miss could trigger up to

ten memory transfers—counters for decryption and hashes from the tree, up to the root,

for integrity verification—significantly increasing request latency and bandwidth demand.

1.5.1 Caching Metadata Blocks

The secure processor can cache metadata blocks on-chip to alleviate additional memory

accesses. Metadata caches can have multiplicative effects, as they not only can save the

memory access for the block resident in the cache but it can also shorten the tree traversal

of the integrity verification. When a metadata block is found in the cache, the integrity

of that block was verified when it was inserted into the cache, therefore the integrity tree

traversal can stop right away.

Metadata caches not only mitigate performance overheads but they can also greatly

diminish the energy overheads incurred by the additional memory accesses. A memory

access consumes several orders of magnitude more energy than an on-chip SRAM access.

Metadata caches play an important role in reducing secure memory overheads.

Prior work has explored different metadata caching designs. Some prior academic de-

signs place metadata in the last-level-cache (LLC) along with the data [20, 68, 78, 79, 94],

while industry and a few other academic designs use a dedicated cache in the memory

controller [2, 10,21,29,63,64,67,73,81,92,93].

Despite the promise that metadata caches seem to have, caching metadata is inefficient.
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Even with caching metadata in a 128KB separate cache, we find that security harms perfor-

mance by 9% on average and 65% in the worst case based on our measurements. On energy,

security increases energy by 15% on average and 128% in the worst case. Surprisingly, no

prior work, to the best of our knowledge, has done an extensive study of metadata access

patterns to understand where these metadata cache inefficiencies come from.

1.5.2 Speculating Around Integrity Verification

On the other hand, speculative integrity verification effectively hides the verification latency,

reducing delay overheads of secure memory significantly. On average a speculative system

reduces delay overheads down to 2% on average by supplying data to the core for computa-

tion before retrieving its metadata and verifying its integrity [63]. Some academic mecha-

nisms speculate quite eagerly, using data immediately and assuming integrity violations are

detected before they produce any ill effects [63, 79]. Others, such as authen-then-write,

speculate more carefully for smaller, 6% on average, yet still significant performance ben-

efits [72]—note that in this work the performance overheads reported are higher (14%)

because they assume a much smaller metadata cache, 8KB instead of 128KB.

However, speculation has a number of limitations despite academic progress and demon-

strated potential. To date, none of the proposed mechanisms are completely safe and all

of them open an avenue of attack that breaches the security guarantees. Even the con-

servative authen-then-write mechanism is vulnerable to side-channel attacks, which are

identified in the same study [72]. Industrial designs, such as Intel’s Software Guard eXten-

sions (SGX) [2], rely primarily on caches, not speculation, to balance security and perfor-

mance. To encourage the adoption of speculative mechanisms, we must close its security

vulnerabilities.
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1.6 A Survey of Secure Hardware Solutions

To position and motivate our work, we explain the origins of secure hardware and survey

the state-of-the-art implementations in both academia and industry. Most implementations

described in this section benefit from the design strategies presented in this dissertation.

The original goal of secure hardware was to help protect and manage digital rights.

Particularly, video-game developers found users breaking into gaming consoles to steal

their intellectual property and cheat the system. Users were able to accomplish such attacks

because they had physical control of the consoles running the software. Software alone is

unable to protect against physical attacks, instead the hardware needs a to provide a robust

security environment.

The eXecute Only Memory (XOM) machine [46] is the first academic work that in-

troduced the idea of a secure execution environment. The XOM machine proposes new

instructions to load and store data in secure memory. Several academic improvements fol-

lowed the XOM machine, such as AEGIS [79] among others [20, 47,78, 94]. We describe in

detail the most relevant academic work for this dissertation:

AEGIS. [79] Inspired by the XOM machine, Suh et.al. improves the encryption and

integrity guarantees of the tamper resistant environment. To protect the system against

physical attacks, AEGIS uses AES-Cipher Block Chaining (CBC) for encryption and a

Merkle tree with 128-bit MAC for integrity. AEGIS caches tree nodes in the last-level

cache (LLC) along with data. In addition, it allows the processor to compute on unverified

data and assumes that, if integrity fails, the system will halt before leaking information—an

assumption we call unsafe speculation.

AISE. [63] Rogers et.al. protect a system from physical attacks with a modified

encryption and integrity mechanisms. For encryption, they use AES-counter mode with

two counters: a 64-bit counter per 4KB page and a 7-bit counter per 512-bit blocks. The

counters are concatenated when producing the one-time pad. For integrity, they modify

the traditional Merkle tree to produce the Bonsai Merkle Tree. BMTs protect counters,

instead of the data, thereby shortening the tree height and decreasing its size. Counters
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are cached in the LLC along with data. This scheme uses unsafe speculation as well.

New computing trends, such as cloud computing, made other industries vulnerable to

physical attacks and more robust software attacks. These trends require users to relinquish

physical control and share resources with untrusted parties. The increasing vulnerability of

these types of attacks is why in recent years we have seen more hardware companies release

their own secure hardware implementations. Below is a brief survey of the state-of-the-art

in industrial secure processors.

IBM SecureBlue and SecureBlue++. [9,86] SecureBlue is the first industrial im-

plementation of a secure processor, released by IBM in 2004. SecureBlue provides both

confidentiality and authentication of the data in memory. SecureBlue++, which is an up-

dated implementation of the secure processor, separates the integrity tree over the virtual

memory space, protecting each process’s memory from other software running in the same

machine. The process management metadata is tightly integrated with the security meta-

data. The particular details of the hardware implementation are a well guarded secret

within the company and it is unclear what type of caching mechanism they use and they

make no mention of any speculation mechanism. Today, SecureBlue is used in tens of

millions of systems, although the specific details are confidential [8].

Intel SGX. [2,21] Software Guard eXtensions (SGX) provides secure regions of mem-

ory (i.e. enclaves) for programmer managed secrets. Instruction set extensions allow pro-

grammers to create, load, and enter an enclave. The Memory Encryption Engine (MEE),

a micro-architectural extension to the memory controller, encrypts and hashes enclave con-

tents to ensure confidentiality and integrity. SGX also uses counter mode encryption but

unlike the academic work AISE, it only uses one 8B counter per 64B block. For the integrity

tree, SGX uses the Carter Wegman hashing algorithm, with 8B hashes. SGX only provides

up to 128MB of secure memory to the system. With the reduced size of protected memory,

the integrity tree only has four levels, reducing the overheads of the integrity verification

mechanism but introducing large paging overheads instead.

ARM TrustZone. [27] TrustZone only provides ISA extensions to enable a secure
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software environment, the secure world. ARM TrustZone describes a secure processor that

is active only when the secure world is enabled. ARM recommends their customers combine

TrustZone capabilities with secure memory to be able to protect the system against physical

attacks as well.

AMD SME and SEV. [37] Secure Memory Encryption (SME) and Secure Encrypted

Virtualization (SEV) provide only confidentiality—no integrity verification—for data in

memory. SME and SEV differ only on what structure is in charge of the cryptographic keys

used for encrypting data in memory. SME provides the capability of creating a system-

wide encryption key at boot time, which is used to encrypt all of the memory contents.

SEV provides virtual machines the capability of selecting certain regions of memory to be

encrypted by a virtual machine owned cryptographic key.

While all these solutions rely in some form of secure memory to protect the system

against physical attacks, we find that both confidentiality and authentication are necessary

to fully protect against all types of physical attacks. In this work we focus on a secure

memory implementation that is most similar with Intel SGX and AISE. When applicable

we will point out the differences and explain how they relate to the results presented.

1.7 Contributions

In this dissertation we focus on reducing overhead of secure processors by architecting

systems that account for both security and efficiency. We revisit micro-architectural support

for secure memory to provide new perspectives on performance and energy efficiency while

maintaining security guarantees. We build on prior work [20, 63], adapting it to reflect

modern software demands and hardware design priorities.

Computing speculatively on data that has not yet been verified hides latency. A mem-

ory load could trigger metadata transfers that require hundreds of cycles. Prior studies

supply unverified data for computation, assuming that an adversary cannot exploit this

window of vulnerability [10,63,65,92]. Unfortunately, an adversary could stream data from
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memory and preempt metadata needed for verification indefinitely. Pipeline stalls for ver-

ification ensures security but harms performance [72]. In Chapter 2, we present the first

speculation mechanism for integrity verification, PoisonIvy [42], that guarantee security

while still enhancing performance.

Moreover, software often stresses memory, which increases both energy and delay over-

heads when adding an integrity mechanism in the critical path to return data from memory.

We find that integrity increases the energy delay squared product (ED2) by 10% (average)

and 400% (worst case) for applications with large memory footprints, even when an integrity

tree’s metadata is held in a 256KB dedicated cache (data shown in Figure 3.2). Integrity

mechanisms require several types of metadata and transferring data from main memory

to the processor is expensive. Each additional DRAM access requires approximately 150

pJ per bit read [48]. Yet prior studies evaluate delay and neglect energy. Furthermore,

prior work considers less memory-intensive applications and assume speculative integrity

verification, which show penalties of 1.8% (average) and 13% (worst case) [63]. To better

understand where overheads come from, in Chapter 3, we present the first in-depth analysis

of metadata access patterns, MAPS [43]. This work is aimed to aid architects to address the

inefficiencies of caching metadata and as a guideline for future metadata caching designs.

Finally, based on observations of our in-depth analysis, in Chapter 4, we explore the de-

sign space for new cache architectures that address inefficiencies. Prior work assumes that

traditional cache architectures are sufficient to hold metadata blocks efficiently. Unfortu-

nately, metadata access patterns present new challenges for cache design. Metadata blocks

have bimodal reuse distances: either smaller than 8KB or larger than 2MB. This large

discrepancy complicates metadata cache sizing decisions. We present a design space explo-

ration, which addresses the limitations of traditional cache architectures by considering the

particular characteristics of metadata access patterns.
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1.8 Experimental Methodology

Throughout this dissertation work we used the following experimental methodology:

Table 1.1: Simulation Configuration

Pipeline width 4 (dispatch+commit)

8 (issue)

ROB size 192

Issue Queue size 60

Store buffer size 42

Load queue size 72

Clock Frequency 3GHz

L1 I & D Cache 32KB 8-way

L2 Cache 256KB 8-way

L3 Cache 2MB 8-way

Memory Size 4GB

Hash Latency 40 processor cycles

Hash Throughput 1 per DRAM cycle

Security Architecture. We evalu-

ate all pieces with a state-of-the-art secu-

rity configuration. First, we assume that

all of memory is protected. Second, we

use counter-mode encryption with a 7-bit

counter for each 64B-block and an 8-byte

counter for each 4KB-page 2. Third, we

use an 8-arity Bonsai Merkle integrity tree,

in which each node contains eight 8-byte

hashes of its children, for verifying the in-

tegrity of encryption counters [63]. Because

we assume that all 4GB of memory are pro-

tected, the integrity tree has a total of 8

levels. Finally, we use 8-byte hashes per 64B-block for verifying the integrity of data. All

metadata is stored in memory except for the integrity tree’s root, which is stored within

the processor. Moreover, all types of metadata are eligible for caching except where noted.

We assume a system that uses AES for encryption and HMAC with SHA-2 for all hashes

and truncate the resulting hash to 8B.

Simulators. We combine MARSSx86 and DRAMSim2 for cycle-level, full-system sim-

ulation of the processor and memory [54,66]. Table 1.1 summarizes simulation parameters.

We use a 2MB LLC to match the per-core LLC capacity seen in commercial muti-core pro-

cessors (e.g., 8MB for 4 cores [31]). We modify the memory controller model to implement

metadata caches. We also implement a timing model to estimate costs of data en/decryp-

2Even though Intel SGX structures encryption counters differently, with 8B counters per 64B-block,

our findings remain relevant [21].
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tion and integrity verification. All experiments include stream prefetching at the LLC. We

evaluate processor energy with McPAT [44], metadata cache energy with CACTI [75], and

memory energy with DRAMSim2.

Workloads. We evaluate all benchmarks in PARSEC [7], SPLASH2 [90] and SPEC-

CPU2006 [24]. We simulate regions of interest for PARSEC and SPLASH. We fast-forward

1B user instructions for SPEC. For all three suites, we run simulations for 500M user

instructions, after warming up the simulated structures for 50M user instructions. We

present results for memory-intensive benchmarks that have more than 5 misses per thou-

sand of instructions (MPKI) in the LLC. This set of benchmarks contains diverse access

patterns. Graphs show results with a 16KB metadata cache unless otherwise specified.

The averages are labeled as follows: Parsec average (parAvg), SPEC average (spcAvg) and

SPLASH2 average (sphAvg). We also present the geometric average for memory-intensive

benchmarks (miAvg) and the geometric average for all benchmarks (allAvg). The working

sets for memory-intensive benchmarks range from 16MB to 2GB.
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Chapter 2

Reducing Delay Overhead with PoisonIvy

Encryption and integrity trees guard against physical attacks, but harm performance. Prior

academic work has speculated around the latency of integrity verification, but has done

so in an insecure manner. As far as we know, no industrial implementations of secure

processors have included speculation. This work presents PoisonIvy [42], a mechanism

which speculatively uses data before its integrity has been verified while preserving security

and closing address-based side-channels. PoisonIvy reduces performance overheads from

40% to 20% for memory intensive workloads and down to 1.8%, on average when combined

with a 32KB metadata cache.

2.1 Unsafe Speculative Integrity Verification

Security increases average memory access time. Data en route from memory to the last-level

cache must wait for decryption plus integrity verification, which may need data hashes and

tree nodes from memory. Speculating on integrity removes the second set of overheads from

the critical path. The memory controller supplies data to the processor before verifying

integrity, permitting computation on decrypted but unverified data.

Speculation exposes tensions between performance and security. For performance, spec-

ulation requires a permissive mechanism that computes far ahead of verification to hide its

latency, which is tens of cycles when counters are cached but hundreds (to thousands) of cy-

cles when counters and tree nodes are in memory. Unfortunately, instructions will compute

on unverified data, posing risks to confidentiality and integrity.

For security, speculation must restrict the visibility of computation on unverified data.

A conservative mechanism for speculation does not modify architected state [72], but it

performs poorly as the instruction window fills quickly and exposes the long verification
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latency. Furthermore, guarding architected state alone is insufficient because speculative

computation may issue loads and stores that send unencrypted addresses across the memory

channel.

Prior work delivers performance or security but rarely both. A less conservative ap-

proach allows the memory controller to return unverified data to the core, assuming that

the window of vulnerability between data use and verification is too short for attackers

to exploit [10, 63, 65, 79, 92]. Shi et.al., close this vulnerability by stalling stores until all

outstanding verifications complete (“authen-then-write”) [72]. This approach prevents

an application from being “tricked” into writing data to memory, but puts pressure on the

store buffer, constrains speculation, and exposes verification latency. Although researchers

have sought to scale store buffer capacity [69–71, 77], no modern processor has a large

enough store buffer to tolerate thousands of cycles of latency.

Side-Channel Attacks. Shi et.al. present a series of side-channel attacks, in a system

that speculates, that leak secrets before verification fails [72]. These attacks exploit the

fact that, when using OTP encryption, each bit of ciphertext corresponds to exactly one

bit of plaintext. If an attacker wishes to flip a specific bit of plaintext, she can flip the

corresponding ciphertext bit without breaking any cryptographic system.

In one attack, Shi et.al., assumes that the attacker knows the contents of instruction

memory (e.g., has a copy of the program). First, the attacker alters bits in instruction

words to cause secret data to be used in a load’s address, taking care to place the secret

into bits unaffected by address translation but not within the block offset. Then, the at-

tacker observes addresses on the memory bus to learn the secret. Other attacks include

manipulating pointers in linked data structures, and searching for a secret value by re-

peatedly altering constants that are compared to the secret. These attacks show that safe

speculation must safeguard both data and instructions.

Some might argue that changes to the encryption algorithm could close these side-

channels and permit safe speculation. Although XTS-mode encryption avoids vulnera-

bilities from OTPs, it penalizes performance by serializing data access and decryption.
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Diffusive ciphers avoid the one-to-one mapping of ciphertext and plaintext bits, ensuring

a bit flip in ciphertext changes multiple bits in plaintext. However, diffusion only reduces

odds of a successful attack. If an attacker targets N bits—and does not care about the

remaining (512 − N) bits—in a cache block, diffusion reduces the odds of success to 1 in

2N . For example, 1 in 256 attacks are successful when 8 bits are targeted, which is far from

secure.

2.2 Safe Speculation with PoisonIvy

PoisonIvy makes speculation safe with a few key principles. First, unverified data may

be used for any purpose within the processor, but it cannot affect any information leaving

the processor before its integrity is verified. Second, any instruction affected by computa-

tion on unverified data is poisoned by the speculation. Instructions could be affected via

input register values, preceding instruction words, preceding control flow, or values used in

address translation. Speculation built around these principles is not only safe but also effi-

cient. The only operations blocked by integrity verification are those that require off-chip

communication.

PoisonIvy’s fundamental mechanism is poison, which is inspired by the key mechanism

of Continual Flow pipelines (CFP) [76]. CFP poison bits indicate a load’s value is missing

due to a long-latency cache miss. In contrast, PoisonIvy’s poison bits indicate an unverified

value is being used speculatively. The microarchitecture uses poison to determine what

information must be restricted to the processor.

Whereas CFP requires a mechanism to recover from misspeculation, such as check-

points, PoisonIvy does not expect to recover from misspeculation. Computing on data for

which integrity verification fails is a drastic problem, indicating a physical attack against

the system. The only safe outcome is halting the system. Indeed, Intel SGX halts the

system whenever verification fails even though it does not speculate.
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i1: ld r1 <- 0(r2)
i2: add r3 <- r1 + r4
i3: ld r5 <- 0(r6)
i4: ld r2 <- 0(r3)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

1 1 1 0 0 0 0 0

0
1

0

Mem
Req

Data 
From

L1
L1

M

Figure 2.1: Propagation of the memory request poison bit

2.2.1 Propagating Poison

Whenever the memory controller has data to handle an LLC miss but cannot verify it

immediately, it returns the data to the LLC and core speculatively. When a cache receives

speculative data, it marks the line as poisoned. When the core receives speculative data,

it poisons the output of the load that requested it. This poison propagates, marking

instructions and data that are affected by the unverified value.

Registers. Poison bits propagate through registers as in CFP. When an instruction

reads its input registers (or bypasses), it reads the corresponding poison bits. It then ORs

these poison bits with the instruction’s Instruction Word (IW) and Control Flow (CF)

poison bits, which are discussed next, to determine whether its output register is poisoned.

Then, the poison information for its output register is propagated on the bypass network

and written into the register file along with the instruction’s output value. In out-of-order

processors with register renaming, we require one poison bit per physical register. The

poison bits for all registers are cleared once all outstanding verifications are completed

successfully.

Figure 2.1 shows an example in which the first instruction, i1, misses at the LLC and

memory returns data speculatively, setting the poison bit on the output register, r1. When

the second instruction, i2, reads its input registers, it finds that r1 is poisoned, so it poisons

its output register, r3. r3, the input register of the fourth instruction, i4, is poisoned, so

i4’s request to the memory hierarchy is also marked as poisoned. If the request misses at

the LLC, the memory controller stalls the request until verification completes.
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i1: ld r1 <- 0(r2)
i2: add r3 <- r1, 1
i3: add r4 <- r3, r5
i4: ld r5 <- 0(r6)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0
1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

0 0 0 0 1 0 0 01

0

Mem
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Data 
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M

M

Figure 2.2: Popagation of the instruction word poison bit

Instruction Word. Whereas CFP cannot speculate around an instruction cache miss

and has no notion of poisoning instruction words, PoisonIvy must track poisoned instruc-

tions with an instruction word (IW) poison bit. If a fetch misses all cache levels, memory

speculatively supplies a poisoned instruction word. An attacker may have tampered with

the memory blocks holding these words and computation with these instructions cannot

be trusted until verification completes. The IW poison bit is set at the processor front-end

and cleared only when outstanding speculations are verified.

Figure 2.2 shows an example in which the IW poison bit is set. Instruction i2 is

retrieved from memory and the instruction cache miss is resolved with speculative data.

This instruction and all subsequent ones carry IW poison along with them through the

pipeline. When a memory request misses at the LLC, like i4, the memory controller stalls

the request until verification completes. At this point all poison bits, including IW, are

cleared. Register r5 is now poisoned by the newly speculative load returned from memory.

After fetching an instruction speculatively, all subsequent fetches (even those that hit

in cache) must be poisoned, as the instruction stream may be corrupted, changing data

and control dependencies. This requirement, combined with the rarity of instruction cache

misses that are satisfied by memory, means there is little advantage to tracking poison bits

for each line in the instruction cache. Instead, PoisonIvy uses one poison bit to track

speculation on any instruction word.

Control Flow. Speculative data can affect the program’s control flow by poisoning
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i1: ld r1 <- 0(r2)
i2: add r3 <- r1 + r4
i3: ld r5 <- 0(r6)
i4: breq r5, r3, target
i5: ld r2 <- 0(r4)

1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
r1 r2 r3 r4 r5 r6 iw cf

1 0 1 0 0 0 0 1
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Figure 2.3: Propagation of the control flow poison bit

data values that dictate branches. PoisonIvy tracks poisoned control flow (CF) with one

poison bit per thread. The CF poison bit is set in the register-read stage of the pipeline

when any poisoned instruction might modify the program counter. A poisoned branch

sets the bit whether it was correctly predicted or not. The CF poison bit is cleared when

verification completes or instructions older than CF-poisoned instructions are squashed.

This method of setting the CF poison bit produces correct outcomes. First, any instruc-

tion that executes after a poisoned branch observes poisoned control flow. Second, an older

instruction that executes after the branch, due to out-of-order scheduling, may observe a

set CF bit even though its control flow was not actually poisoned. This is a safe and con-

servative outcome. Third, a younger instruction that executes before the branch observes a

cleared CF bit. This is a correct outcome as anything the attacker did, absent other poison

reaching this instruction, did not affect its computation. These rules greatly simplify im-

plementation, eliminating the need to propagate poison through younger instructions that

have already executed out-of-order.

Figure 2.3 shows an example with poisoned control flow. Suppose the value of r3 is

affected by speculation and instruction i4 compares r3 to r5. Unverified values could cause

the program to execute different instructions. This vulnerability corresponds exactly to the

binary search attack devised by Shi et.al. For this reason, PoisonIvy must track when

control flow has been affected by poisoned values.

Although there is logically one CF poison bit per thread, an implementation can safely

have multiple physical copies (e.g., one per superscalar lane) if desired. These copies need
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not be updated at exactly the same time. Rather, they can be updated with the same

latency that is required for branch misprediction signals to propagate to that part of the

execution core.

Address Translation. The processor may need to access memory when translating

a virtual address to a physical address. For example, it may miss in the TLB and fail

to find the page table entry in cache. In such situations, the translation itself may be

returned speculatively from memory. Whenever PoisonIvy has a speculative translation,

any memory request that uses the translation produces poisoned values and, in the event

that it misses at all cache levels, cannot be allowed off the chip until speculation is verified.

When the DTLB receives a speculative translation, the poison bit in the entry is set.

Memory instructions OR the poison bit of their translation with the poison bits of their

other inputs to determine whether the instructions are poisoned. When the ITLB is filled

with a speculative translation, the IW poison bit is set, poisoning all instruction words.

Memory Hierarchy. In PoisonIvy, the memory hierarchy must propagate poison

and enforce invariants that ensure security. For poison propagation, every line in the L1

data cache and in lower-level caches has a poison bit added to the tags. When a line is

filled speculatively, its poison bit is set. Additionally, whenever a poisoned store writes to

a cache line, its poison bit is set. As previously mentioned, the instruction cache does not

have per line poison bits. Instead, the IW poison bit is set whenever the instruction cache

receives a speculative fill, whether directly from the memory controller or indirectly from

a lower-level cache.

PoisonIvy’s memory hierarchy ensures that (i) no poisoned data is written off-chip and

(ii) no memory requests are made with poisoned addresses. The first of these is enforced

by the LLC, which may not evict a dirty and poisoned block. When the LLC must evict a

block, it treats dirty, poisoned lines as locked and selects a non-poisoned victim. If no such

line exists—i.e., all lines in the set are poisoned and dirty—then eviction must stall until

speculation completes. Note that such stalls are extremely rare.

Second, the memory controller ensures that no request with a poisoned address escapes
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the chip. Memory requests carry their poison information with them down the memory

hierarchy. If a poisoned request misses at the LLC and reaches the memory controller, the

request stalls until speculation completes. Enforcing this rule at the memory controller, and

not higher in the cache hierarchy, delays only off-chip requests. Those that hit in cache are

satisfied with no performance penalty. Note that non-cacheable memory and IO operations

must always stall until all poison bits are cleared.

PoisonIvy accounts for prefetchers, which are prevalent in memory systems. Each

prefetcher maintains a poison bit, which is set whenever it is influenced by poisoned infor-

mation. The prefetcher then includes this poison in each request that it generates. Poisoned

prefetches may bring data through the cache hierarchy but stall at the memory controller

until verification completes.

Timing Information. PoisonIvy accounts for one more subtle piece of state in the

processor—timing information. Suppose a victim computes on speculative, unverified data

and modifies the processor’s shared resources such as the LLC. An attacker on another core

observes some timing effect due to the victim’s speculative computation, like higher average

memory access time, as the attacker’s data is evicted by the victim’s writes to the LLC.

Thus, the attacker has timing information derived from the victim’s speculative execution

that could be leaked from the processor. Closing this side-channel requires poisoning timing

information.

PoisonIvy protects against this new timing side-channel attack with a Timing Poison

(TP) bit. Whenever a program executes an instruction that can observe time (e.g., rdtsc)

or performance counters, the TP bit is ORed with the instruction’s poison information. A

rdtsc instruction poisoned by TP produces the correct time when executed, but its output

register is poisoned. Time measurements or values computed from them cannot leave the

chip until verification completes. Note that the TP bit does not close any existing timing

side-channels that an application may be vulnerable to.

Setting TP chip-wide when any core speculates is simple and conservative. Normal

programs do not read time often, if ever, so the performance impact is minimal. More
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fine-grained management could set TP when (i) any thread on the same core has poisoned

data, (ii) the core issues request to shared cache that holds poisoned data, or (iii) the core

issues request to memory controller when it is stalling another request with a poisoned

address.

Clearing Poison Bits. Once the memory controller has received all outstanding

verifications, it will notify the respective structures—i.e. all levels of the cache hierarchy,

the DTLB, the register file, issue queue, memory controller queue—to clear poison bits.

In each cache, including the DTLB, the poison bits are flash cleared. Clearing the poison

bits in the LLC implicitly unlocks the lines. The memory controller flash clears poison bits

from its request queue, allowing memory requests that have been prevented from accessing

memory to proceed.

While LLC cache misses do not happen frequently, waiting for all outstanding verifica-

tions to complete might unnecessarily introduce additional delays. If a program has a large

memory footprint with many LLC misses, poison spreads and eventually halts processing

until verification catches up. To reduce delays from verification, we clear poison bits in

batches with an epoch-based policy.

2.2.2 Managing Poison with Epochs

Thus far, we have described PoisonIvy with one poison bit per structure (e.g., one bit

per register, one bit per cache line, etc). In such a scheme, all outstanding verifications

must be completed before clearing the poison bit. This scheme works well if the program

has small, natural bursts of LLC misses, followed by many cache hits—when the burst

ends, all requests are verified and speculation is cleared. However, if the program accesses

memory uniformly over a longer period, it may provide no natural break for verification to

complete—more and more state is poisoned until structures fill, the processor stalls, and

verification catches up.

Epochs. PoisonIvy resolves this difficulty by replacing each poison bit with a pair of

poison bits—one per verification epoch. When the memory controller first returns specula-
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Figure 2.4: Clearing poison with epochs

tive data, it does so in epoch 0 and sets the first bit in the pair for each affected structure.

As more requests are returned speculatively in epoch 0, they set the first bit in each appro-

priate poison pair. After some time—measured in number of cycles, speculative requests,

or other conditions—the memory controller transitions to verification epoch 1, in which

new speculative requests set the second poison bit for each affected structure.

While new requests arrive in epoch 1, epoch 0’s requests are verified as memory cycles

become available for hashes, and tree nodes. No new requests are added to epoch 0 and its

number of outstanding verifications decrease over time. When all of epoch 0’s requests are

verified, the memory controller notifies the processor and clears epoch 0’s poison bits in all

structures. Note that epoch 1’s bits are unaffected.

After epoch 0 completes verification, the memory controller closes epoch 1 to new

requests and opens a new instance of epoch 0. To ensure proper semantics, the memory

controller waits as long as needed to completely clear poison bits across the processor

before initiating the new instance of epoch 0. This small delay does not affect the latency

of requests to memory since the controller releases requests as soon as their poison bits are

cleared. New memory requests may be performed speculatively in epoch 1 while the clear

signals for epoch 0 propagate.

Figure 2.4 shows how the speculation mechanism pipelines data supply and verification

across epochs. Our definition of epochs permits variable duration and allows memory

accesses to dictate the cadence of data supply and verify. The first instance of epoch 0,
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denoted E[0]1, begins when loads A and B supply unverified data to the LLC. When E[0]1’s

length exceeds the minimum duration, the first instance of epoch 1, denoted E[1]1, begins.

Memory accesses C through E are attributed to E[1]1 until its length exceeds the minimum

duration and E[0]1’s data is verified, which starts the second instance of epoch 0, denoted

E[0]2. Accesses F and G are attributed to E[0]2. PoisonIvy could support more epochs

with correspondingly more poison bits, but we find no significant advantage to having more

than two epochs.

Loads can be verified out of order, which gives the memory controller flexibility when

scheduling metadata requests. Because PoisonIvy can tolerate very high verification la-

tency without stalling the pipeline, the memory controller should prioritize demand requests

over verification requests. The controller should schedule verification over demand requests

only when its verification queues fill. Verification requests affect performance when meta-

data transfers saturate memory bandwidth, which is rare, or when dependent requests have

to wait for verification to complete to go out to memory.

The memory controller supplies unverified data to the cache hierarchy and performs

two additional tasks. First, the controller increments a counter for the number of pending

verifications in the current epoch. Second, the controller marks the outstanding requests

as poisoned by setting the bit corresponding to the current epoch number.

Poisoned Cache Lines. The LLC controller confines poisoned cache lines to the chip.

First, poisoned lines cannot be evicted since evictions release unverified data to memory.

The eviction policy accommodates this constraint with little performance impact. The

processor pipeline stalls only when an LLC set fills with dirty lines during an epoch. In

practice, epochs clear within a few thousand cycles and such stalls never occur.

Second, poisoned lines cannot be shared by the cache or inter-socket coherence protocol.

Stalling coherence requests typically risks deadlock, but our mechanism poses no such risk—

coherence and verification are independent. The memory controller verifies integrity and

clears poison bits even if the rest of the system stalls.

Verifying a Load. When the memory controller verifies a load’s data integrity, it also

26



decrements the counter associated with the load’s epoch. The memory controller consults

the outstanding queue entry to identify the epoch.

An epoch ends when its last pending verification is resolved and its counter decrements

to zero. The memory controller clears the poison bit for that epoch for all outstanding

verifications in the queue. When a memory request’s poison bits have been cleared, it is

also released from the memory controller to proceed off-chip. The memory controller also

sends a message up the memory hierarchy and to the core to clear their poison bits. When

all poison bits in a LLC line are clear, the controller releases the cache line and permits

eviction to memory.

Table 2.1: Poison Storage

Structure Size Poison (bits)

Registers 196 392

Issue queue 60 120

dTLB size 64 128

DL1 cache 32KB 1024

L2 cache 256KB 8192

L3 cache 2MB 65536

Mem controller queue 32 64

IW – 2

CF – 2

Pipeline latches, etc – ≤4096

Poison bits – 79556

≈ 9.5KB

Area Overhead. Adding poi-

son bits for each epoch adds a small

amount of area overhead through-

out the processor. Table 2.1 shows

the area breakdown of the differ-

ent structures that require poison

bits. The total additional area is

≈9.5KB.

The logic and propagation

overhead is very small. Nearly all

poison bits are added to regular,

dense SRAM structures (registers,

caches) in which wire area is pro-

portional to capacity [89]. Poison

bits follow instruction/data through existing datapaths, avoiding irregular and area-

intensive wires.

27



2.3 Evaluation

We evaluate PoisonIvy on a system with counter-mode encryption and BMTs [63]. We

use HMAC with SHA-2 for all hashes and truncate the resulting hash to 8B. We use the

8B hash for both tree nodes, which ensure counter integrity, and data hashes, which ensure

data integrity. A larger hash would only make speculation more important. The arity and

height of the hash tree are eight and nine. We use 7b per-block counters and 64b per-page

counters to cover 4KB of data in one 64B block. We assume a 32KB separate metadata

cache that contains all metadata types unless otherwise specified.

2.3.1 Evaluating Performance from Speculation

Figure 2.5—and all other figures—shows performance overheads normalized to that of an

unsecure system (i.e., neither integrity nor encryption). We compare four security mecha-

nisms:

• No Speculation. The memory controller waits for verification before supplying data

to the LLC. This inherently safe mechanism is implemented in industrial designs (i.e.,

Intel’s SGX).

• Authen-then-write. Stores cannot write the L1 cache until all outstanding specula-

tive loads are verified [72]. This mechanism guards against speculative data escaping

the core, but does not guard against address-based side-channel attacks.

• Unsafe Speculation. The memory controller supplies data to the LLC assuming

verification will succeed. No mechanism prevents results of unverified computation

from leaving the chip [63,79].

• PoisonIvy. Data is supplied unverified and speculative computation is enabled.

Poison prevents results of unverified computation from leaving the chip. It also

guards against address-based side-channel attacks.
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Figure 2.5: PoisonIvy Performance Results

In Figure 2.5, we show the average overhead for all benchmarks in each suite (parsecAvg,

specAvg, and splashAvg). These averages are quite low as they include the many bench-

marks in each suite that exhibit few LLC misses. Such benchmarks have inherently low

overhead as schemes for memory integrity only add latency to off-chip accesses. To better

show the overall trends, we also include the average of 11 memory-intensive benchmarks—

having more than 10 misses per thousand of instructions (MPKI)—from the three suites

(memAvg).

Comparison to No Speculation. PoisonIvy (and the other schemes) significantly

outperform No Speculation—generally exhibiting about half as much overhead. Without

speculation, verification latencies are exposed on the critical path when returning load data,

which prevents dependent instructions from executing and filling the out-of-order window.

Comparison to Authen-then-write. Although authen-then-write performs much

better than No Speculation, PoisonIvy outperforms or matches it. Benefits are most

notable for canneal and libquantum. PoisonIvy’s performance advantage comes from the

fact that authen-then-write is constrained by the store buffer capacity during speculation.

After the memory controller responds to an LLC miss with unverified data, the core can

execute and commit instructions. However, the next store cannot complete and modify the

L1 cache until verification completes. Waiting stores quickly fill the store buffer and stall

instruction dispatch.
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By the time metadata returns and integrity is verified, the datapath has been waiting

for hundreds of cycles and the out-of-order window has filled. Because of the limited

capacity of the store buffer, the datapath has few opportunities to continue computation

when verification latencies are long. Latencies are at least 80 processor cycles when hashing

data to check integrity, assuming hash and counter are cached, and are much higher when

loading metadata from main memory.

In contrast, PoisonIvy permits far more computation during integrity verification by

allowing stores to commit data to the L1. Dirty blocks are poisoned and can escape to the L2

and LLC but cannot leave the secure chip. The pipeline only stalls when the LLC must stall

eviction due to poisoned dirty lines. PoisonIvy not only outperforms authen-then-write,

it also improves security by guarding against address-based side-channel attacks, which were

presented in the same study that presented authen-then-write [72].

Comparison to Unsafe Speculation. Unsafe Speculation, which does nothing to

restrict computation on unverified data, performs best but is least secure. Figure 2.5 shows

that PoisonIvy generally matches this best-case performance. In effect, our system has

the performance of unsafe speculation while guaranteeing security. A few benchmarks

experience trivially higher overheads (< 1%) when compared with unsafe speculation.
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Figure 2.6: Performance of a pointer chas-
ing microbenchmark

Surprisingly, PoisonIvy performs as

well as a system with unsafe speculation

for mcf, which is known for pointer chas-

ing. This result arises from the fact that

many metadata requests hit the cache,

resulting in short verification latencies—

shorter than the time required for a load

to return data to the core, flow through dependent instructions to another dependent load

and for that dependent load’s miss to reach the memory controller.

For further insight, we implement a pointer chasing microbenchmark—which does no

computation with the output of a load beyond using it as the input to the next load—and
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Figure 2.7: Verification latency analysis

evaluate all three systems without metadata caching. Figure 2.6 shows the result of this

experiment with and without a metadata cache. With a metadata cache, the results are

similar to what was observed for mcf. However, without a metadata cache, PoisonIvy

performs 24% worse than unsafe speculation and 10% worse than authen-then-write.

authen-then-write performs well because the microbenchmark is dominated by loads and

has no stores, thereby avoiding pressure on its bottleneck, the store buffer. In contrast,

PoisonIvy performs well for normal workloads that mix loads and stores. Thus, PoisonIvy

performs well but pays the price for security when given challenging memory accesses and

no metadata cache.

2.3.2 Examining Sensitivity to Verification Latency

To further understand the performance characteristics of these schemes, Figure 2.7 shows

the cumulative distribution functions (CDFs) for verification latency when filling a cache

line from main memory. The minimum value is the hash latency—80 processor cycles in

our study. Many requests are verified in this short latency, indicating that the required

metadata is in the memory controller’s dedicated cache. For example, in mcf, 64% of

requests require only this minimum latency due to cache hits, leading to the behavior

described above.

These short latencies are quite easy to speculate around and rarely impact dependent
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memory requests. When a memory request hits in the metadata cache, its verification

latency is hidden by the time it takes to supply data to the core, execute dependent in-

structions, and issue another memory request through the cache hierarchy to the memory

controller. By the time a dependent request reaches the memory controller, verification is

almost finished and the dependent request stalls for a very short time, if at all.
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Figure 2.8: Hash latency sensitivity

Although the minimum latency is

modest, the CDFs reveal large means and

long tails. Average latency is approx-

imately 273 cycles, much too long for

a processor to cover in its store buffer

(e.g., with authen-then-write). Fur-

thermore, the distributions have long

tails with verifications that require as

many as 3000 cycles, arising from multi-

ple DRAM requests to retrieve metadata

that are delayed behind higher priority

data requests. These long tails motivate

PoisonIvy’s epoch-based speculation.

2.3.3 Analyzing Sensitivity to Hash Latency

Figure 2.8 evaluates sensitivity to hashing latency. Without speculation, the hashing la-

tency is on the critical path when returning data to the core, even when metadata is in the

memory controller’s cache; a non-speculative design is quite sensitive to hash latency. In

contrast, PoisonIvy removes the hashing latency from the critical path to service a mem-

ory request. As hashing latency decreases, so do benefits from speculation. But even at

the lowest latency that we examined, 10 processor cycles, speculation reduces performance

overheads from 28% down to 20%, on average, for memory-intensive benchmarks.
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2.3.4 Assessing Sensitivity to Metadata Cache Size

Metadata caches matter for three reasons. First, requests for counters are still on the

critical path even with speculation. If counters are not cached on a metadata cache, the

encryption process doubles the critical path, since counters have to also be fetched from

memory. Second, with speculation, verification latency determines the time that structures

are poisoned. Metadata caching reduces verification latency as requests for tree nodes and

hashes might avoid main memory. Finally, metadata caching might be an alternative to

speculation if area overheads do not matter.

Exploring the effects of metadata cache size allows us to consider an important

question—how does metadata caching alone compare to PoisonIvy when poison storage

is included? As poison bits are added to many large structures, they require a noticeable

amount of storage—about 9.5KB in the system described by Table 2.1.

Figure 2.9 shows the metadata cache size required before NoSpeculation and

authen-then-write match PoisonIvy’s performance with a 32KB metadata cache. The

horizontal line shows PoisonIvy’s total storage requirements—41.5KB of which 32KB is

metadata cache and 9.5KB is poison information.

A system with no speculation always requires much more storage to match PoisonIvy’s

performance. For canneal, a system without speculation requires 2048KB of metadata

caching to match PoisonIvy’s performance. In the best case, for lbm, twice as much

storage is required. For five benchmarks, more than 4MB of storage is required to perform
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Figure 2.9: PoisonIvy storage overhead evaluation
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as well as PoisonIvy’s use of 41.5KB.

authen-then-write’s performance comes much closer but still requires metadata caches

that are much larger than PoisonIvy total storage overheads. For authen-then-write,

three-quarters of the benchmarks require at least twice the storage to match PoisonIvy’s

performance. The remaining benchmarks—fft, fmm, lbm and mcf —can match PoisonIvy’s

performance with a 32KB metadata cache. It is important to note that while

authen-then-write performs well for a few benchmarks, it does not protect against

address-based side-channel attacks. PoisonIvy preserves all security guarantees of the

non-speculative solution.
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Figure 2.10: Metadata cache evaluation

Figure 2.10 shows sensitivity to meta-

data cache design, presenting performance

overheads under No Speculation and Poi-

sonIvy while varying the metadata cache

size and its contents; caches may hold only

counters or all metadata. Although prior

work caches only counters [63], we find

caching all metadata types is worthwhile.

For an average of memory-intensive bench-

marks, holding all types of metadata in a

32KB cache reduces PoisonIvy’s overheads

from 64% down to 20%.

As would be expected, performance

overheads decrease with larger cache sizes. Overheads significantly and rapidly drop off

when the cache accommodates the metadata working set. As the cache size increases and

the latency of verifying data integrity decreases, speculation becomes less important. How-

ever, speculation with PoisonIvy provides significant benefits even with a 4MB metadata

cache.
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2.4 Related Work

In recent years there has been multiple pieces of work both in academia and industry that

serve both as orthogonal solutions to reducing secure memory overheads and inspirations

of our PoisonIvy design.

System Software. When multiple users share resources, one could exploit vulnera-

bilities in the hypervisor to uncover secret data [56]. HyperWall controls the hypervisor’s

memory accesses [80]. NoHype removes the hypervisor from the software stack and relies on

existing processor features to perform virtualization tasks [38]. HyperCoffer [92] introduces

a virtual machine shadow that implements encryption for privacy and hash trees for in-

tegrity. In contrast to these system solutions, SGX and ISO-x extend the instruction set to

isolate an application from others [1,19]. These mechanisms are orthogonal to PoisonIvy,

which applies whenever encryption and trees are used for privacy and integrity.

Poison Bits. Poison bits have been used to accelerate pipelines during cache misses

[25, 26, 76]. Poison allows the pipeline to continue while waiting for long-latency memory

operations. Unlike prior schemes in which poison indicates missing data, PoisonIvy uses

poison to mark data that cannot leave the chip. Accordingly, PoisonIvy does not need

the re-execution mechanisms in prior work. Instead, it tracks poisoned data through the

memory hierarchy.

Taint Tracking. Information flow security—also known as taint—tracks untrusted

data whereas poison tracks microarchitectural effects of latency tolerance schemes (CFP,

etc). Information flow security has been studied extensively at all levels of the abstraction

stack: from applications [13,18,40,87,88], to OS/privileged software [51], and even to logic

gates [28, 45, 52, 83–85]. Most of these systems track information flow to prevent code

execution (e.g., branches) that could leak secret information. Gate Level Information Flow

Tracking (GLIFT) uses taint tags for each bit at the gate level to track the information

flow through the system [28].

The main difference between taint and poison used in PoisonIvy is that the latter hides

verification latency for memory integrity (e.g., SGX). This difference matters. PoisonIvy
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(i) halts the system when verification fails and cannot use software to handle security

exceptions; (ii) guards against physical attacks (e.g., memory tampering) instead of unsafe

application data (e.g., SQL injection); (iii) distrusts memory and cannot write poison/taint

tags to DRAM since unprotected tags break security and protected tags negate performance

from speculation; (iv) uses poison only to restrict unverified data to chip and cannot exploit

programmable propagation/checks.

Secure Memory Architectures. We described in Section 1.6 representative archi-

tectures that combine the building blocks for secure memory—confidentiality, integrity,

and performance. IBM SecureBlue, Intel SGX, ARM TrustZone and AMD SME and SEV

are industrial design whereas XOM, AEGIS and AISE are academic designs. PoisonIvy

provides safe speculation that could be used with any of these schemes. Being built atop

state-of-the-art design decisions makes PoisonIvy immediately relevant.

2.5 Conclusions and Future Work

Today’s computing platforms are moving to usage models in which the user and the party

in physical control of a system are not the same—e.g., mobile devices, game consoles, and

cloud computing. In this model, the party in physical control of the system may be viewed

as an adversary with the ability to carry out physical attacks by spying and/or tampering

the off-chip connections of the system. Over the last decade computer architects have been

looking for ways to provide protection from the hardware layer against physical attacks.

A trusted processor employs encryption and integrity trees to guard against physical

attacks. We propose a new security architecture that ensures security yet significantly

lowers performance overheads. We architect a speculation mechanism that uses poison

to track speculative data and addresses throughout the processor and memory hierarchy.

An epoch-based management policy allows the core to compute on speculative data while

clearing speculation in batches. The last-level cache prevents data from leaving the proces-

sor before it is verified. Poison tracks speculative dependencies throughout the processor
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(i.e., core, register, IW, CF and DTLB) and ensures that no memory operations are sent

across the memory’s command and address buses before speculative data has been verified.

PoisonIvy reduces performance overheads of security to 1.8%, on average.

The complexity of PoisonIvy has prevented industry partners from implementing

PoisonIvy on real hardware. The complexity of PoisonIvy is mainly due to the fact

that poison is tracked everywhere in the processor (i.e. registers, all caches). If poison bits

were not tracked at such a fine granularity, and instead were only considered at the memory

controller, the performance gains of the speculation mechanism would be reduced. We leave

as future work the evaluation of the trade-off between complexity and performance.
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Chapter 3

Understanding Energy Overhead with MAPS

While speculation is important to reduce the delay overheads, it does nothing to improve

the energy overheads introduced by secure memory. When a system with secure memory

encounters a last-level-cache (LLC) miss, the memory controller has to issue additional

memory requests, on top of the data memory request, to fetch the encryption and integrity

metadata. The number of additional memory requests can vary from 0, if both data hashes

and encryption counters are cached on-chip, to 10, if no metadata block is found cached.

The metadata cache plays an important role in reducing energy overhead.

Prior studies cache metadata in a variety of forms introducing different trade-offs. Sev-

eral pieces of work propose to cache metadata in the LLC reducing overheads but also

introducing competition between metadata and data for space in the cache [20, 68, 78, 79].

Other pieces of work cache only the counters used for decryption, which can shorten the

critical path when speculation hides the latency of integrity verification [42, 63], but ne-

glecting the data hashes required for every memory request. Without caching the data

hashes or the tree nodes, means that dynamic energy costs are at least twice those of an

insecure memory system.

Despite the importance of metadata caching, there is no prior work on understanding

metadata access patterns. Architects have either adopted prior cache designs [20,64,65,67,

73,74,81] or choose to cache only one type of metadata [10,29,63,92–94]. We present the

first detailed analysis of metadata access patterns.

In this chapter, we introduce MAPS [43], an in-depth analysis that results in observa-

tions to help guide more efficient metadata cache designs. First, we show that choosing

the size of the metadata cache is a non-trivial exercise given that the three metadata types

behave differently. We analyze reuse distance and find that metadata blocks have a bi-

modal reuse distance access pattern. Second, even though metadata types have drastically
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different behaviors and complicate the cache sizing decision, we find that caching all meta-

data types results in a more efficient cache design nonetheless, reducing overheads in half.

Third, we find that requests that update a piece of metadata (i.e. writes) tend to be fol-

lowed by long reuse distances. Finally we show that the traditional optimal eviction policy,

Belady’s MIN algorithm [6] is not optimal for metadata caches. Unlike traditional designs,

metadata caches have non-uniform miss costs opening up an opportunity for eviction policy

exploration.

3.1 Secure Memory Metadata Structures

A secure memory system protects the user from physical attacks. A physical attack can

involve snooping off-chip connections to steal secrets. It can also involve tampering with

the values returned from or stored in memory. To prevent and detect physical attacks,

secure memory uses encryption for confidentiality and hashing for integrity verification.

Confidentiality. To prevent an attacker from stealing secrets through the off-chip

connections, secure memory provides confidentiality by encrypting all off-chip data. State-

of-the-art secure memory uses counter-mode encryption. Counter-mode encryption allows

the slow part of the encryption process to happen in the background while the encrypted

data is fetched from memory.

Integrity. Secure memory detects data tampering by verifying data integrity with

Bonsai Merkle trees (BMTs) [63]. A BMT consists of a hash tree over the counters used

in counter-mode encryption. The root of the tree is stored on-chip to establish an origin

of trust. The tree is composed of keyed Hash Message Authentication Codes (HMACs)

for each child block; an 8B-HMAC is sufficient to track block integrity. When a counter is

fetched from off-chip memory, the memory controller traverses the BMT, comparing hashes

along the way, to verify that the counter’s value is the same as when it was last written out

to memory. The BMT is stored in main memory with the exception of the root, which is

stored on-chip.
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Overheads. Every miss in the last-level cache (LLC) requires several memory requests

to transfer metadata in addition to data. The number of additional requests depends on

the amount of memory protected and the length of the counters. For example, Intel SGX

protects up to 128MB of memory with a single 8B counter per 64B-block. It stores three

levels of the BMT in main memory in addition to the counters and the data HMACs. For

each LLC miss, the SGX memory encryption engine (MEE) fetches five additional blocks

from memory—one block for the counter, one block for the data hash, and three blocks

tree traversal.

Metadata blocks can be cached to alleviate the overheads from additional memory

requests. If a counter block is found in the metadata cache, the memory controller does

not need to traverse the BMT because the counter was verified when it was brought into

the cache. For Intel SGX, the metadata cache reduces the number of additional memory

accesses from five to one, if the counter is cached, or to zero if both the hash and counter

are cached. Although metadata caches promise efficiency, metadata access patterns are

diverse and present new challenges for cache design.

3.1.1 Caching All Metadata Types

Including all metadata types within the cache is important for reducing overheads from

secure memory. First, hashes are required to verify data integrity for every memory ac-

cess. If the cache excludes hashes, every data access triggers at least one metadata access

from memory. Second, counters are required to decrypt data for every memory access. If

the cache excludes counters, every data access triggers another memory request for the

corresponding counter and even more memory accesses for integrity verification.

Third, tree nodes are required to verify counter integrity. If the cache excludes the

tree, a request for a counter requires many metadata accesses to memory to traverse the

whole integrity tree. Caching the integrity tree provides a safety net for performance

when counters cannot be contained in the cache due to long reuse distances or capacity

constraints. Tree nodes have shorter reuse distances because of the tree’s shape (i.e. fewer
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Figure 3.1: Metadata cache efficiency when varying metadata types held.

blocks higher in the tree).

The metadata cache reduces delay overheads for both decryption and verification. It

also reduces energy costs, primarily by avoiding expensive memory transfers. DRAM and

SRAM accesses require 150pJ [48] and 0.3 pJ [75] per bit, respectively. Energy overhead

falls when the metadata cache services more metadata requests.

Figure 3.1 suggests that caching all metadata types has significant benefits. Measure-

ments for canneal (left) show that the cache size needed for a given miss rate is smaller

when including all metadata types. Achieving 73 metadata misses per thousand instruc-

tions (MPKI) requires a 2MB cache that holds only counters or a much smaller 128KB

cache that holds any metadata type.

However, permitting the cache to hold hashes in addition to counters leads to subtle

interactions between metadata types. Measurements for libquantum (right) indicate neg-

ligible returns when caching counters with less than 128KB of capacity and diminishing

marginal returns when caching them with more than 1MB of capacity. Including hashes

with counters harms performance because hashes compete with counters for capacity and

counter misses require expensive traversals of the integrity tree. For a 1MB metadata cache,

the competition between hashes and counters increases MPKI from six to ten.

Permitting the cache to hold tree nodes, along with hashes and counters, reduces MPKI

significantly when the cache size is smaller than 512KB. Caching tree nodes has higher per-

block benefits as they provide larger data coverage per 64B-block. Moreover, there are

fewer tree node blocks, making it easier to cache them. Experiments with other metadata
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cache configurations (hashes only, tree nodes only, hashes and tree nodes, and counters and

tree nodes) produce trends similar to those in Figure 3.1.

3.1.2 Addressing Challenges of Caching All Metadata Types

Common caching strategies do not work well for metadata access patterns, which are diverse

for three reasons. First, metadata consists of three different types: counters, hashes and

tree nodes. Each type has different behaviors due to the varying amount of data each

protects. When metadata is organized into 64B blocks, a hash block protects only 8 data

blocks whereas a counter block protects 64 data blocks. Each leaf in the integrity tree

protects eight counter blocks, which amount to 64 ∗ 8 = 512 data blocks. Nodes higher in

the tree protect more data. The more data a block protects, the more often the block will

be reused and the fewer blocks of that type are required, making it easier to cache them.

Second, metadata types exhibit different access patterns. Requests for hashes and

counters are driven by workload behavior such as load misses in the LLC or dirty-line

evictions from the LLC. In contrast, requests for tree nodes are driven by counter misses

in the metadata cache. This distinction causes significant differences in reuse distances.

Finally, metadata types have different miss costs. A miss for a counter block might

require traversing the integrity tree, increasing the number of memory accesses by the

number of tree levels. In contrast, missing on a hash block requires accessing memory only

once for that same block. Furthermore, the miss costs can vary not only between metadata

types but also within types.

Traditional cache designs assume misses are independent and have a uniform miss cost.

This assumption does not apply to metadata. The miss cost for a block depends on which

other blocks and metadata types are cached. Suppose that counter block A has all of its

parent tree nodes in the cache while counter block B has only its highest tree level in the

cache. If an eviction must decide between block A and B, it might be better to evict A

to avoid an expensive miss for B, even if B is reused further into the future. The precise

performance outcome of this decision depends on the cache contents when these blocks are
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reused.

3.2 Metadata Access Patterns

Mechanisms for confidentiality and integrity pose new challenges in managing multiple

types of metadata. When requesting data, the memory controller must also request (i) the

corresponding counter to decrypt the data, (ii) tree nodes to verify counter integrity, and

(iii) simple hashes to verify data integrity. Links between types of metadata complicate

locality analysis and caching policy. Should the cache prioritize counters because a cached

counter is secure and avoids expensive tree traversal? Or should the cache prioritize trees

because a cached tree node is often reused, especially when it is close to the root?

We consider a system with a per-page counter and a per-block counter for encryp-

tion [63, 93]. Although Intel SGX uses a single per-block counter, our per-page and per-

block counters approach reduces the memory space overhead and makes caching counters

easier. Our analysis applies to other system organizations and we note where differences

apply.

3.2.1 Selecting the Metadata Cache Size

Although industry does not divulge specific sizes or design decisions for their metadata

caches, intuition says that much more of the on-chip SRAM budget should be dedicated to

the LLC than to the metadata cache. To verify this intuition, we simulate four LLC sizes

(512KB, 1MB, 2MB, 4MB) and six metadata cache sizes (16KB, 64KB, 256KB, 512KB,

1MB, 2MB). We measure energy and delay relative to a system with a 2MB LLC and

without secure memory.

Figure 3.2 plots efficiency for varied system configurations. Each line color shows results

with the same LLC size. Each mark type shows results with the same metadata cache size

(i.e., squares indicate 256KB metadata caches). The x-axis reports the total capacity

budget for both LLC and metadata caches. Results assume that the microarchitecture can
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Figure 3.2: Comparison of LLC and metadata cache sizes.

speculate and hide verification latency [42]. Experiments without speculation produce the

same general trend.

The results for the average (left) in Figure 3.2 align with our intuition. However,

memory-intensive benchmarks, such as canneal (right), flip the trend and give us new

insight. Given a bit more than a 1MB budget, the average benchmark would perform

better with a 1MB LLC and a 16KB metadata cache (i.e., gray x is lower than the black

diamond). In contrast, canneal would perform better with a 512KB LLC and a 512KB

metadata cache (i.e., black diamond is lower than the gray x). Canneal has little spatial

locality and requires many more metadata blocks than the average workload. With a

smaller LLC, canneal’s metadata has smaller reuse distances and thus is able to cache them

more efficiently.

The results for the average benchmark suggest that architects should design a cache

hierarchy with a smaller metadata cache and a larger LLC for the common case. Results for

memory intensive benchmarks indicate that mechanisms that adapt the system for different
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Table 3.1: Metadata organization

Metadata Type
Organization Data Protected

PoisonIvy [42] Intel SGX [2] PoisonIvy [42] Intel SGX [2]

Counters
1, 8-byte per-page

8, 8-byte per-block 4KB 512B
64, 7-bit per-block

Integrity Tree 8, 8-byte hashes 4 ∗ 8level KB 512 ∗ 8level

Hashes 8, 8-byte hashes 512B

workload needs would benefit cache efficiency.

3.2.2 Understanding the Amount of Data Protected

Metadata access patterns can be explained, in part, by the difference in the amount of

data each block protects. All metadata types are stored in memory. Metadata is grouped

into 64B blocks, which is the granularity of transfers to the memory controller. A piece

of metadata that protects more data will be reused more often. Table 3.1 quantifies the

amount of data protected by each metadata type for two secure memory organizations,

PoisonIvy (PI) and Intel Software Guard eXtensions (SGX).

A 64B block of counters includes sixty four 7b per-block counters and one 8B per-page

counter. The block’s sixty four per-block counters protect 64 × 64B = 4KB of data. Every

LLC miss that addresses the same page will require the same counter block to decrypt the

data fetched from memory. The temporal locality of the counter blocks depends strictly on

the temporal locality of the 4KB page in an application. Note that Intel SGX uses a larger

8B per-block counter, changing the behavior of counter blocks to match that of the hash

blocks.

A 64B block of hashes from the integrity tree protects counter integrity. The 64B

block includes eight 8B hashes, each of which protects a 64B block of counters or tree

nodes. Because 64B of counters covers 4KB of data (see above), the eight hashes protect
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8× 4KB = 32KB of data at the leaves of the tree. The amount of protected data increases

as the node approaches the root. Each tree node covers 8× more data than its child. Since

blocks cover 32KB of data at the leaves (or 4KB in the case of Intel SGX), its parent

covers 256KB (32KB), its grandparent covers 2MB (256KB), and so on. The on-chip root

covers all memory (or all of SGX’s secure memory, which is up to 96MB when using SGX1

instructions [2]).

Finally, a 64B block of hashes protect data integrity. The 64B block includes eight

8B hashes. Because each hash protects a 64B block of data, the eight hashes protect

8 × 64B = 0.5KB of data.

3.2.3 Analyzing Reuse Distance

We reason about metadata and their access patterns by looking at reuse distance. An

effective cache holds blocks that are reused frequently and evicts blocks that are not reused

or reused infrequently. Figure 3.3 presents the cumulative distribution function (CDF) of

metadata reuse distance for 2MB-LLC with no metadata cache. Each CDF shows that y%

of metadata exhibit reuse distance ≤x bytes. CDFs that rise sharply on the left illustrate

short reuse distances, which are easier to cache. Those that extend gradually to the right

illustrate poor locality. The reuse analysis provides several insights that can guide metadata

cache design.

First, the reuse distance of a metadata block is affected by the last-level cache (LLC)

organization. When a data block is cached, its counter and hash blocks are unnecessary.

Second, the reuse distance of metadata blocks are affected by the spatial locality of the

application. Spatial locality for data translates into temporal locality for metadata. This

relationship exists because one metadata block covers multiple data blocks. If a data block is

within 512B of another data block, then the reuse distance of all metadata blocks (counter,

hash and tree nodes) protecting those two blocks will be equal to that of the two blocks.

For every 4KB page of data, nine 64B-blocks of metadata are needed in ideal conditions,

excluding tree nodes. The nine blocks include one block for the counters and eight blocks for
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Figure 3.3: Cumulative distribution function (CDF) for reuse distance.

the data hashes. To cover a 2MB LLC, a minimum of 9∗64B∗(2048KB/4KB) = 288KB are

needed. Figure 3.3 highlights this value with a vertical line through it. If the application

has less than ideal spatial locality, even more metadata is needed. Most benchmarks in

Figure 3.3 often show a slight increase for counters and hashes at 288KB and sometimes

show a sharp increase (e.g., fft).

Counters. Counter blocks depend on the page-level spatial locality of an application.

In some cases, such as canneal, the reuse distance is large and almost 50% of the blocks have

reuse distance larger than 1MB. In others, such as libquantum, smaller memory footprints

produce correspondingly smaller reuse distances for counter blocks. More than 90% of

libquantum’s counter blocks have reuse distance of less than 4KB.

Tree Nodes. Tree nodes have the smallest reuse distance because the tree blocks cover

the most data (see Table 3.1). For most benchmarks, almost 90% of the tree blocks have

reuse distances smaller than 4KB. A small (e.g., 4KB) metadata cache could be sufficient

to cache only the tree nodes. Even for benchmarks where the counters have long reuse

distance, such as canneal, 80% of the tree blocks exhibit a reuse distance smaller than 4KB.

Note that the reuse distance analysis focuses on workload-driven accesses and assumes

that no metadata cache is present. Because of the interdependencies between counters and
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tree nodes, reuse distances for tree nodes might increase when a metadata cache is present.

Hashes. Hashes have the longest reuse distance, making them the most difficult meta-

data to cache effectively. Hashes typically experience a small burst of reuse as the eight

blocks they cover are often used soon due to spatial locality in the data. However, once

that data is held in the LLC, the hash is not needed until the data is evicted, at which

point the hash must be updated immediately if the evicted block is dirty.

A good example of the small bursts with short reuse distances is shown in Figure 3.3

. Libquantum’s reuse characteristics for hash blocks come from the fact that it repeatedly

streams through a 4MB array. As the accesses are sequential, the first access to a data

block corresponding to a particular hash is quickly followed by accesses to the other data

blocks in the same 64B-hash block. This means that 7 of 8 (87.5%) blocks have short reuse

distances. Once all hashes have been used, the hash block is not touched again until the

next iteration through the array, producing a 4MB reuse distance for the remaining 12.5%

of hash accesses.

Caching hashes is just as important as caching the other metadata types for two reasons.

First hashes are needed to verify the integrity of the data itself. Without a mechanism for

speculation—the case in all industry implementations—the additional memory access for

the hash makes the critical path to read a piece of data from memory at least a factor

of two slower than a system without secure memory. Second, the energy required for an

additional access to memory is several times larger than the energy required for an on-chip

cache [48]. Because the hash block is needed for every memory access, energy costs are

doubled when the hash is not cached on chip.

3.2.4 Discovering Bimodal Reuse Distances

An interesting observation regarding metadata access patterns is that reuse distance is

bimodal for most benchmarks. Not many benchmarks report moderate reuse distances.

Figure 3.4 shows reuse distance classified into four classes: (i) ≤128 blocks (8KB), (ii) 128-

256 blocks (8KB-16KB), (iii) 256-512 blocks (16KB-32KB), and (iv) >512 blocks (32KB).
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Figure 3.4: Classification of metadata accesses according to reuse distance.

The figure shows that all benchmarks have at least 50% of their accesses in the smallest

class, except for canneal and cactusADM, while most of the remaining accesses reside in

the largest class.

We often see a metadata block reused frequently over a short period of time and then

not for a long time due to the application’s spatial locality. When an application misses at

the LLC, it is expected to miss for several blocks in the LLC for the same page and thus

share the same counter block. When a counter block is brought into the metadata cache,

it is often reused frequently for a short period of time. The same is true for hash blocks

except that it happens less often since data blocks share hash blocks as long as they are

within 512B.

The fact that we have either short or long reuse distances is important. A cache that

holds blocks indiscriminately might evict a block that will soon be used and replace it with

a block that will not be reused for a long time. Architects could build on the body of work

in reuse prediction for traditional caches [5, 33, 39, 55, 82], adding information about the

metadata type.

This bimodal behavior also impacts the cache size. The cache efficiency can only be

affected if the cache size is large enough to capture the reuse distance of the blocks. In

this case, the metadata cache size should either be smaller (less than 8KB) to capture the

shorter reuse distances. Or it should be larger (greater than 32KB) to capture some of

the blocks with larger reuse distances. Any cache size in the middle, between these sizes,

would not capture the blocks with large reuse distances, regardless of any cache policy, and
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Figure 3.5: Reuse distance cumulative distribution function (CDF) by request type.

would be big enough to capture the blocks with shorter reuse distances, also regardless of

any cache policy.

3.2.5 Examining Request Types

The memory request type is a strong indicator of the block’s reuse distance. Figure 3.5

shows reuse distance CDF broken down by request and metadata type for the two memory-

intensive benchmarks with the most write requests: fft with 20% writes and leslie3d with

5% writes. These benchmarks are representative of the rest. Reuse distances decrease when

an access goes from one type of request to the same type. This pattern follows from the

fact that metadata blocks experience the application’s spatial locality as temporal locality.

If an application reads block A, it is likely that the next block will be spatially nearby

and thus share metadata blocks. With counters, this pattern is more pronounced because

counters protect a whole 4KB page.

The metadata cache can use partial writes for hash and tree nodes to take advantage of

the shorter reuse distance of write-after-write requests [20]. Partial writes are implemented

by adding a valid bit per-hash and per-frame, a total of eight bits for each frame in the

cache. If a hash needs to be updated and the block is not in the cache, an empty block can
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be inserted in the cache as a placeholder for the whole hash block and store only the one

updated hash, while the other hashes in the block are marked invalid.

Partial writes are helpful because two write requests that share the metadata block are

likely to be evicted around the same time. Memory writes arise from evicting dirty lines

from the LLC. Spatially local blocks have similar behaviors and tend to be replaced at

approximately the same time under many eviction policies. Since write-to-write requests

have shorter reuse distances, it is likely that the rest of the hash block will be updated

soon. When the block needs to be evicted, any hash that has not been filled must be read

from memory. The partial write mechanism saves one access to memory as long as the hash

block is complete when evicted from the metadata cache. The benefits are modest, but the

implementation is simple.

Note that the reuse CDFs assume that no metadata cache is present so the tree node

reuse distances can actually be longer than shown. In the presence of a metadata cache, a

write to a tree node would occur only when a counter block is evicted from the metadata

cache. In the absence of a metadata cache, the write to a tree node would occur immediately

following the write to a counter. Therefore, we can safely assume that metadata caches

extend the tree nodes’ reuse distances.

3.3 Metadata Interdependence

Metadata accesses are highly correlated. Tree block accesses depend on the cacheability of

the counters. Counter blocks, in turn, can become more expensive to evict from the cache if

their associated ancestors in the tree are not present in the cache. The relationship between

counters and tree nodes can complicate eviction choices. Instead of all blocks having the

same miss cost, as in a traditional cache, blocks can have different miss costs depending on

its metadata type and which of its ancestors are already cached. Non-uniform miss costs

complicate eviction policies.
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3.3.1 Exploring Eviction Policies

For decades, researchers have sought better eviction policies for caches. A common policy

is pseudo-LRU, which performs well generally but is far from the optimal Belady’s MIN

policy [6]. Pseudo-LRU also performs poorly for metadata caches because of metadata’s

bimodal reuse distances. To improve upon pseudo-LRU, we explore a recent policy that

classifies blocks based on the metadata type.

The Economic Value Added (EVA) eviction policy uses the concept of value added

to classify blocks according to their “age” [5]. The “age” of a block is dictated by the

number of accesses to the cache since it was inserted. The value added is determined by

the following formula:

EVA(age) = P (age) − C ∗ L(age)

where P is the hit probability as a function of the block’s age, C is the average cache hit

rate, and L is the expected remaining lifetime as a function of the block’s age. The hit

probability, P , is computed based on the number of hits at the block’s current age. The

remaining lifetime, L, is computed based on the expected number of hits and evictions at

ages greater than the block’s current age. The block that has the smallest “value added”

is evicted from the cache.

We might expect pseudo-LRU to perform worse than EVA because it is unable to

recognize those blocks that have longer reuse distances. Under pseudo-LRU, a block that

is about to be reused might be evicted while keeping a block that was just added to the

cache (most recently used) that will not be reused for a long time. Our experiments show

that across benchmarks, there is no one eviction policy that worked for all. Figure 3.6

shows misses per thousand instructions (MPKI) in a 64KB metadata cache for different

eviction policies: pseudo-LRU, EVA, MIN and iterative MIN, which we will discuss in the

next section. We evaluate a 64KB metadata cache because it aligns with reuse distances

in Section 3.2.3. The results were surprising, so we investigated further.

EVA does not perform as expected because metadata types have bimodal reuse dis-

tances. EVA uses one histogram for each type to predict reuse distance and hit probability.

52



canneal libquntm fmm fft mcf lbm milc cactus leslie3d barnes ocean memAvg
0

10
20
30
40
50
60
70
80
90

100
110
120

M
P
K
I

pseudo-LRU
EVA
MIN
iterMIN

129 

Figure 3.6: Varied eviction policies with 64KB metadata cache.

The bimodal characteristic of metadata reuse distances makes the one histogram approach

ineffective for metadata caches.

3.3.2 Finding the Optimal Eviction Policy

Belady’s MIN algorithm [6] is proven to be the optimal eviction policy for traditional

caches. This algorithm relies on future knowledge of the cache accesses. The best eviction

candidate is the one that is reused furthest into the future. For MIN to be optimal, the

access trace must be independent of the cache design and the miss cost must be uniform.

Metadata accesses do not conform to Belady’s assumptions. First, the access trace

of metadata blocks depends on the cache design and its eviction policy. A tree node is

only needed if the children it protects are not in the cache when needed. The access trace

changes depending on the cache size and eviction decisions. For example, when a counter

is evicted, its parent will be needed the next time that counter is requested. Second, the

cost of missing different blocks in the metadata cache depends on how many parent blocks

are in the cache. A miss for a counter that has its immediate parent in the cache is much

less expensive than one for a counter that does not have any of its ancestors in the cache.

Ignoring these differences and naively applying MIN to metadata gives results that are

not only sub-optimal but are generally worse than those from the other algorithms. We

simulate the benchmark once using true-LRU, gather the cache access trace, and feed that

trace back into the simulator to provide future knowledge for MIN. However, MIN not only

fails to account for differences in miss costs, it also starts using incorrect future knowledge

once it makes a replacement decision that deviates from true-LRU. In effect, changing the
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contents of the cache changes future accesses in ways that deviate from the trace.

Non-uniform Miss Cost. Prior work has examined non-uniform miss costs in the

context of NUMA systems. Jeong et. al. propose CSOPT, an algorithm that considers

all possible eviction candidates with breadth-first search [34]. To prune the search space,

CSOPT tracks the cost of each eviction candidate, eliminating the ones that have higher

costs to reach the same state. This algorithm assumes a fixed trace and provides optimal

replacements for a system with non-uniform memory access latencies. CSOPT accommo-

dates only two costs (e.g., local or remote latency).

Metadata caches can have large number of miss costs, from one additional memory

access to accesses equal to the number of levels in the tree. This difference in miss costs

increases analytical complexity. We find that running CSOPT once on a program’s ac-

cess trace is expensive. Costs range from 32 minutes for applications with small memory

footprints, such as perl, to more than 6 days—the simulator does not finish—for memory-

intensive benchmarks such as canneal. We run the algorithm for four-way associative caches

and costs increase with associativity.

Varying Access Stream. The problem is even more complex when studying memory

integrity. The decision to keep or evict a counter or tree node inherently changes the number

and type of accesses required later in the stream. A miss on some types of metadata will

trigger requests for other types of metadata. One way to address this problem is to borrow

an idea common to compiler analyses: start with a solution that is “too good to be true”

(in our case, a memory access trace with no tree nodes) and iterate to a fixed point. In

particular, simulate the current trace making optimal replacement decisions and adjusting

tree node requests as needed.

Iterating CSOPT to a fixed point for perl requires 32 minutes per iteration. Although

the iterative procedure makes progress as the number of misses reported in each iteration

decreases, it fails to complete after two days. We also iterate Belady’s MIN, which we call

iterMIN, to a fixed point. Even though the iterative variant finishes quickly, its results could

be worse that those from pseudo-LRU. Figure 3.6 highlights the importance of considering
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Figure 3.7: Cache partitioning schemes

the different miss costs to find an eviction policy. For most benchmarks, neither MIN nor

iterMin perform better than pseudo-LRU and indeed do much worse.

Even though the trace used in iterMin is correct and makes decisions that accurately

reflect the most distant reuse, these decisions do not incorporate the differences in cost.

IterMin frequently chooses to keep a near, low-cost miss at the expense of a distant, high-

cost miss. To find the optimal eviction policy, the different miss costs have to be taken

into account. Designing a computationally tractable algorithm that finds optimal eviction

decisions is future work.

3.3.3 Surveying Cache Partitioning

Partitioning the cache may help us manage multiple metadata types. If the cache were

partitioned to give more capacity to metadata types that need it, cache efficiency might

improve. Tree nodes need not to be included in the partitioning scheme because their

reuse distances are either too short to be evicted by most reasonable policies or too long to

be cached practically. Moreover, trees ensure counter integrity and are needed only after

counter cache misses.

Figure 3.7 shows ED2 overhead of four different cache organizations: (i) no partition,

(ii) partitioned with the best split for the application, (iii) partitioned with the average

best split across all applications, and (iv) dynamically partitioned. Partitioning the cache

with the best split for the application only improves performance for a few benchmarks

(see barnes, canneal, libquantum and mcf) and harms performance for others. Applications
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requirements evolve throughout its execution and a static partition serves only to limit the

cache capacity for each type. The most effective partition depends on the application’s spa-

tial and temporal locality. To mitigate the limitations of static partitions, the partitioning

scheme needs to adapt to application behavior at run-time.

The dynamic partitioning scheme is inspired by set dueling [58, 59]. Leader sets assess

cache effectiveness for counters and hashes. Two small, randomly selected collections of sets

serve as competing leaders and the remaining sets as followers. Leaders define bit vectors

that partition counters and hashes differently. Followers use hit statistics from leaders to

guide run-time partitioning. To produce representative leaders, selected sets are distributed

uniformly.

Figure 3.7 compares MPKI with varied partitioning schemes. Results were surprising

as dynamically partitioning the cache does not help. In some cases, having the dynamic

partition hurts the cache efficiency (see fft). Dynamic partitioning does not work well

because sets are diverse and sampling them effectively is hard.

Metadata cache designs cannot rely on basic set sampling because sets in a metadata

cache differ in three characteristics. First, blocks in each set have different metadata types

and, as discussed in section 3.2.3, metadata types have different reuse distances. Second,

the number of blocks for each type can also differ from set to set. This matters in an

eviction or a partition policy because the block to evict depends on the content of the

cache. Finally, the miss cost of blocks are different within and between sets. A miss to a

hash block costs only one additional access, but a miss to a counter that does not have any

parents in the cache cause as many accesses as levels in the tree.

3.4 Designing a Metadata Cache

Prior studies make assumptions about metadata cache design based on intuitions derived

from traditional caches. Some of these assumptions hold under experimental scrutiny. For

example, most of the on-chip budget for caches should be spent on the last-level cache and
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not the metadata cache. Other assumptions are shown to be false. For example, caching

only counters is insufficient to improve performance and traditional caching strategies do

not apply to metadata caches.

We make several observations that highlight differences between data and metadata.

First, metadata accesses have different types and exhibit different degrees of temporal

locality. Second, temporal locality is usually short or long for hashes and counters. Even

though tree nodes show short reuse distances, these can change when caching counters.

Third, metadata read and write accesses exhibit different degrees of temporal locality.

Finally, metadata reuse distances are interdependent across types, resulting in non-uniform

miss cost.

Some differences between metadata and traditional caches provide direct guidance to

architects:

• Cache Contents: Metadata caches should include all metadata types, enabling the

cache to adapt dynamically to changing access patterns within and across bench-

marks.

• Cache Size: The bimodal nature of metadata reuse distances indicate that the cache

should be sized to match it. Choosing a size in the middle of the distribution wastes

cache capacity.

• Eviction Policy : The metadata cache should have an eviction policy that accounts

for multiple miss costs. The interdependent nature of the metadata structures affect

the optimality of eviction decisions.

Other differences between metadata and traditional caches do not provide direct an-

swers but instead seed questions for future research. Traditional replacement policies, even

Belady’s MIN, are ill-suited to metadata caches, metadata type and access type should

figure into those replacement policies, and cache partitioning shows potential but needs

new mechanisms to achieve that potential.
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3.5 Conclusions

Secure memory incurs large energy and latency overheads due to the additional memory

requests needed to verify and en/decrypt data. Metadata blocks can be cached to re-

duce overheads. Metadata access patterns vary according to their type—counters, hashes,

trees—and differ from data access patterns. We perform a rigorous analysis of these ac-

cess patterns, motivating computer architects to seek better solutions for caching metadata.

Based on the analysis, we provide concrete guidelines and define possible avenues of research

to design more holistic metadata caches.
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Chapter 4

Exploring the Design Space for Caching Metadata

Secure memory incurs delay and energy costs due to the additional memory accesses re-

quired to fetch metadata, which is required to decrypt and verify a block’s integrity. On-chip

metadata caches can alleviate overheads, but traditional cache architectures are ineffective

for metadata. In this part of the dissertation we present a design space exploration, in

which the unique characteristics of metadata access patterns are used to improve caching

effectiveness. In particular, we explore policies that extend the separate metadata cache

size using additional capacity from the LLC. When blocks are cached in the LLC, they

introduce heterogeneity among the blocks. We also explore eviction policies at the LLC to

account for the heterogeneity of blocks at the LLC.

4.1 Metadata Caches

Caches within the processor alleviate overheads from additional memory accesses for secure

memory metadata. Metadata cache design requires at least three decisions: what metadata

types to cache, where to cache them and what are the best eviction candidates when holding

multiple types of blocks. With regards to which types to cache, several studies propose

caching only encryption counters [10,29,63,92,93]. Caching counters needed for decryption

can shorten the critical path, especially when the micro-architecture speculatively supplies

unverified data for computation. Speculation, as explained in Chapter 2, exposes only block

decryption latency because it removes integrity verification from the critical path.

We argue in Chapter 3 that caching all metadata types improves cache efficiency. In-

cluding integrity tree nodes and data hashes, even at the expense of counters, improves

performance. Counters tend to have long re-use distances and fully exploiting their tempo-

ral locality requires very large caches. Note that the re-use distance analysis described in

Chapter 3 assumes no metadata cache is present. In practice, the re-use distances will get
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larger once all metadata types are combined into the cache. Blocks that have short re-use

distances might get evicted when held together in one unified metadata cache.

Several studies propose placing metadata in the processor’s LLC, allowing the memory

controller to exploit a large, existing resource [20, 78, 79]. However, this approach causes

memory-intensive benchmarks, which are already pressed for LLC capacity, to suffer from

cache pollution and additional misses.

Alternatively, on-chip memory controllers can include a dedicated metadata cache [10,

63–65, 73, 93]. Separating metadata from data simplifies processor design and couples the

metadata cache to the memory controller, where metadata is used. To the best of our

knowledge, industrial implementations, such as Intel SGX, implement a dedicated metadata

cache because of the simpler design [21].

A dedicated metadata cache also enables partial writes [20], which addresses inefficient

updates to hashes and integrity tree nodes. When a data block is updated in memory, both

the encryption counter and the data hash must be updated. The counter block must be read

from memory in order to increment it. The data hash block must be read from memory,

retrieving a 64B block (the typical granularity of memory transfers [32]) that contains eight

different hashes. Reading data hashes from memory is inefficient because updating a data

block’s hash requires no knowledge of its previous value and eight hashes are retrieved even

though only one is updated.

Partial writes delay the read of the data hash block by storing the updated 8B hash

in the cache and marking the rest of the block as invalid. The read of the full hash block

happens only when the block is evicted from the cache. If all eight hashes in the block are

updated before the block is evicted, then the read request is completely avoided.

Tree nodes are similarly organized and benefit from partial writes in the same way. In a

dedicated metadata cache, benefits from partial writes are modest but the implementation

is simple. Although partial writes could be implemented for the LLC, it would only benefit

the metadata stored there, which is typically a small fraction of LLC contents.

Applications have diverse memory access patterns and hardware systems need to adapt
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to them dynamically. Metadata caching can be efficient when memory intensity is low. We

argue that metadata caching policies have to adapt to the needs of each application. As

part of our design space exploration, we consider a mechanism that allows a small metadata

cache to adapt its capacity by judiciously using additional cache frames from the LLC.

When storing metadata blocks in the LLC, along with data, the LLC has a new chal-

lenge: choosing the right block to evict when not all blocks are equal. As discussed in

Chapter 3, both data and metadata blocks have non-uniform miss cost. The eviction pol-

icy has to not only take into account the reuse patterns of a particular block, but also the

number of additional memory access a block would cost if evicted. In addition to LLC

caching mechanisms, we explore eviction policies that consider the type of the block when

making an eviction decision.

4.2 Exploiting Metadata Access Patterns

Metadata blocks have bimodal re-use distances, either short or long, as discussed in Chap-

ter 3. Long re-use distances arise because metadata is only needed after misses or dirty LLC

evictions. When data is brought on-chip, its metadata is not needed again until the data

is evicted from the LLC and requested once again, which happens after many other data

blocks are accessed. The expected lifetime of a cached block tends to match the cache’s

size [4]. If the block’s re-use distance is longer than the cache size where it resides, it is

unlikely that the block’s next access will hit.

On the other hand, short re-use distances arise because each metadata block protects

multiple data blocks (see Table 3.1). For example, in Intel SGX, a 64B metadata block

holds eight 8B-hashes that together can verify the integrity of eight 64B data blocks (i.e.,

512B). Thus, spatial locality in the workload’s data access patterns produces temporal

locality in the metadata access patterns.

Bimodal re-use distances complicate cache sizing. In principle, the cache size should

match the re-use distance of the blocks it holds. In practice, prior studies propose metadata
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caches sized between 8KB and 64KB, which are too small to exploit long re-use distances

[10,29,42,63,73,92,93]. Unfortunately, long re-use distances are typical and require larger

caches.

Large metadata caches support longer re-use distances but may force architects to

implement difficult trade-offs, such as a smaller LLC, due to area constraints. Although

many workloads prefer larger LLCs over larger metadata caches, some prefer the opposite.

For example, as shown in Chapter 3, canneal reports lower delay and energy overheads when

using a 1MB LLC and 1MB metadata cache compared to using a 2MB LLC and a 16KB

metadata cache [43]. Note that design decisions for last-level and metadata caches must

be coordinated because they exhibit non-trivial interactions. When the LLC is smaller, it

evicts data blocks more frequently and shortens the re-use distance of metadata blocks.

4.3 Metadata Cache and LLC Interaction

Based on the observation that metadata blocks have bimodal reuse distances and that

applications have varied demands, we propose Metadata Cache eXtension (MCX). MCX is a

mechanism that extends the metadata cache capacity by using additional capacity from

the LLC. The goal of MCX is to reduce overheads of fetching metadata from memory. The

mechanism extends metadata cache capacity by evaluating the trade-off of using the frames

in the much larger LLC. Specifically, it transfers blocks evicted from the metadata cache to

the LLC. Because evicted blocks are often selected from deeper in the LRU stack, they will

naturally have longer re-use distances. Over time, the mechanism separates blocks with

short and long re-use distances, placing the former in the small metadata cache and the

latter in the large LLC.

MCX’s separation of metadata according to re-use distance creates a virtuous feedback

loop for blocks with short re-use distances. As blocks with longer re-use are transferred

to the LLC, the average re-use distance for blocks remaining in the metadata cache be-

comes shorter. Furthermore, already short re-use distances become shorter because the
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intervening accesses are removed from the metadata cache’s access stream. The progressive

shortening of re-use distances for blocks in the metadata cache allows a very small structure

to efficiently exploit amplified levels of temporal locality.

MCX’s mechanism also mitigates opportunity costs posed by blocks with long re-use

distances. These blocks should reside in the LLC because they generate little benefit

but inflict significant cost when residing in the metadata cache. Blocks with long re-use

rarely benefit from a small cache because they are likely evicted before they are re-used.

Yet these blocks can harm the cacheability of short re-use blocks by issuing intervening

accesses, pushing those blocks deeper into the LRU stack, and causing inefficient evictions.

MCX use of the last-level cache (LLC) is inspired by victim buffering yet addresses its key

limitation. Traditionally, caches use victim buffers to mitigate pathological access streams

in which a block is evicted but re-used shortly afterwards [36]. The victim buffer is much

smaller than the cache it supports to ensure fast access to the fully-associative structure.

Unfortunately, a small victim buffer alone is insufficient support for the metadata cache.

The majority of evicted metadata blocks have longer re-use distances than the victim buffer

can accommodate. A victim buffer is either too small to effectively separate blocks by re-use

distances or too large to access quickly. Instead, MCX combines both a small victim buffer

and the LLC to support the metadata cache.

Because of the metadata blocks’ bimodal re-use distances, using a combination of a

small victim buffer and a large structure for a retirement buffer makes more sense. Using

the LLC, the largest SRAM structure on the processor, as a retirement buffer for the

metadata cache yields positive results. The LLC is large enough to capture the long re-use

distances of metadata, while the small metadata cache is small enough to keep the blocks

with shorter re-use distances.

First, we must manage metadata blocks in the LLC. When a metadata block is found

in the LLC, MCX has several options regarding metadata movement. The management of

metadata blocks affects the effectiveness of MCX and therefore it is not a trivial design choice.

Second, while effective, the use of the LLC as a retirement buffer for the metadata cache
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introduces two new challenges. First, we must mitigate LLC pollution. As metadata blocks

are inserted into the LLC, cache pressure increases and more blocks are evicted from the

LLC. When more blocks are evicted from the LLC, more metadata blocks are needed and

the application’s memory intensity increases. We must understand the trade-off of sending

a metadata block to the LLC and the consequences this action creates.

In the next two sections we evaluate the design trade-offs of these two challenges. First

we explore designs that can help in reducing the separate cache evictions. Then we consider

different mechanisms that minimize the number of blocks sent to the LLC to mitigate the

LLC pollution.

4.3.1 Reducing Metadata Cache Evictions

Using the LLC as a retirement buffer helps reduce overheads from fetching metadata. If

the LLC were used as a victim buffer, when a metadata access hits in the LLC, the entry

is invalidated in the LLC and the block is forwarded to the metadata cache. The metadata

cache must evict another block to make space. This eviction is beneficial only if the newly

inserted block is re-used before it is evicted and if the evicted block is not needed. Unfor-

tunately, metadata blocks rarely fit this behavior and most blocks that exhibit long re-use

distances continue to exhibit the same behavior over time.

Sequential Re-use Distances. We reason about metadata cache dynamics by ana-

lyzing sequential re-use distances, which quantify the relationship between a block’s first

re-use distance and the next. Figure 4.1 uses a heat map to illustrate the sequential re-use

distances of metadata blocks—the frequency at which each (x,y) pair of re-use distances is

observed. The x-axis shows the first re-use distance found and the y-axis shows the second

re-use distance—e.g. point (1KB, 2KB) shows the percentage of blocks that had a 1KB

re-use distance followed by a 2KB re-use distance. The darker the color, the more instances

of the pair of re-use distances found.

When the re-use distance of a block is short, the sequential re-use distance is short as

well. This observation is consistent across all workloads and metadata types. Figure 4.1
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Figure 4.1: Sequential re-use distance analysis

illustrates this observation with the darkest points at (1KB, 1KB) in each graph. These

blocks follow traditional expectations for temporal locality and are easiest to cache. Figure

4.2 presents results comparing the different management policies described below:

Victim Buffer Dynamics. When the re-use distance of a block is long, causing it to

be evicted from the cache, the sequential re-use distance tends to be long. In Figure 4.1,

benchmarks report more observations of blocks with long re-use distances followed by long

re-use distances (top right of the graphs). This characteristic does not favor the victim

buffer dynamics in which the requested block is removed from the buffer and re-inserted

into the cache. The cache insertion causes another block to be evicted unnecessarily because

the newly inserted block will most likely be evicted before it is re-used. Results for this

designed are labeled MCX-VB.

In some cases, particularly for hashes, long re-use distances are followed by short re-

use distances (bottom right region of graphs in Figure 4.1). Victim buffer dynamics might

benefit these blocks by inserting them into the metadata cache. However, misplacing blocks

with long re-use distances into the metadata cache can cause harmful interference whereas

misplacing blocks with short re-use distances in the LLC is conservative and relatively

harmless.

Semi-Inclusive Cache Dynamics. One might wonder whether the dynamics of a

semi-inclusive, two-level cache hierarchy might perform better. Such a cache organization
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would keep a block in both the LLC and the metadata cache. As with the victim buffer,

this policy benefits blocks for which a long re-use distance is followed by a shorter one.

However, transferring these blocks to the metadata cache while keeping them at the LLC

degrades the capacity benefits from using both the LLC and the metadata cache. Results

for this design are labeled MCX-2L.

MCX Dynamics. MCX keeps blocks at the LLC once they are sent there because blocks

with long re-use distances are usually followed by long re-use distance accesses. This ap-

proach avoids unnecessary evictions, reducing data movement and metadata cache evictions.

Although this approach may transfer blocks with short re-use to the LLC, the forgone per-

formance is minimal. First, retrieving metadata from the LLC is still much faster than

retrieving it from main memory. Second, even though the LLC latency is longer than the

smaller separate cache, the latency to access the metadata is hidden.

The LLC latency is hidden by even longer latencies and speculative integrity verifica-

tion [42]. For counters, efficient implementations of counter-mode encryption hide the la-

tency of obtaining the counter behind the latency of retrieving the ciphertext from memory.

Retrieving the counter from the LLC requires approximately 25-30 processor cycles [11] and

encrypting the counter to produce the one-time-pad necessary for data decryption requires

approximately 40 processor cycles [16]. In contrast, retrieving the data block from main

memory requires hundreds of processor cycles [32]. For tree or data hashes, speculation

hides the latency of verifying integrity by supplying unverified data for computation [42].

Figure 4.2 indicates that MCX outperforms both implementation alternatives signifi-

cantly for both the average benchmark and a few benchmarks. For example, barnes per-

forms poorly with both MCX-2L and MCX-VB because they cause harmful data movement

between the metadata cache and the LLC. By keeping blocks in the LLC once they are

retired, MCX reduces the number of unnecessary evictions at the metadata cache, which in

turn reduces data movement between the two caches.

Cache Insertion Policy. To further reduce unnecessary evictions from the smaller

separate cache, the cache controller needs to account for the heterogeneity among metadata
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Figure 4.2: Management schemes performance results

types. In Chapter 3 we showed that metadata types have different reuse distance patterns.

Both counters and hashes can have long reuse distances because their temporal locality

depends on the spatial locality of the application. On the other hand, since integrity tree

nodes protect much larger data regions (see Table 3.1), their temporal locality tends to be

shorter than counters and hashes. To exploit this difference in reuse distances, counters

and hashes need to avoid evicting integrity tree nodes from the smaller cache.

MCX uses a bypassing mechanism for counter and hash blocks to avoid evicting integrity

tree nodes from the metadata cache. When counters and hash blocks are fetched from

memory, they are inserted into the victim buffer, instead of the cache—note that MCX

requires both a small victim buffer to serve the separate cache and the LLC as the retirement

buffer. As it is the case in traditional cache victim buffers, when a block is re-used while

in the victim buffer, the block is inserted into the cache [36]. If a block is not re-used

before it is evicted from the victim buffer, it will essentially bypass the metadata cache.

Bypassing the metadata cache for counters and hashes ensures that integrity tree nodes are

not unnecessarily evicted from the metadata cache by longer re-use distance blocks. Once

a block is evicted from the victim buffer, MCX decides if to send said block to the LLC or

not.
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4.3.2 Mitigating Last-Level Cache Pollution

Evicting metadata blocks to the LLC, an action we refer to as retirement does not always

benefit performance. When a metadata block is retired, the LLC in turn evicts a data or

metadata block to make space. If the newly added metadata is evicted from the LLC before

it is re-used, the previous eviction could have been avoided by not retiring the metadata

into the LLC. To manage LLC pollution, we need to understand the implications of deciding

when a metadata block is sent to the LLC.

Using the LLC alone to hold metadata blocks improves the cache efficiency, because

the larger structure is able to hold more metadata blocks. However, using only the LLC

increases the LLC pressure, and more data blocks are evicted from the LLC unnecessarily.

Some metadata blocks are only used once and never re-used, or re-used after a long period

of time. Such blocks take up valuable space from the LLC. Deciding which blocks to send

to the LLC becomes an important part of the MCX design. In Section 4.3.6 we describe one

approach to this decision mechanism which considers the effectiveness of caching metadata

blocks in the LLC.

4.3.3 Effects on the LLC and Memory Controller

MCX requires no additional modifications to the connection between the memory controller

and the LLC. The memory controller and the LLC already interact to handle LLC cache

fills from memory. MCX takes advantage of already existing connections to send metadata

blocks to the LLC. The only difference is that he memory controller must access metadata

blocks in the LLC. The memory controller can issue coherence messages to the LLC, as if it

were another core, to obtain metadata blocks. The LLC controller can respond to requests

from the memory controller as it does with core requests.

Since metadata blocks have physical addresses, no modifications are required to insert

metadata blocks in the LLC. The physical address of metadata blocks is used to index

into the LLC frames. The LLC controller does not need to differentiate between data

and metadata when inserting blocks into the cache. The only difference between data and
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metadata is the entity that is allowed to access them.

To preserve security guarantees, only the memory controller is allowed to access and

modify metadata blocks. Once the metadata is verified and brought into the chip, it is

assumed to be correct and trusted. If structures other than the memory controller could

access metadata, a malicious user could force a core to request a metadata block, modify

it, and corrupt the integrity tree.

MCX requires an address filter in the LLC controller. The LLC controller compares the

address of each request against the range of physical addresses occupied by metadata blocks.

If the requested address falls within the metadata address range, then the LLC controller

must verify that the request came from the memory controller. It rejects requests to this

address range from any other entity.

4.3.4 Multi-Core and Multi-Chip Environments

MCX extends to a multi-core setting. The LLC is a shared resource across all cores. MCX

changes the role of the memory controller to act like another core. Since the memory

controller is already part of the coherence protocol, no additional changes are required

to the coherence protocol. The metadata blocks in the LLC do not change the coherence

protocol either because the LLC controller ensures that only the memory controller accesses

them. Since there is only one entity allowed to access the metadata blocks and they can

only reside in the LLC and in no other cache.

A multi-chip environment requires no special handling of the metadata, which does not

travel across chip boundaries. The metadata that protects values in a particular memory

device is only valid within the chip’s boundary that contains the memory controller. The

memory controller is responsible for decrypting and verifying only the integrity of the

data residing in its local memory. When another chip requests data, the corresponding

memory controller decrypts and verifies the integrity of the data before transmission to its

final destination. Thus, metadata is only present in the chip associated with its physical

address.
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Multi-chip packages can use symmetric key encryption to protect data that travels across

chips. The bus that connects multiple processor chips is as unsafe as the connection between

the processor and memory. A simple approach to protect the inter-chip connection is to

communicate data using a symmetric key between the chips. Chips can agree on the key

upon system startup using the Diffie-Hellman key exchange [15]. When servicing a remote

chip’s request for data, the memory controller encrypts the data with the symmetric key

and sends the ciphertext to the other chip.

4.3.5 MCX Oracle Implementation

To fully understand the performance implications of the decision to send metadata blocks to

the LLC, we start by evaluating an oracle implementation of MCX. The oracle mechanism,

MCXO, assumes perfect knowledge of the benefit of storing blocks in the LLC. To avoid

evicting blocks from the LLC unnecessarily, the mechanism needs to know when a metadata

block will benefit from being cached in the LLC, which happens once a metadata block is

requested from the LLC. In the oracle implementation we assume that all evicted metadata

blocks are saved in the oracle buffer before being inserted into the LLC.

The oracle buffer is a structure that holds metadata blocks until needed. When a

metadata block is not found in the metadata cache and is found in the oracle buffer, the

LLC controller inserts the metadata block into the corresponding LLC set. This mechanism

avoids evicting blocks in the LLC for metadata blocks that are not reused. The oracle buffer

keeps track of how many insertions the corresponding set in the LLC has from the moment

a metadata block is added to the buffer. To limit the age of metadata blocks in the oracle

buffer, when the number of insertions exceed 150% of the number ways, the metadata

block is kicked out of the oracle buffer—i.e. if the block was dirty it is written to memory

otherwise discarded.

Delay and Energy Overheads. We compare MCXO results with three policies. First

we look at a system that uses only a 16KB separate cache. Second, we evaluate a system that

uses only the LLC to hold metadata blocks (shown in Figure 4.3). Finally, we compare MCXO
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Figure 4.3: MCX oracle implementation energy and delay overhead

against an implementation that uses a static scheme to choose the best mix of counters,

hashes, and tree nodes to send to the LLC; there are eight schemes possible for the three

metadata types. The best static scheme sends both counters and tree nodes to the LLC

(results for the best static scheme are shown in Figure 4.3 and they are labeled MCX C&T ).

Figure 4.3 indicates that MCX’s dynamic approach outperforms the best static policy for

most benchmarks. For mcf, MCX-C&T, the best static policy, reports 44% energy overhead

while MCX reports 16% overhead. Other benchmarks report similar benefits.

On average, MCXO and using the LLC alone do not have drastic differences, they both

improve delay and energy overheads compared to using a separate cache. They reduce

delay from 10% down to 4% and energy from 16% down to 8% for LLC-Alone and 7% for

MCXO. The reason why there is a small difference between these two mechanisms is that

using the LLC alone is only harmful when there is already enough pressure in the LLC

to hold data blocks. Most benchmarks across the three benchmark suites are not very

memory intensive, and perform well with either mechanism. However, when we look at

the memory intensive benchmarks alone, MCXO does outperform LLC-Alone. In particular,

MCXO has larger benefits on energy, since we are considering a system that uses PoisonIvy

as described in Chapter 2, which already hides most of the delay overheads. MCXO reduces

delay from 11% down to 9% and energy from 24% down to 19% when compared against
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caching metadata in the LLC alone. A deeper look into each individual benchmark gives

use better insight.

MCXO significantly reduces delay and energy overheads for workloads that experience

LLC pressure and also struggle to keep metadata blocks in the small, dedicated struc-

ture. For fft, MCXO reduces energy and delay overheads from 24% down to 16% and from

16% down to 13%, respectively, compared to using the LLC alone. This workload streams

through three 8MB matrices, producing abundant spatial locality on data pages that trans-

lates into abundant temporal locality for metadata blocks holding encryption counters 1.

For fft, MCXO discovers the short re-use distances for counters, placing them in the

dedicated metadata cache. MCXO also discovers the long re-use distances for hashes. Since

blocks containing hashes protect a total of 512B of data (8B per 64B data block), hash

blocks for fft have limited temporal locality, and thus MCXO retires them to the LLC. Tree

nodes are rarely requested to verify counter integrity because counters are often cached.

MCXO avoids wasting metadata cache capacity for hashes and tree nodes, keeping more

counters cached in the dedicated metadata cache.

MCXO’s advantage is derived primarily from caching counters. Although caching tree

nodes and data hashes reduces memory requests and energy costs significantly, it does not

improve performance because delays from integrity verification are already hidden by in-

tegrity speculation. Performance improves with the number of counters that are cached

profitably. When workloads access memory randomly, poor spatial locality for data trans-

lates into poor temporal locality for counters. When counter re-use distances are long,

architects can do little beyond increasing the LLC size. For example, MCXO has difficulty

improving lbm and leslie3d’s performance.

Another interesting benchmark is canneal. canneal has a good mix of reads and writes

and has a random access pattern, which means there is little spatial locality. Because of the

little spatial locality, metadata blocks have little temporal locality. When using the LLC

1Data spatial locality translates into metadata temporal locality because one 64B metadata block

holds multiple pieces of metadata protecting hundreds of bytes of contiguous data.
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alone, canneal wastes LLC capacity for metadata blocks that are never reused, increasing

the LLC pollution. While canneal does not benefit delay overhead from using the LLC

alone, this mechanism does reduce energy overhead significantly, from 132% down to 75%.

This significant reduction comes from the fact that the LLC is a much larger structure than

the separate metadata cache and it is able to hold more metadata blocks on-chip. On the

other hand, MCXO is able to lower both delay and energy overheads significantly, from 26%

down to 16% and from 75% down to 55% respectively. MCXO avoids evicting blocks in the

LLC unnecessarily by holding blocks in the oracle buffer until they are reused.

While using the LLC-Alone mechanism improves both delay and energy overheads, with

fmm MCXO reduces overheads even more, getting delay from 21% down to 15% and energy

from 30% down to 24%. This behavior is because fmm is sensitive to the LLC miss rate,

and when using the LLC alone, the miss rate increases, worsening the number of metadata

blocks required. On the other hand, MCXO is able to hold metadata blocks in the oracle

buffer minimizing the LLC pollution.

4.3.6 MCX with LLC Effectiveness

Given the optimistic results of the MCXO policy implementation, we propose a realistic

implementation of MCX using the LLC effectiveness. The benefit of sending a metadata

block to the LLC is only realized once the metadata block is re-used when resident in the

LLC. If a metadata requests hits at the LLC, the system avoids that additional memory

access. On the other hand, if a metadata block is evicted from the LLC without being re-

used, the eviction caused by the metadata block when it was inserted into the LLC could

have been avoided. We call this trade-off, the LLC effectiveness. The LLC effectiveness is

better when more LLC metadata hits are observed and it is worse when more metadata

blocks are evicted from the LLC.

We consider a decision mechanism that decides on which blocks to send to the LLC

based on the effectiveness of caching metadata at the LLC, a mechanism we call MCX1.

The mechanism relies on existing eviction policies and makes no prior assumption about
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Figure 4.4: Overview of MCX1 operation.

re-use distances. Metadata blocks are inserted into the metadata cache as they arrive from

main memory. As computation proceeds, MCX1 infers re-use distances from natural cache

dynamics. Evicted blocks are more likely to exhibit longer re-use and retained blocks are

more likely to exhibit shorter re-use distances.

MCX1 tracks the effectiveness of retirements by keeping a value at the memory controller,

which we call the probability counter, that sets the probability of sending blocks to the LLC.

When a block is evicted from the dedicated metadata cache, step 1 in Figure 4.4, MCX1

determines the eviction destination by generating a uniform random number in [0, 100)

and comparing it to the probability counter. If the random number is smaller than the

counter, the block is sent to the LLC—step 2a in Figure 4.4. Otherwise, the block is

evicted normally—step 2b in Figure 4.4—and written back to DRAM if it is dirty.

The probability counter increases when metadata accesses hit in the LLC—step 3 in

Figure 4.4. Hits indicate that retirements to the LLC are effective and metadata should

be retired more aggressively. Metadata accesses hit in the LLC when the block’s re-use

distance is too long for the metadata cache, because it was previously evicted, but short

enough for the LLC because it produced a hit there.

The probability counter decreases when metadata are evicted from the LLC—step 4

in Figure 4.4. Misses indicate that retirements produce poor outcomes and may arise for

two reasons. Either the block’s re-use distance is too long to be captured by the LLC or

the retirement of metadata blocks increase LLC pressure by competing with data blocks.
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Under these conditions, MCX1 reduces metadata retirement to alleviate LLC pressure and

avoid inefficient LLC evictions.

With MCX1 mechanism, the memory controller requires information from the LLC to

update the probability counters. The LLC notifies the memory controller when a metadata

block is evicted, even in a clean state, so that the controller can adjust its counters accord-

ingly. The messages sent between the LLC and the memory controller need to include the

type of metadata evicted from the LLC. The messages can be buffered and sent when the

bus is idle.

MCX1 must continue to learn new patterns even when retirements to the LLC produce

poor outcomes. When the LLC is under pressure or metadata blocks have long re-use

distances, increased evictions could cause the probability counter to reach zero. But if no

metadata are retired to the LLC, it is impossible to learn the impact of retirement. To

ensure it continues adapting, MCX1 imposes a lower bound on the probability counters. This

bound must be low enough to reduce the number of retired blocks when outcomes are poor

but high enough to obtain feedback regarding the policy’s effectiveness. We find that ten

is an effective lower bound.

To increase the accuracy of the probability counters, MCX1 instantiates separate counters

for each metadata type—counters, tree nodes, and hashes. As shown in Figure 4.1, the

three metadata types exhibit different re-use distance distributions and tracking retirement

effectiveness per type is important. For example, benchmarks like libquantum benefit from

retiring counters to the LLC but not hashes as the latter have longer re-use distances than

the LLC can capture; see the darker gray region in the upper-right part of libquantum’s

graph in Figure 4.1. With separate probability counters, MCX1 reduces the number of hashes

retired to the LLC, because it sees little benefit of doing so, while still retiring most counters

and tree nodes.
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4.3.7 Handling Pathological Access Patterns in MCX1

Some workloads may generate pathological access streams and produce erratic behaviors.

MCX increments probability counters when metadata blocks hit in the LLC, thereby in-

creasing the frequency of blocks retired to the LLC. As blocks are more frequently retired,

LLC pressure increases and blocks are more likely to be evicted. MCX decrements proba-

bility counters when the LLC evicts metadata blocks, thereby decreasing the frequency of

blocks retired. With a pathological access stream, the probability counters never reach a

stationary point and MCX oscillates between aggressive and conservative retirement policies.

Workloads with many random accesses, such as mcf, are particularly problematic.

MCX uses an epoch based approach to determine whether the system is in an unsteady

state. At the end of an epoch (a fixed number of memory requests) the memory controller

compares the current value of the probability counters with the values from the last epoch.

If the difference between them is higher than a threshold, then the system assumes an

unsteady phase is present. In our experiments an epoch is made of 50,000 memory requests

and the threshold is 70.

We smooth MCX’s retirement policy by drawing inspiration from the exponential back-off

mechanism in networks [50]. MCX slows down the reaction of the mechanism to metadata

block evictions from the LLC. In the common case, MCX decreases the probability counters

when only one metadata block is evicted from the LLC. When MCX detects a phase of

unsteady behavior—i.e. the difference between the probability counter’s current value and

the prior epoch’s value is higher than the threshold—it exponentially increases the number

of evictions required for updating the probability counters.

Once the system reaches a steady phase, MCX exponentially decrements the number of

evictions required to update the probability counters across epochs to return to its default

value of one. Decrementing the number of evictions after discovering a steady state allows

MCX to react quickly to changing patterns.
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Figure 4.5: MCX oracle implementation energy and delay overhead

4.3.8 Evaluating MCX1

Figure 4.5 shows results of using MCX1 compared to MCXO and using the LLC alone. While

MCX1 reduces overheads slightly, it does not perform as well as the oracle implementation.

For memory intensive benchmarks, MCX1 average energy overhead is at 22% compared to

MCXO at 18%. Once again looking at individual benchmarks helps us understand the results.

As expected, most applications results with MCX1 end up in between caching at the

LLC alone and MCXO, except for cactusADM. cactusADM with MCX1 performs worse than

using the LLC alone. By looking at the detailed results we notice that MCX1 keeps more

hashes on-chip than the LLC alone mechanism. We also note that MCX1 has more LLC

data misses than using the LLC alone. This combination of results can only be explained

by the fact that since MCX1 uses a probabilistic approach to choose when to send a block

to the LLC, it is often choosing the wrong set of metadata blocks to send to the LLC,

increasing the number of LLC evictions unnecessarily. When MCX1 decides not to send a

counter block to the LLC, even though using the LLC alone should in theory result in more

LLC data misses, fetching the counter from memory requires integrity tree traversal which

in turn causes more LLC evictions than only using the LLC. We suspect this behavior is

present in most applications, explaining why MCX1 does not perform as good as the oracle

implementation.
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4.4 Heterogeneity-Aware Cache Eviction

Eviction policies in traditional cache designs treat all blocks in a cache as equals. When

considering metadata caching mechanisms that combine different types of blocks, it is

important that the eviction policy takes this heterogeneity into account when evicting

blocks. In a system with secure memory there exists four different types of blocks: data,

counters, hashes and tree nodes. Each type has different access patterns, dependencies and

corresponding miss costs. In this section we consider a heterogeneity-aware cache eviction

policy.

The caching mechanisms considered in this part of the work, involves the LLC holding

all four types of metadata in one way or another. Since the LLC is large enough to capture

the reuse distances of most types, the eviction policy becomes a crucial part of this design

exploration. The LLC eviction policy needs to be adapted to account for the four types of

blocks it may hold.

4.4.1 Dynamic Re-Reference Interval Prediction

After carefully evaluating the state of the art in LLC eviction policies we decided that

Dynamic Re-Reference Interval Prediction (DRRIP) is a good candidate for metadata

caching. DRRIP’s key insight is that some blocks are added to a cache without ever

being re-used [33], which is exactly the challenge we are addressing with in this work.

When a least-recently-used (LRU) based eviction policy is used, these blocks end up being

the last blocks evicted, as when blocks are added they are marked as the most recently

used (MRU) block. To account for this distinct access pattern, DRRIP assumes that all

blocks inserted into the cache have this behavior, and updates this assumption accordingly.

Initially every block is inserted into the cache with long re-reference interval prediction.

As the cache accesses proceed when a block is accessed the block is promoted to having a

shorter re-reference interval prediction, as it was reused while in the cache.

To track the re-reference interval prediction, DRRIP requires a value for each cache
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line, the re-reference prediction value (RRPV) [33]. RRPV represents the expected reuse

distance magnitude. When a new block is added to the cache, this value is set to indicate a

long re-reference interval. When an eviction decision has to be made, the cache controller

inspects each cache line in the set looking for the first block that has the RRPV set to

distant re-reference interval. If the controller does not find any blocks with this RRPV, the

controller increments the RRPV for all cache lines in the set and searches every way once

again.

While effective for most applications, not all applications behave well when all blocks

are considered to have a long re-reference interval when inserted. Jaleel et.al. acknowledge

that some application have some blocks that have medium re-reference interval. When

these blocks are marked with the long re-reference interval, they are evicted from the cache

before they are able to be re-used. To account for these set of applications, DRRIP has a

dynamic component that considers adding blocks to the cache with a medium re-reference

interval RRPV. At runtime, DRRIP adjusts the number of blocks that are added with

the two values. If an application favors one over the other, DRRIP adjusts the number of

blocks for each category accordingly. We use the set-dueling implementation described in

that same work, which is inspired by utility cache partitioning [60].

4.4.2 Evaluating the LLC Eviction Policy

Figure 4.6 presents results when the LLC eviction policy is switched from pseudo-lru to

an adapted DRRIP policy. Using DRRIP in combination with MCX1 is effective. DRRIP

prioritizes counter and tree node blocks in the LLC and keeps those on-chip for a longer

period of time compared to hash and data blocks. The memory intensive benchmark delay

overhead goes from 10% down to 8% with MCX1 and from 18% down to 16% when compared

to the MCX oracle implementation with pseudo-lru LLC eviction policy.

cactusADM benefits from either using MCX1 or using the LLC alone. The eviction policy

switch aids this application in keeping more metadata on-chip, reducing both the additional

memory accesses and the additional evictions from the LLC.
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Figure 4.6: LLC Eviction Policy Comparison, pseudo-lru vs. DRRIP

The combination of MCX1 and DRRIP for canneal is successful, as it reduces delay over-

heads from 18% down to 14% when compared with MCXO. Energy overheads also improve,

MCX1 with DRRIP reduces them down from 55% down to 51%. The MCX1 mechanism helps

in filtering out the hash blocks, which have too long re-use distance to benefit from being

cached in the LLC. The DRRIP eviction policy helps in keeping more counters cached in

the LLC, reducing the number of integrity tree traversals. Both of these policies, reduce

the LLC data misses by 7%. canneal is sensitive to LLC misses as it has a working set that

does not fit in the higher level caches, using primarily the LLC to serve the processor.

The biggest improvement is on barnes, where using MCX1 with DRRIP reduces delay

overhead down to 6% and energy overhead down to 20%. This significant improvement of

MCX1 is because once metadata is in the LLC, if the eviction policy evicts the “correct”

blocks, more blocks are able to stay cached on-chip. In the case of barnes, even though the

LLC alone serves more counters and hashes from the LLC, the number of additional data

LLC misses is larger. These means that the probabilistic approach of MCX1 is effectively

filtering out blocks that do not benefit from the LLC.
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4.4.3 Heterogeneity-Aware DRRIP

DRRIP can be easily extended to account for heterogeneous blocks by simply choosing a

different value for the RRPV based on the type of block at insertion. Data blocks follow

the same patterns as the ones described in the original DRRIP work, therefore we do

not change that particular behavior. On the other hand, metadata blocks tend to have

shorter re-reference intervals than data. Specifically, tree nodes tend to have the shortest

re-reference intervals of all block types. Thus a simple extension to the DRRIP eviction

policy is to decide on a larger variety of values to assign to the RRPV based on the type

of block being inserted. The eviction candidate is chosen using the same mechanism as the

in the original work.

The dynamic portion can be further extended to separate the characterization of blocks

by type. In the original work, DRRIP uses set-dueling to select between the long and the

medium RRPV values. In our extended implementation we consider the same implementa-

tion, except that the decision to use one value or the other is localized to the block types.

We keep one selector indicator for each type, four in total for each set. The selector adjusts

which policy to use at runtime depending on the performance for each type of block.

DRRIP can also be further extended to account for the non-uniform miss costs, an

eviction policy which we call DRRIP+. When choosing an eviction candidate with multiple

miss costs, the controller has to be minimize the cost to evict a particular block in addition

to considering the re-reference interval. Choosing the block with the smallest miss cost,

might not be the best option because if the block with a larger miss cost has a longer re-

reference interval, the additional cost might be amortized over a longer period. Therefore,

we increment the RRPV value at a slower pace for blocks that have larger miss costs.

The specific value of the miss cost does not have to be known, just as the particular re-

reference interval value does not have to be known either. The only information that

matters when evicting a block is the relative miss cost and re-reference interval among the

eviction candidates.

To evaluate the relative difference, the original DRRIP policy increments the RRPV by
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Figure 4.7: LLC Eviction Policy Comparison, DRRIP vs. DRRIP+

one for all blocks. When caching all four types of blocks in one cache, counters and tree

nodes are expected to have both shorter re-use distances and higher miss costs than data

blocks and hash blocks. DRRIP+ increments the RRPV by 2 for hash and data blocks and

by 1 for counters and tree nodes. The reason for this difference is that counters and tree

nodes tend to have both shorter re-use distances and higher miss costs than the other types.

In Section 3.2 we discussed the differences in reuse distance patterns in metadata types.

Because of the way metadata is structure, we showed that tree nodes have the shortest reuse

distances. We also noted that the temporal locality of metadata blocks is mainly guided by

the spatial locality of the data. Thus, counters tend to have shorter re-use distances than

both hash and data blocks. Furthermore, the miss cost of eviction hashes is always one, as

hashes are not protected by the integrity tree. Counters and tree nodes do have miss cost

that can be larger than one depending on how many antecedents are cached on-chip. Data

block miss cost depend on the counters and tree nodes being cached on-chip. However,

since data blocks tend to have much longer re-reference intervals we keep the increment of

the RRPV the same as hash blocks.

We compare results with DRRIP and the extended version of DRRIP, DRRIP+. We

present results in Figure 4.7. Unfortunately, DRRIP+ benefits only one benchmark. To

better understand why, we examine this benchmark, fft in detail. fft’ overheads are reduced

down to 16% in energy and 13% in delay when using DRRIP+ in combination with MCX1.
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When comparing the detailed results for fft with the two eviction policies, the main dif-

ference is that DRRIP+ is more likely to evict a hash over a counter or a tree node. As

a result, MCX1 sees more evictions more hashes, and thereby reducing the number of hash

blocks sent to the LLC. This relation ends up causing less LLC data misses, about 6%

lower, and also ends up causing more LLC hits for counters and tree nodes, reducing the

total number of memory access down by 6%.

Unfortunately, other benchmarks actually suffer from evicting hashes over tree nodes.

For example, even though lbm has more counter blocks serviced from the LLC, it has more

hash blocks serviced from the memory. This behavior is because the LLC evicts hashes over

tree nodes, reducing the number of hashes that can hit at the LLC. On average, DRRIP+

and DRRIP perform equally, but several benchmarks perform better with DRRIP.

4.5 Further Analysis

We evaluate results of using MCX1 with DRRIP as the LLC eviction policy in further detail.

We analyze the number of blocks serviced from the separate cache, the LLC and memory.

We also look at the separate cache and LLC size sensitivities. Finally we evaluate the

impact of the speculation mechanism when improving the metadata caching mechanism.

4.5.1 Reducing Memory Requests for Metadata

Figure 4.8 presents the ratio of metadata to data requests issued to main memory. The

figure differentiates between metadata types and compares the caching mechanisms. With-

out caching (not shown in graph), memory serves ten metadata requests for every data

access. These metadata requests include encryption counters, tree nodes, and data hashes.

Both MCX1 and using the LLC alone with DRRIP reduce the ratio to 0.2 such that memory

serves 2 metadata accesses for every ten data accesses, on average. MCX1’s ratio is lower

than those from using a dedicated metadata cache. Much of its advantage comes from re-

ducing the number of counters requested from memory, which in turn reduces the number
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Figure 4.9: Metadata block source breakdown

of tree nodes required. Memory serves 0.002 requests for tree nodes. MCX1 achieves these

reduction by caching metadata blocks with long re-use distances in the LLC, enabling more

“useful” counter blocks to stay on-chip, thereby reducing the number of times the integrity

tree must be traversed.

MCX keeps more metadata blocks cached by separating them by re-use distance and

retiring those with long re-use distances to the LLC. Figure 4.9 indicates where metadata

requests are satisfied. The dedicated metadata cache alone is too small to be effective and,

on average, causes 53% of metadata requests to go to main memory. The LLC alone reduces

metadata requests serviced from memory down to 19%. MCX reduces total memory requests

down to 16%. MCX achieves these results by keeping both more counters and more tree

nodes at the lower levels on-chip, reducing the number of levels in the integrity tree visited.

On average, MCX generates 14% fewer memory requests for counters and 62% fewer memory

requests for tree nodes when compared against using the LLC alone (see Figure 4.8). MCX

also reduces memory requests for data hashes, by 16% compared against using the LLC

alone, even though they tend to have longer re-use distances. MCX reduces the LLC miss

rates, thereby reducing the number of hashes required overall.
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Figure 4.10: LLC pollution evaluation

4.5.2 Mitigating Last-Level-Cache Pollution

MCX reduces LLC pollution primarily with a probabilistic approach to determine a block’s

eviction destination at runtime. Figure 4.10 compares LLC pollution across mechanisms.

MCX reduces pollution compared to caching at the LLC alone, primarily for workloads

that are memory-intensive. These benchmarks’ value the LLC capacity more and are

therefore more sensitive to the LLC miss rates. Not surprisingly, benchmarks that see

larger reductions in LLC pollution, such as barnes and canneal, correspond to benchmarks

that have larger improvements with MCX.

Among memory-intensive workloads, canneal is most affected by using the LLC. Even

without memory security, canneal suffers from high cache miss rates and little spatial

locality. Secure memory magnifies the effects of this memory intensity and canneal data

misses increase by 17% when using the LLC alone to cache metadata. MCX reduces the

pollution to less than 1% by filtering the number of metadata blocks sent to the LLC. Such

high LLC pollution is caused by canneal ’s poor spatial locality, which translates into poor

temporal locality for encryption counters and data hashes.

Only one benchmark reports higher LLC pollution with MCX, fft. Improvements of this

benchmark are modest when compared to using only the LLC. MCX is trading off more data

LLC misses for keeping more metadata blocks cached on chip, as it experiences hits when

metadata blocks are held in the LLC. This tradeoff results in a wash when looking at overall

performance.
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Figure 4.11: Metadata cache size sensitivity

4.5.3 Assessing Sensitivity to Cache Size

Metadata Cache. Figure 4.11 shows that MCX1 outperforms alternatives regardless of

the dedicated metadata cache’s capacity unless the cache is large enough to hold all the

metadata. Indeed, MCX1 permits the use of a much smaller dedicated metadata cache

without subjecting the system to prohibitively high overheads. The dedicated metadata

cache could shrink to a few kilobytes—we use 16KB in our main results—and the system

would still perform much better than the alternatives. Even though we only show results

for one benchmark (fft) in Figure 4.11, all other benchmarks have similar trends.

MCX1 sustains its performance even as the metadata cache shrinks by drawing on addi-

tional capacity from the LLC on demand. Viewed from another perspective, shrinking the

metadata cache by hundreds of kilobytes could permit larger LLCs that could benefit both

data and metadata, depending on the workload’s dynamic memory access patterns. If the

system uses the dedicated metadata cache alone, overheads increase drastically as cache

size decreases.

The small dedicated metadata cache serves three purposes. First, it caches blocks with

short re-use distances. Second, it selectively excludes blocks from the LLC. With such

filtering, MCX1 keeps the more “useful” blocks cached reducing the number of times the

integrity tree must be traversed. Third, the dedicated metadata cache employs the “partial

writes” optimization [20], in which some write misses avoid an extra read if all portions of

the metadata block are written before it is evicted
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Figure 4.12: LLC size sensitivity

Last-Level Cache. The LLC size can also affect secure memory overheads. First,

the LLC size changes the number of data blocks fetched from memory, and therefore the

number metadata blocks required. Second, the LLC size determines the metadata block’s

re-use distances—smaller LLC sizes produce smaller metadata re-use distances and vice-

versa—because a block’s expected cache lifetime is equal to the cache size that holds it [5].

When LLC pressure is high, blocks are evicted more quickly, therefore metadata blocks

have better temporal locality, making them easier to cache.

Figure 4.12 shows results when the metadata cache size is fixed at 16KB and the LLC

size is varied for a representative benchmark, fft. MCX1 outperforms other mechanisms,

even at small LLC sizes thanks to its probabilistic approach to determining an evicted

block’s destination. At 256KB and 512KB LLCs, MCX1 detects LLC pressure and reduces

the number of metadata blocks retired to the LLC. Doing so mitigates LLC pollution and

performs better than mixing data and metadata indiscriminately when using the LLC alone.

Using a dedicated metadata cache alone is also ineffective. Even though metadata blocks

tend to have short re-use distances, these distances are still too long for a small metadata

cache to exploit.

The performance of fft plateaus at 2MB because of its working set sizes (1MB, 64MB

and 512MB). At 2MB, both MCX1 and caching at the LLC alone can keep both data and

metadata cached profitably. Increasing LLC capacity beyond 2MB, does not add any benefit

because of the long re-use distances of both data and metadata.
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Figure 4.13: Evaluation without speculative integrity verification

4.5.4 Assessing Sensitivity to Speculation

Thus far, the evaluation assumes a speculative micro-architecture for integrity verification,

as described in Chapter 2. Speculation hides the latency to verify integrity, which in turn

hides the even longer latency of fetching tree nodes and data hashes from cache or main

memory. If the micro-architecture did not speculate, the latency to fetch metadata required

for verification may extend the critical path for instructions that request data from main

memory. MCX1’s approach of retiring blocks may expose the system to the LLC’s latency,

which is higher than the dedicated metadata cache’s but still an order of magnitude lower

than main memory’s.

Figure 4.13 shows results without a speculative mechanism. Both MCX1 and using the

LLC alone suffer from the LLC’s longer latency, but MCX1 uses the LLC capacity more

profitably for a few benchmarks. Without speculation, the gap between MCX1 and using the

LLC alone gets much smaller. The difference between the two is no more than 2% for both

delay and energy. A few benchmarks, such as barnes and canneal do perform much better

with MCX1.
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4.6 Related Work

Countless prior works have explored ways to improve the effectiveness of caching. The most

closely related of these works are those that examine (and attempt to exploit) data re-use

distance patterns.

Re-Use Prediction: Many works explore how to explicitly predict the re-use charac-

teristics of blocks [39, 55, 82, 91], giving the cache concrete information to work with when

making replacement decisions. These schemes use the program counter in their predictions.

While a program counter can generally be tied to a normal data access easily, it is less clear

how to tie the PC to metadata accesses. Furthermore, many of these schemes use roughly

10KB of storage to make their predictions, which is an acceptable overhead when compared

to a 2MB cache (i.e., 0.5% overhead), but unreasonable for a 4KB metadata cache.

Replacement Policies: Significant work has gone into improving replacement poli-

cies. One recent work by Beckmann et.al. propose Economic Value Added (EVA), an

eviction mechanism that valuates blocks based on the value added of keeping them in the

cache [5]. This mechanism requires expensive computation, thus it is slow to adapt to

changing behavior. Metadata caches require a mechanism that adapts quicker to account

for diversity in metadata blocks.

Non-uniform memory access (NUMA) systems pose similar cache design challenges as

metadata caches [34, 35]. In NUMA systems, some memory accesses can take longer time

to access than others. Some eviction policies were proposed but the shortcoming of those

is that they only consider two miss costs. Metadata caches can have multiple different

miss costs. The optimal solution for the eviction policy in NUMA systems does not scale

to multiple miss costs, and ends up being computationally intractable. Computing the

optimal eviction policy when considering multiple miss costs and multiple reuse distances

is an NP-Complete problem, and we leave this area of research as open avenue for new

solutions.

Cache Partitioning: Another way to improve a cache’s efficiency is to partition it to

account for variable re-use distance distributions. Utility-based cache partitioning [60] is
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a mechanism that dynamically partition caches based on their re-use behavior. However,

this technique is unable to capture the longer re-use distances that metadata blocks exhibit

because of the cache’s capacity limitation.

4.7 Conclusion

Secure memory incurs both delay and energy overheads due to the additional memory

accesses required to fetch metadata. Metadata caching has been proposed to lower the

additional memory accesses. In Chapter 3, we showed that traditional cache designs are not

suitable for metadata. In this work we explore the design space for new cache architectures.

We propose MCX, that takes advantage of the particular characteristics of metadata access

patterns.

MCX reduces delay and energy overheads by caching blocks more efficiently on-chip. MCX

keeps more metadata blocks on-chip because it separates them according to their re-use

distances. Short re-use distance blocks are cached in a separate cache while long re-use

distance blocks are cached at the LLC along with data. Caching metadata blocks in the

LLC produces LLC pollution. We explore several implementations of MCX. In one approach

we present MCX1 which minimizes LLC pollution with a probabilistic approach. MCX when

combined with the DRRIP eviction policy in the LLC reduces energy and delay overheads

down to 8% and 4% on average, and down to 16% and 8% respectively for memory intensive

benchmarks.
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Chapter 5

Conclusion

Modern computing trends expose systems to physical attacks and robust software attacks.

The software alone is not capable of defending against such attacks. Hardware and software

collaborations are the only solution against physical and robust software attacks.

In the last two decades we have seen a shift in both academia and industry working

towards secure hardware solutions. Most prior work either imposes expensive overheads in

both energy and delay or sacrifices some security guarantees to achieve better performance.

In this dissertation work we focus on the micro-architectural approaches of secure mem-

ory to improve the performance and energy overhead. First we propose the first safe

speculation mechanism that allows the system to hide the verification latency while still

maintaining the security guarantees.

Then we perform the first in-depth analysis of secure memory metadata to guide ar-

chitects to design more efficient metadata caches. We provide several observations that we

believe are important in designing metadata caches and disproof common misconceptions.

Finally, based on the observations from the second piece of work, we do a design space

exploration for a new metadata caching mechanism. By exploiting the particular charac-

teristics of metadata blocks, we explore metadata cache designs that can adapt based on

the application behavior. In one design point, we evaluate MCX1, which reduces energy

overhead down to 8% and delay overhead down to 4%. MCX1 reduces delay and energy

overheads by caching blocks more efficiently on-chip. MCX1 keeps more metadata blocks

on-chip because it separates them according to their re-use distances. Short re-use distance

blocks are cached in a separate cache while long re-use distance blocks are cached at the

LLC along with data. Caching metadata blocks in the LLC produces LLC pollution, which

MCX minimizes with customized approach.
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5.1 Future Work

While both energy and delay overheads are important, a secure system has other aspects

to consider. On one hand, systems like Intel SGX that require a programmer to rewrite

their application to use the secure region require non-trivial expertise. Intel SGX requires

programmers to be able to reason about the particular security requirements for their

application and then to be able to decide how to safely partition it. Certain partitions can

lead to expensive paging mechanics and inefficiencies of having to get in and out of a secure

region. We leave as future work the analysis and the framework to help aid programmers

make decisions on how to partition their application.

Another dimension which we did not address in this work is the memory space over-

heads. Secure memory requires in some implementations as high as 25% of all protected

memory to be reserved for metadata. The space overhead do not scale well in a datacenter

environment. If a particular system has 4TB of protected memory, 25% of that (a whole

1TB of memory) has to be reserved for metadata regardless of how much secure memory

is used. Mechanisms that adapt dynamically to the secure memory usage are needed to

enable large memory systems to be protected as well. We leave as future work, the design

of a dynamic mechanism that make the metadata space overhead proportional to the secure

memory usage.

92



Bibliography

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for cpu
based attestation and sealing,” in Proc. International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP), 2013.

[2] I. Anati, F. Mckeen, S. Gueron, H. Haitao, S. Johnson, R. Leslie-Hurd, H. Patil,
C. Rozas, and H. Shafi, “Intel software guard extensions (Intel SGX),” in Tutorial at
International Symposium on Computer Architecture (ISCA), 2015.

[3] D. Bartholomew, “On demand computing–IT on tap,” 2005.

[4] N. Beckmann, “Design and analysis of spatially-partitioned shared caches.” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 2015.

[5] N. Beckmann and D. Sanchez, “Maximizing cache performance under uncertainty,” in
Proc. High Performance Computer Architecture (HPCA), 2017.

[6] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,”
IBM Systems Journal, 1966.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Character-
ization and architectural implications,” in Proc. International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2008.

[8] R. Boivie, E. Hall, C. Jutla, and M. Zohar, “Secureblue: Secure cpu technology,”
Technical report, 2006.

[9] R. Boivie and P. Williams, “Secureblue++: Cpu support for secure execution,” Tech-
nical report, 2012.

[10] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “SecureME: a hardware-software
approach to full system security,” in Proc. International Conference on Supercomputing
(ICS), 2011.

[11] I. Coorporation, “Intel 64 and IA-32 architectures optimization reference manual,”
2016.

[12] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint Archive, Report
086, Tech. Rep., 2016.

[13] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible information flow archi-
tecture for software security,” in Proc. International Symposium on Computer Archi-
tecture (ISCA), 2007.

[14] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege escalation attacks
on android,” in Proc. International Conference on Information Security (CIS), 2010.

93



[15] W. Diffie and M. Hellman, “New directions in cryptography,” Transactions on Infor-
mation Theory, 1976.

[16] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport,
E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation intel core: New microarchi-
tecture code-named skylake,” Hot Chips Symposium, 2016.

[17] R. Elbaz, D. Champagne, R. Lee, L. Torres, G. Sassatelli, and P. Guillemin, “TEC-
Tree: A low cost, parallelizable tree for efficient defense against memory replay at-
tacks,” in Proc. International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2007.

[18] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” Transactions on Computer Systems (TOCS),
2014.

[19] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley,
“Iso-x: A flexible architecture for hardware-managed isolated execution,” in Proc.
International Symposium on Microarchitecture (MICRO), 2014.

[20] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches and hash
trees for efficient memory integrity verification,” in Proc. International Symposium on
High Performance Computer Architecture (HPCA), 2003.

[21] S. Gueron, “A memory encryption engine suitable for general purpose processors,”
Proc. International Association for Cryptologic Research (IACR), 2016.

[22] S. Gulley and P. Simon, “Intel xeon scalable processor cryptographic performance,”
Intel Corporation, 2017.

[23] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[24] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Comput. Archit.
News, 2006.

[25] A. Hilton and A. Roth, “BOLT: Energy-efficient out-of-order latency-tolerant execu-
tion,” in Proc. International Symposium on High Performance Computer Architecture
(HPCA), 2010.

[26] A. Hilton, S. Nagarakatte, and A. Roth, “iCFP: Tolerating all-level cache misses in in-
order processors,” in Proc. International Symposium on High Performance Computer
Architecture (HPCA), 2009.

[27] A. Holdings, “Arm1176jzf-s technical reference manual,” Revision r0p7, 2009.

[28] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner,
“Theoretical fundamentals of gate level information flow tracking,” Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2011.

94



[29] R. Huang and G. E. Suh, “Ivec: off-chip memory integrity protection for both security
and reliability,” Proc. International Symposium on Computer Architecture (ISCA),
2010.

[30] IBM Security and Ponemon Institute Report, “2018 cost of a data breach study: Global
overview,” IBM Report, 2018.

[31] Intel Core i7-7500U Processor, Intel Product Specification Sheet, 2017.

[32] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

[33] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache re-
placement using re-reference interval prediction (RRIP),” in Proc. International Sym-
posium on Computer Architecture (ISCA), 2010.

[34] J. Jeong and M. Dubois, “Optimal replacements in caches with two miss costs,” in
Proc. Symposium on Parallel Algorithms and Architectures (SPAA), 1999.

[35] ——, “Cache replacement algorithms with nonuniform miss costs,” Transactions on
Computers, 2006.

[36] N. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers,” in Proc. International Symposium on
Computer Architecture (ISCA), 1990.

[37] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White paper, 2016.

[38] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: virtualized cloud infras-
tructure without the virtualization,” in Proc. International Symposium on Computer
Architecture (ISCA), 2010.

[39] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement based on reuse-
distance prediction,” in Proc. International Conference on Computer Design (ICCD),
2007.

[40] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz, “Crowdflow:
Efficient information flow security,” in Information Security, 2015.

[41] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-hashing for message authen-
tication,” RFC2104, 1997.

[42] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy: Safe speculation for secure
memory,” in Proc. International Symposium on Microarchitecture (MICRO), 2016.

[43] ——, “MAPS: Understanding metadata access patterns in secure memory,” in Proc.
International Symposium on Performance Analysis of Systems and Software (ISPASS),
2018.

95



[44] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in Proc. International Symposium on Microarchitecture
(MICRO), 2009.

[45] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and B. Hard-
ekopf, “Caisson: a hardware description language for secure information flow,” in
Conference on Programming Language Design and Implementation (PLDI), 2011.

[46] D. Lie, T. Chandramohan, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural support for copy and tamper resistant software,” SIG-
PLAN Notices, 2000.

[47] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an untrusted operating
system on trusted hardware,” in Proc. Symposium on Operating Systems Principles
(SOSP), 2003.

[48] K. Malladi, I. Shaeffer, L. Gopalakrishnan, D. Lo, B. Lee, and M. Horowitz, “Towards
energy-proportional datacenter memory with mobile DRAM,” in Proc. International
Symposium on High Performance Computer Architecture (HPCA), 2012.

[49] R. C. Merkle, “Protocols for public key cryptosystems.” in Proc. Symposium on Secu-
rity and Privacy (SP), 1980.

[50] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching for local
computer networks,” Communications of the ACM, 1976.

[51] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,
X. Gao, and G. Klein, “seL4: from general purpose to a proof of information flow
enforcement,” in Proc. Symposium on Security and Privacy (S&P), 2013.

[52] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner, “Information
flow isolation in I2C and USB,” in Design Automation Conference (DAC), 2011.

[53] N. I. of Standards and Technology, “197: Advanced encryption standard (AES),”
Federal Information Processing Standards Publication (FIPS), 2001.

[54] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system simulator for
x86 CPUs,” in Proc. Design Automation Conference (DAC), 2011.

[55] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Exploiting compressed block size as an indicator of future reuse,” in
Proc. High Performance Computer Architecture (HPCA), 2015.

[56] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor vulnerabilities
in cloud computing servers,” in Proc. International Workshop on Security in Cloud
Computing (WSCC), 2013.

[57] N. Perlroth, “All 3 billion yahoo accounts were affected by 2013 attack,” The
New York Times, 2017. [Online]. Available: https://www.nytimes.com/2017/10/03/
technology/yahoo-hack-3-billion-users.html

96

https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html


[58] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proc. International Symposium on Computer
Architecture (ISCA), 2007.

[59] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for MLP-aware cache
replacement,” Proc. International Symposium on Computer Architecture (ISCA), 2006.

[60] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches,” in Proc. International
Symposium on Microarchitecture (MICRO), 2006.

[61] S. Ramgovind, M. M. Eloff, and E. Smith, “The management of security in cloud
computing,” in Information Security for South Africa (ISSA), 2010.

[62] R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic communications system
and method,” 1983, uS Patent 4,405,829.

[63] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address independent seed
encryption and Bonsai Merkle trees to make secure processors OS- and performance-
friendly,” in Proc. International Symposium on Microarchitecture (MICRO), 2007.

[64] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data protection for distributed
shared memory multiprocessors,” in Proc. International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2006.

[65] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-level integrity
and confidentiality protection for distributed shared memory multiprocessors,” in Proc.
International Symposium on High Performance Computer Architecture (HPCA), 2008.

[66] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate memory
system simulator,” Computer Architecture Letters (CAL), 2011.

[67] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and M. K. Qureshi,
“Morphable counters: Enabling compact integrity trees for low-overhead secure mem-
ories,” in Proc. International Symposium on Microarchitecture (MICRO), 2018.

[68] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi, “Synergy:
Rethinking secure-memory design for error-correcting memories,” in Proc. Interna-
tional Symposium on High Performance Computer Architecture (HPCA), 2018.

[69] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, and S. W. Keckler, “Late-
binding: enabling unordered load-store queues,” in Proc. International Symposium on
Computer Architecture (ISCA), 2007.

[70] T. Sha, M. M. Martin, and A. Roth, “Scalable store-load forwarding via store queue
index prediction,” in Proc. International Symposium on Microarchitecture (MICRO),
2005.

[71] ——, “Nosq: Store-load communication without a store queue,” in Proc. International
Symposium on Microarchitecture (MICRO), 2006.

97



[72] W. Shi and H.-H. S. Lee, “Authentication control point and its implications for secure
processor design,” in Proc. International Symposium on Microarchitecture (MICRO),
2006.

[73] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu, “Architecture support for high speed pro-
tection of memory integrity and confidentiality in multiprocessor systems,” in Proc. In-
ternational Conference on Parallel Architectures and Compilation Techniques (PACT),
2004.

[74] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High efficiency counter
mode security architecture via prediction and precomputation,” in Proc. International
Symposium on Computer Architecture (ISCA), 2005.

[75] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and
area model,” Compaq Computer Corporation, Tech. Rep., 2001.

[76] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton, “Continual flow
pipelines,” Proc. International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2004.

[77] S. Subramaniam and G. H. Loh, “Fire-and-forget: Load/store scheduling with no store
queue at all,” in Proc. International Symposium on Microarchitecture (MICRO), 2006.

[78] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient memory in-
tegrity verification and encryption for secure processors,” in Proc. International Sym-
posium on Microarchitecture (MICRO), 2003.

[79] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS: Archi-
tecture for tamper-evident and tamper-resistant processing,” in Proc. International
Conference on Supercomputing (ICS), 2003.

[80] J. Szefer and R. B. Lee, “Architectural support for hypervisor-secure virtualization,”
Proc. International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2012.

[81] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing paging overheads
in sgx with effcient integrity verification structures,” Proc. International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2018.
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