
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 33

Baobab Merkle Tree for Efficient Secure Memory

Samuel Thomas , Kidus Workneh , Ange-Thierry Ishimwe , Zack McKevitt , Phaedra Curlin ,
R. Iris Bahar , Joseph Izraelevitz , and Tamara Lehman

Abstract—Secure memory is a natural solution to hardware
vulnerabilities in memory, but it faces fundamental challenges of
performance and memory overheads. While significant work has
gone into optimizing the protocol for performance, far less work
has gone into optimizing its memory overhead. In this work, we
propose the Baobab Merkle Tree, in which counters are memoized in
an on-chip table. The Baobab Merkle Tree reduces spatial overhead
of a Bonsai Merkle Tree by 2-4X without incurring performance
overhead.

Index Terms—Security, secure memory, encryption, integrity.

I. INTRODUCTION

W ITH the growing use of remote services for computation
on personal data, the issue of providing security and

privacy has gained growing importance. When clients offload
sensitive information to a remote machine, they do it in trust
that they are protected from several attacks orchestrated by
an untrusted OS or cloud administrators [1]. While subject to
remote computation, some level of protection must be employed
to compute on sensitive data such as encryption keys, genetic
information, blockchain transactions, etc.

In most scenarios today, this protection is guaranteed through
secure computation solutions like Intel SGX that implement
secure memory [2]. Secure memory is defined by a protocol that
makes use of a Bonsai Merkle Tree (BMT) [3]. This is a tree of
hashes that is built on top of encryption-counters (to implement
counter-mode encryption), and is coupled with data message
authentication codes (MACs), which are secure hashes of data.
To authenticate data coming from outside the trusted boundary
(the chip), the data block’s decryption counter is fetched and
the counter’s integrity is verified against the Bonsai MT by
traversing it all the way up to the root, which is stored on-chip and
thus its value is trusted. In addition, the data’s integrity is verified
against its previously stored MAC. However, secure memory
has two fundamental limitations: (1) the memory authentication
protocol requires additional work on memory fetch, which

Manuscript received 4 October 2023; revised 22 December 2023; accepted
28 January 2024. Date of publication 31 January 2024; date of current version
26 February 2024. (Corresponding author: Samuel Thomas.)

Samuel Thomas is with the Department of Computer Science, Brown Uni-
versity, Providence, RI 02912 USA (e-mail: samuel_thomas@brown.edu).

Kidus Workneh, Ange-Thierry Ishimwe, Phaedra Curlin, Joseph
Izraelevitz, and Tamara Lehman are with the Electrical, Computer
and Energy Engineering Department, University of Colorado Boulder,
Boulder, CO 80309-0401 USA (e-mail: kidus.workneh@colorado.edu;
ange-thierry.ishimwe@colorado.edu; phaedra.curlin@colorado.edu; Joseph.
Izraelevitz@colorado.edu; tamara.lehman@colorado.edu).

Zack McKevitt is with the Computer Science Department, Uni-
versity of Colorado Boulder, Boulder, CO 80309-0401 USA (e-mail:
zack.mckevitt@colorado.edu).

R. Iris Bahar is with the Department of Computer Science, Colorado School
of Mines, Golden, CO 80401-1887 USA (e-mail: iris_bahar@brown.edu).

Digital Object Identifier 10.1109/LCA.2024.3360709

limits performance; and (2) secure memory metadata requires
reserving a significant amount of in-memory space, which
limits the amount of data accessible memory. While there has
been significant work towards resolving (1) [4], [5], [6], [7], [8],
there has been far less work towards resolving (2) [9], [10], [11].

To alleviate this problem, we propose the Baobab Merkle Tree.
The Baobab Merkle Tree takes advantage of the observation that
many counters in memory have the same value. Given this ob-
servation, we propose an alternative protocol where encryption
counter values are memoized in an on-chip table and the indices
into the memoization table become the leaves of the integrity
tree. As a result, the integrity tree memory overhead is shrunk
to 2–4X less compared to the BMT, as the index size is 2–4X
smaller than the counters. Furthermore, the Baobab Merkle Tree
increases the likelihood of finding a metadata value in an on-chip
metadata cache because a Baobab Merkle Tree node protects
more data than its BMT equivalent.

In this letter, we present the following contributions:
1) We propose the Baobab Merkle Tree, which memoizes

encryption counters in an on-chip table, decreasing the
spatial overhead of the integrity tree by 2− 4X .

2) We define a technique to memoize encryption counters
on-chip.

3) We evaluate the Baobab Merkle Tree in gem5 [12], and
discuss the trade-offs of its design.

II. BACKGROUND

A. Threat Model

We assume a well understood threat model where an attacker
has physical access to the device. The attacker can snoop and/or
modify data while it is in transport and stored in memory. We
assume the processor chip is within the trusted computing base
and data on-chip cannot be tampered. Secure memory ensures
that the values that may be corrupted in memory do not cross
the trusted boundary (on-chip components are trusted). As such,
defending against software vulnerabilities, side channels, and
denial of service attacks are out of scope.

B. Secure Memory

Data is encrypted with counter-mode encryption [3], where
each data has a unique counter value that provides spatially and
temporally unique encryption keys. Data integrity is preserved
by storing a keyed hash of that data and counter in memory
(i.e., MAC). The MAC alone is not sufficient to protect the
system against replay attacks, where the attacker replaces the
data, MAC, and encryption counter with a stale value [11].

The Bonsai Merkle Tree (BMT) protects against replay
attacks. The BMT is a tree of hashes in which the root of the
tree is stored on-chip (i.e., is trusted) and it is built on top of

1556-6056 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 28,2025 at 20:20:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5394-9322
https://orcid.org/0009-0002-9190-594X
https://orcid.org/0009-0000-9277-3227
https://orcid.org/0009-0000-7507-9516
https://orcid.org/0000-0002-0915-3447
https://orcid.org/0000-0001-6927-8527
https://orcid.org/0009-0002-1267-5024
https://orcid.org/0000-0001-9779-1838
mailto:samuel_thomas@brown.edu
mailto:kidus.workneh@colorado.edu
mailto:ange-thierry.ishimwe@colorado.edu
mailto:phaedra.curlin@colorado.edu
mailto:Joseph.penalty -@M Izraelevitz@colorado.edu
mailto:Joseph.penalty -@M Izraelevitz@colorado.edu
mailto:tamara.lehman@colorado.edu
mailto:zack.mckevitt@colorado.edu
mailto:iris_bahar@brown.edu

34 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024

Fig. 1. Incrementing counters using the elimination column.

the encryption counters. To verify a counter with the tree, its
hash is computed and compared against the stored value in the
tree, traversing the tree until a trusted value is reached. On-chip
metadata caches can be used to further optimize the BMT.
By caching recently accessed nodes on-chip, the authentication
process is shortened as it can stop as soon as a node is found in
the metadata cache — values in the cache reside on-chip within
the trusted boundary.

C. Secure Memory Optimizations

The notion of using memoization for accelerating the secure
memory protocol is not immediately novel. Recent work [13]
makes a similar observation — many counters have similar
values. However, prior work is concerned with redundant AES
computation on these addresses from a performance rather than
redundant storage perspective. Indeed, much of the attention
in the state-of-the-art has been focused on reducing the perfor-
mance overheads of secure memory [4], [5], [6], [7], [8]. On
the spatial optimization side, prior work implements variable
arities in BMTs to reduce the overall size of the integrity tree it-
self [9]. This approach suffers from performance degradation. In
contrast, the Baobab Merkle Tree does not impact performance.
Work in Synergy [14] describes a system by which the perfor-
mance to access data MACs is improved by storing these values
in the ECC chips. This design eliminates an additional memory
access to fetch the data MAC from memory—it is fetched at
the same time as the data itself. An alternative approach is to
dynamically adjust the arity of the tree on demand as it is done
in Morphable Counters [10]. However, the key drawback of
this approach is the frequent counter overflows and subsequent
re-encryption that counteracts the spatial overhead savings with
performance overhead.

III. DESIGN

The Baobab Merkle Tree is a modification of the traditional
BMT design that adds a single layer of indirection. The tree,
instead of protecting each data block’s counter, now protects
the block’s associated index into a memoized counter table. The
table, containing all counter values, is stored within the on-chip
memory controller. The table is divided into rows (i.e., entries),
and each row contains a group of encryption counters (i.e., cells).
Each data block is assigned to a fixed memoization table row,
and its associated index (from the tree) indicates the column
of its current counter value. The total number of cells in the
memoization table is significantly smaller than the number of
data blocks—the indices allow blocks to share counter values.

A. The Memoization Table

The memoization table is a fixed size buffer stored on-chip.
This buffer is composed of r memoization table entries, and each
entry has c cells. The data stored in each cell reflects a counter
value that can be used for counter-mode encryption.

To reduce the likelihood of overflow and maximize utiliza-
tion of space, each counter in the memoization table occupies
(64− n) bits, which essentially resembles the traditional major
counter in the split-counter design. When incrementing a counter
value (described in Section III-C), the Baobab system needs to
consider the number of blocks currently using said counter value.
Thus, the proposed design includes a reference counter to track
the number of blocks actively using the encryption counter value.
Only the 64− n bit counter is used for encryption/decryption,
not the reference counter.

The remaining n bits of the column values are used to keep
track of the number of blocks currently using the counter.
These bits represent a “sticky counter” [15], commonly used for
reference counting. For example, suppose we assume a 60 bit
encryption counter and 4 reference counter bits. The 4 bits are
incremented every time a new block uses the counter value and
it is decremented when a block changes to a new counter value.
When the 4 bits reach their maximum value of 15 (i.e., 0xf) the
reference counter reaches the “non-decrement state.” and can
only be reset by finding all blocks pointing to it and re-encrypting
them with a new counter value.

B. Baobab Merkle Tree

The Baobab Merkle Tree is a tree of indices rather than a tree
of counters. The leaves of the Baobab Merkle Tree are composed
of n indices and each value is composed of log2c bits, where c
is the number of cells per memoization table entry. The physical
address of the data determines where the cell index is stored,
which is similar to how encryption counters are found in the
traditional BMT design. Once the leaf node storing the index is
accessed, the value stored determines the cell in the memoization
table entry with the counter to be used for en/decryption.

C. Incrementing Counters

Incrementing a counter in the memoization table depends on
its reference count and the state of the other counters within its
entry. In particular, there are four types of increment scenarios
in the memoization table: (1) in-place increment (2) next-cell
increment, (3) free-cell increment, and (4) blocking increment.
We use Fig. 1 to demonstrate each case.

In-place increment occurs when the block that requires in-
crementing the counter is the only block using that cell (Fig. 1,
scenario 1). If the current cell holds the largest counter value
in the entry or if its counter value is at least two less than
the next highest counter value (to avoid duplication of counter
values), then it is safe to increment the current counter value
in the column. The corresponding index in the Baobab Merkle
Tree does not need to change. As such, no secure memory
metadata access to main memory is required because leaves in
the Baobab Merkle Tree refer to indices, which in this case do
not change. This is a performance savings versus baseline BMT
implementations.

Next-cell increment (scenario 2) occurs when the data is
mapped to a cell with a reference counter greater than one and
where there is another cell in the entry with a higher encryption

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 28,2025 at 20:20:28 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 35

counter. It also occurs when a cell has a reference counter of
one and another cell in the entry has an encryption counter one
more than the current encryption counter to avoid duplication of
counter values. In this case, the data block needs to now use the
index of the next greatest encryption counter in the row. As such,
this new index is stored in the Baobab Merkle Tree, whose state
has changed requiring an update to the tree. In terms of memory
operations, this case exhibits similar behavior to a standard write
in a BMT.

Free-cell increment (scenario 3) occurs when data uses the
cell with the highest encryption counter which is not held
exclusively, but another cell in the entry has a reference count
of zero (i.e., a free cell). In this case, the increment uses the free
cell, filling it with the value of the incremented prior encryption
counter.

Blocking increment (scenario 4) occurs when the data uses
the cell with the highest encryption counter with a reference
counter greater than one, and the entry has no free cells available
to reuse. For this case, the system reserves the last column of the
memoization table entry as the “elimination column.” Suppose,
after some time, the entry takes the state of the upper row in
Fig. 1 scenario 4. In order to increment from 22 (i.e., next cell
increment), the elimination column is filled. This locks further
authentications to the entry to avoid conflicts. Then, in the lower
row, unblocking is achieved by scanning for the least referenced
cell in the entry and re-encrypting those data with the new
encryption counter value created in the elimination column (i.e.,
re-encrypted with 23). The encryption counter from the elimi-
nation column then replaces the cell with the fewest references,
and that data is re-encrypted with the new counter value. To find
which data need to be re-encrypted, we need to perform a reverse
mapping from counters to data to check which data points to
that column and needs to be re-encrypted. To ensure that there is
adequate hardware, while re-encryption is happening we block
all authentications that require this memoization row.

D. Assigning Blocks to Memoization Entries

The assignment of data to memoization table entries is an
important feature of the Baobab Merkle Tree. To improve
effectiveness, assignment of data to an entry works from a
heuristic to increase the likelihood of in-place increment and
decrease the likelihood of needing a blocking increment.

We work from the observation that, like virtual memory,
physical memory exhibits spatial locality (especially within a
page). As such, contiguous data blocks (64 bytes) within a page
should be mapped to different memoization table entries. By
doing so, the frequently used data within a page will have its
counters increase monotonically in-place in different memoiza-
tion table entries. If no physical locality is observed, blocks
will need to increment counters at similar but slightly different
rates, which will occupy more cells per entry. We “stripe” the
memory address in their mapping to memoization table entry,
as per Fig. 2.

E. Security Implications

In order to uphold secure memory semantics, Bonsai MTs
protect the integrity of encryption counters and use data MACs
to ensure that data has not been corrupted [11]. The intuition
is that only the untampered encryption counter can produce the
decryption key that decrypts the data to plaintext that matches the
MAC. In the Baobab Merkle Tree, counters cannot be tampered

Fig. 2. Memory assignment from address to memoization table row.

TABLE I
DESCRIPTION OF THE SPATIAL TRADE-OFFS IN THE BAOBAB MERKLE TREE

FOR VARYING MEMORY SIZES

as they are stored on-chip. Any attempts to tamper or replay
the pointer will be detected by the integrity tree in the exact
same way that the BMT would detect tampering or replaying of
encryption counters in memory.

IV. EVALUATION

A. Methodology

We implement the Baobab Merkle Tree as an extension to
gem5 [12], a cycle-accurate full system simulator. We configure
a four-core simulation where each core has private L1 and L2
caches, with a shared 8MB L3 cache. The integrity tree is 8-ary,
and the “leaf” arity is n-ary (configuration dependent, but either
128-ary or 256-ary, described below). We use a 32 kB metadata
cache and a 224 kB memoization table. Each cell in the table is
8-bytes, with 58 bits belonging to the encryption counter and 6
bits acting as the sticky reference counter. We run two baseline
approaches, one with a comparable metadata cache size to the
Baobab Merkle Tree (i.e., 32 kB metadata cache) and one with a
comparable on-chip resource size (i.e., 256 kB metadata cache).
We use SimPoint to determine the region of interest in each
benchmark, and run 500 million instructions from this region
of interest. In order to avoid inaccuracies in modeling due to
cold-boot, we prefill the memoization table state. The prefilled
contents are collected from memory traces of each of the SPEC
2017 CPU benchmarks [16] run back-to-back while modeling
what the table state would be offline from the simulation. We
then run our Baobab Merkle Tree implementation using the
SPEC 2017 CPU benchmarks and the Belgian street network
workloads from the GAP benchmark suite [17].

B. Spatial Overhead

The spatial overhead of Merkle Trees in secure memory
scales proportionally to the overall memory size. Table I shows
the amount of reserved memory space required to store the
integrity tree across configurations, showing both a Baobab and
traditional Bonsai Merkle Tree. The fact that we can protect
and authenticate twice as much data per leaf in the Baobab
Merkle Tree versus the Bonsai means that the Baobab Merkle
Tree requires half as much space in memory as the Bonsai MT.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 28,2025 at 20:20:28 UTC from IEEE Xplore. Restrictions apply.

36 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024

Fig. 3. Evaluation across SPEC CPU 2017 and GAP benchmark suites. (Shapes) Execution overhead of the benchmark normalized to baseline secure memory
protocol with 32 kB metadata cache. (Bars) Metadata cache misses per LLC miss. In both metrics, lower is better.

The Baobab Merkle Tree size strictly depends on the number
of cells within a memoization table entry. If, for example, we
store 4 cells per entry, then only 2 bits are required to track the
index into the entry, and thus the Baobab Merkle Tree has a spa-
tial reduction of 4X rather than 2X (256-ary versus 128-ary leaf
level). However, we opted for 16 cells per entry in our approach
in order to limit the number of blocking cases, requiring 4 bits to
index into the memoization entry. Blocking cases can be done in
parallel with accesses to different memoization table entries, so
they do not impact performance, but they should still be avoided
as much as possible to reduce the bandwidth requirement to
service these requests.

C. Runtime Evaluation

Fig. 3 (shapes) shows that, on average, the Baobab Merkle
Tree implementation does not impact performance; it has an
average performance benefit of less than two percent. That is,
any differences in performance cannot be attributed to anything
other than noise. As per [13], the latency to update a memoization
table entry is 2ns, which is negligible relative to the memory
access latency. For this reason, the overhead due to indirection
incurred by the Baobab Merkle Tree is similarly negligible.
While there is some additional information being tracked in
the memoized data itself (i.e., the sticky reference counters),
updating these values can be done at the same cycle and do
not incur additional execution overheads. Furthermore, we find
that the metadata cache hit rates are very high in the baseline
approaches. Given these factors, the Baobab Merkle Tree has
no significant overhead relative to the baseline secure memory
model.

The Baobab Merkle Tree has a significant reduction in meta-
data cache misses relative to the Bonsai MT baseline, even
though more on-chip space is used by the metadata cache. Fig. 3
(bars) shows the number of overall metadata cache misses per
last-level cache miss, comparing Baobab against the baseline
secure memory systems with different metadata cache sizes.
In every case, Baobab makes better use of the metadata cache
capacity, resulting in a reduction in metadata cache misses.

V. CONCLUSION

In this letter we present the Baobab Merkle Tree. We show
that, because indices require fewer bits than the counters them-
selves, the Baobab Merkle Tree reduces the spatial overhead
of the integrity tree by 2-4X. Furthermore, by making data
more compact, the Baobab Merkle Tree reduces metadata cache
misses, which can be a promising approach for metadata cache
dependent secure memory protocols. The Baobab Merkle Tree

is a promising direction for future optimizations in both perfor-
mance and spatial overheads of secure memory.

REFERENCES

[1] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” ACM SIGARCH Comput.
Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[2] F. McKeen et al., “Intel software guard extensions (intel SGX) support
for dynamic memory management inside an enclave,” in Proc. Hardware
Architectural Support Secur. Privacy, 2016, pp. 1–9.

[3] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors OS-and performance-friendly,” in Proc. IEEE/ACM 40th Ann.
Int. Symp. Microarchitecture, 2007, pp. 183–196.

[4] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main mem-
ory system with incremental encryption,” in Proc. Int. Symp. Comput.
Architecture, 2011, pp. 177–188.

[5] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-NVM:
Persistency for integrity-protected and encrypted non-volatile memories,”
in Proc. Int. Symp. Comput. Architecture, 2019, pp. 104–115.

[6] F. Hou, H. He, N. Xiao, F. Liu, and G. Zhong, “Efficient encryption-
authentication of shared bus-memory in SMP system,” in Proc. Int. Conf.
Comput. Inf. Technol., 2010, pp. 871–876.

[7] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy: Safe specula-
tion for secure memory,” in Proc. Int. Symp. Microarchitecture, 2016,
pp. 1–13.

[8] P. Zuo, Y. Hua, and Y. Xie, “SuperMem: Enabling application-transparent
secure persistent memory with low overheads,” in Proc. IEEE/ACM Int.
Symp. Microarchitecture, 2019, pp. 479–492.

[9] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
paging overheads in SGX with efficient integrity verification structures,”
in Proc. Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2018, pp. 665–678.

[10] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in Proc. IEEE/ACM 51st Annu. Int.
Symp. Microarchitecture, 2018, pp. 416–427.

[11] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Improving
cost, performance, and security of memory encryption and authentication,”
ACM SIGARCH Comput. Architecture News, vol. 34, no. 2, pp. 179–190,
2006.

[12] J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,”
2020, arXiv:2007.03152.

[13] X. Wang, D. Talapkaliyev, M. Hicks, and X. Jian, “Self-reinforcing memo-
ization for cryptography calculations in secure memory systems,” in Proc.
55th IEEE/ACM Int. Symp. Microarchitecture, 2022, pp. 678–692.

[14] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi,
“Synergy: Rethinking secure-memory design for error-correcting mem-
ories,” in Proc. Int. Symp. High Perform. Comput. Architecture, 2018,
pp. 454–465.

[15] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley, “Taking
off the gloves with reference counting immix,” ACM SIGPLAN Notices,
vol. 48, no. 10, pp. 93–110, 2013.

[16] J. Bucek, K.-D. Lange, and J. V. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Proc. Companion ACM/SPEC Int.
Conf. Perform. Eng., 2018, pp. 41–42.

[17] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark suite,”
2015, arXiv:1508.03619.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 28,2025 at 20:20:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

