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A telecommunication satellite in a geostationary orbit requires a significant amount of 

propellant for station-keeping maneuvers, in addition to the propellant needed for transfer 

from GTO to the geostationary orbit. The propellant mass significantly increases the launch 

mass of the spacecraft, requiring a larger launch vehicle and increasing the cost of launch. 

However, low-thrust electric propulsion can lower the necessary propellant mass and reduce 

the launch cost. This paper seeks to explore the mass savings of electric propulsion through 

simple numerical simulations. Analysis indicates that the launch mass of an electric satellite 

is only 45% of that for a satellite with conventional, chemical propulsion. 

Nomenclature 

 

A = cross-sectional area (m
2
) 

AU = astronomical unit 

a = acceleration (m/s
2
) 

a = semi-major axis (km) 

CR = coefficient of reflectivity 

c = speed of light (299,792,458 m/s) 

ECEF = Earth-centered, Earth-fixed (coordinate frame) 

ECI = Earth-centered, inertial (coordinate frame) 

F = thrust (N) 

GEO  = geostationary orbit 

GTO = geostationary transfer orbit 

g0 = standard gravitational acceleration (9.81 m/s
2
) 

J2, J3 = Earth gravitational field parameters 

Isp = specific impulse (s) 

i = inclination (°) 

K = control gain 

LEO = low Earth orbit 

MMH = monomethylhydrazine 

MON = mixed oxides of nitrogen 

mi = initial mass (kg) 

mf  = final mass (kg) 

R0 = one astronomical unit (149,597,870.7 km) 

RE = Earth radius (6,378.1363 km) 

r = position vector (km) 

SRP = solar radiation pressure 

r = orbital radius (km) 

t = time (s) 

V = speed (km/s) 

XIPS = xenon ion propulsion system 
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∆V = change in velocity (km/s) 

λ = longitude (°) 

μ  = gravitational parameter (km
3
/s

2
) 

θ = angle (°) 

ϕ = latitude (°) or average solar radiation flux (1357 W/m
2
) 

ωE = Earth rotation rate (°) 

I. Introduction and Spacecraft Parameters 

 
atellites in geostationary orbits (GEO) provide lucrative business opportunities for telecommunication 

companies. The lifetimes for these satellites can be as long as 15 years of operation. The mass of propellant 

onboard a satellite limits the lifetime, as the satellite must periodically perform station keeping maneuvers to retain 

its specified orbit. Once the satellite runs out of propellant, it can no longer perform maneuvers, and the satellite 

drifts from its orbit. Therefore, more propellant extends the lifetime of a satellite; however, this additional propellant 

increases the launch mass of the spacecraft and so increases the cost to launch the satellite. It is desirable, then, to 

reduce the amount of propellant aboard the spacecraft, while still meeting mission requirements for station keeping. 

Traditionally, small thrusters using hypergolic propellants or a monopropellant have been used on GEO satellites 

for station keeping. Likewise, a chemical rocket has been used as an apogee kick motor to place the satellite in its 

orbit. However, the low specific impulse of chemical rockets necessitates a large amount of propellant, according 

the ideal rocket equation:  

 𝛥𝑉 = 𝐼𝑠𝑝𝑔0 ln (
𝑚𝑖

𝑚𝑓

) (1) 

 

The ratio of the final mass of the rocket to the initial mass has an exponential dependency on the specific impulse, so 

any change in the specific impulse drastically changes the required initial mass of the spacecraft. The limitation on 

the specific impulse for chemical rockets increases the amount of propellant requirement. 

More recently, though, electric propulsion has been used onboard GEO satellites. Electric propulsion can achieve 

much higher specific impulses than chemical rockets, allowing for significant mass savings. The trade-off is that 

electric propulsion is limited by the amount of electrical power that the satellite can generate. For GEO satellites, 

power is generally provided by solar panels, so the power is limited by the size of the panels. Too large of panels 

increases the mass, complexity, and cost of the spacecraft. The limitation on power prevents electric propulsion from 

producing large thrusts; an electric thruster usually cannot produce more than 1 N of thrust. 

Low thrust requires a change in mission design from chemical propulsion. Chemical rockets produce high thrust 

at low specific impulse, so they can be fired infrequently for brief periods to perform maneuvers. A short period of 

thrusting creates the necessary ΔV for a maneuver, and the burn time is short enough that the maneuver can be 

treated as an impulse, that is, an instantaneous change in velocity. Electric rockets, however, provide low thrust at 

high specific impulse, so they must burn for longer periods of time to achieve the same ΔV as a chemical rocket. 

The time of the burn is too long to treat as an impulse; rather, a nearly constant thrust acts on the spacecraft over a 

longer period of time. 

One example of an electric geostationary satellite is Eutelsat 115 West B. It was launched aboard a Falcon 9 

rocket on March 2, 2015, from the Kennedy Space Center. Its launch mass was 2,205 kg. After approximately eight 

months of orbit-raising maneuvers, the satellite entered service in a GEO located at a longitude of 114.9° West. The 

expected lifetime of the spacecraft is 15 years. Power is generated by two solar arrays that span a distance of 33 

meters, and lithium-ion batteries store the power. The Eutelsat 115 West B satellite is unique in that it is one of the 

first GEO satellites to use electric propulsion not only for station-keeping maneuvers, but also for raising its orbit to 

GEO. Whereas previous satellites have used chemical apogee kick motors to enter GEO, and then used electric 

propulsion for station keeping, Eutelsat 115 West B relies solely on electric propulsion. 
[1,2,3] 

The Eutelsat 115 West B satellite utilizes four XIPS-25 thrusters for propulsion. The XIPS-25 thruster is an 

electro-static thruster that uses xenon as a propellant. The designation of 25 indicates the diameter of the grid used to 

accelerate the xenon ions; the XIPS-25 thruster can provide up to nine times the thrust of the earlier XIPS-13 

thruster. The thruster can operate in low- and high-power modes: the high-power mode is used for orbit-raising, and 

the low-power mode is employed for station-keeping maneuvers. Table 1 summarizes the performance 

characteristics of a XIPS-25 thruster.
[1,4]
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Table 1: Performance Characteristics for the XIPS-25 Thruster 

Parameter Low-Power Mode High-Power Mode 

Input Power (W) 2,067 4,215 

Thrust (mN) 79 165 

Specific Impulse (s) 3,400 3,500 

Electrical Efficiency (%) 87 87 

 

Figure 1 provides a concept image for the Eutelsat 115 West B satellite, and Figure 2 gives a schematic for a XIPS 

thruster. 

 

                

 

In contrast to a satellite with electric propulsion, the Eutelsat W3C satellite used a liquid S400 engine to achieve 

GEO. The S400 is a bipropellant engine that uses MMH fuel with MON oxidizer at a mixture ratio of 1.65. It 

provides a thrust between 340 and 440 N at a specific impulse of 318 s. The engine can thrust for up to 8.3 hours 

and 100 cycles of operation. With fuel, the launch mass of Eutelsat W3C was 5,456 kg, almost 2.5 times the launch 

mass of Eutelsat 115 West B. While the thrusters used for station keeping on Eutelsat W3C are not known, it can be 

assumed that they use hydrazine (which has a specific impulse around 230 s), as has been used for previous Eutelsat 

missions.
[6,7,8] 

II. Transfer to GEO 

First, the transfer from LEO to GEO must be considered, as the propulsions system must be able to provide the 

necessary impulse to reach a GEO orbit. The required propellant mass for the transfer is considered for the cases of a 

chemical rocket and a low-thrust electric system.
 

 Chemical Rocket A.

 

For a chemical rocket, the equations for the required ΔV to reach GEO are well known. Two-body motion is 

considered for this case, and maneuvers are treated as short impulses. For a Hohmann transfer, two burns are 

required to raise the orbit from LEO to GEO: one burn at LEO to enter the transfer orbit, and another at the apogee 

of the GTO to circularize the orbit. To enter an equatorial orbit, the burns must also perform an inclination change. 

The following equations are used to calculate the ΔV necessary to reach GEO.
[9] 

The radius for a circular orbit at geostationary altitude is 35,786 km. Assuming that the spacecraft begins in a 

LEO of altitude 150 km (radius of 6528 km), the semi-major axis of the transfer orbit can be found by treating the 

LEO radius as perigee and the GEO radius as apogee, as given in Eq. (2). 

 𝑎𝑡𝑟𝑎𝑛𝑠 =
1

2
(𝑟𝐿𝐸𝑂 + 𝑟𝐺𝐸𝑂) (2) 

Figure 1. Concept Image of Eutelsat 115 West B.
[1]

  Figure 2. Schematic of XIPS thruster.
[5]
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Equation (3) gives the speed of a spacecraft in a circular orbit, and Eq. (4) provides the speed of a spacecraft in an 

elliptical orbit. These equations can be used to calculate the speed at LEO to be 7.814 km/s, the speed after the LEO 

burn at GTO perigee to be 10.028 km/s, the speed at GTO apogee to be 1.592 km/s, and the speed at GEO to be 

3.075 km/s. 

 𝑉𝑐𝑖𝑟𝑐 = √
𝜇

𝑟
 (3) 

 𝑉𝑒𝑙𝑙𝑝 = √𝜇 (
2

𝑟
− −

1

𝑎
) (4) 

A plane change must also lower the inclination of the orbit. A spacecraft cannot directly enter an orbit at an 

inclination lower than the latitude its launch site. For a launch from the Kennedy Space Center, this inclination is 

28.5°. A geostationary orbit is necessarily equatorial, with an inclination of 0°, so the maneuvers must also decrease 

the inclination while raising the orbit. 

If the entirety of the plane change is performed during the second burn (from GTO apogee to GEO), then Eq. (5) 

provides the ΔV for the second burn, while Eq. (6) gives the ΔV for the first burn. For this scenario to GEO, the first 

burn requires a ΔV of 2.469 km/s, and the second requires a ΔV of 1.840 km/s. The total ΔV for both maneuvers is 

4.309 km/s. 

 𝛥𝑉1 = 𝑉𝐺𝑇𝑂,𝑝 − 𝑉𝐿𝐸𝑂 (5) 

 𝛥𝑉2 = √𝑉𝐺𝑇𝑂,𝑎
2 + 𝑉𝐺𝐸𝑂

2 − 2𝑉𝐺𝑇𝑂,𝑎𝑉𝐺𝐸𝑂 cos 𝛥𝑖 (6) 

 

However, a small savings of ΔV can be achieved by performing a portion of the inclination change at the first 

burn, and performing the rest at the second burn. Equations (7) and (8) calculate each ΔV for this case. The change 

in inclination achieved by the first burn is designated as Δi1. Summing these two equations gives the total ΔV, and 

differentiating this total with respect to Δi1 allows for a computation of the change in inclination that minimizes the 

total ΔV required. For this case of LEO to GEO, the optimal inclination changes are 2.154° at the first burn (for a 

ΔV of 2.492 km/s) and 26.346° at the second burn (for a ΔV of 1.793 km/s). The total ΔV for both maneuvers is 

4.285 km/s, saving 24 m/s from the previous case. 

 𝛥𝑉1 = √𝑉𝐿𝐸𝑂
2 + 𝑉𝐺𝑇𝑂,𝑝

2 − 2𝑉𝐿𝐸𝑂𝑉𝐺𝑇𝑂,𝑝 cos 𝛥𝑖1 (7) 

 𝛥𝑉2 = √𝑉𝐺𝑇𝑂,𝑎
2 + 𝑉𝐺𝐸𝑂

2 − 2𝑉𝐺𝑇𝑂,𝑎𝑉𝐺𝐸𝑂 cos(𝛥𝑖 − 𝛥𝑖1) (8) 

 

If the chemical rocket were required to provide the thrust for both maneuvers, the propellant mas required would 

be prohibitively large. For the Eutelsat W3C satellite specified in Section 1, the propellant mass needed would be 

4,075 kg out of the initial mass of 5,456 kg. This would take 75% of the spacecraft’s mass for propellant just to 

reach GEO, without considering later station-keeping maneuvers. However, it can be assumed that the launch 

vehicle can insert the payload into GTO, and the spacecraft’s motor only needs to burn at GTO apogee to enter 

GEO. In this case, for a burn of only 1.793 km/s, the required propellant mass is lowered to 2,386 kg, taking only 

44% of the spacecraft’s initial mass. 

Despite the high propellant requirements, chemical propulsion to GEO does possess the advantage of a shorter 

transfer time than low-thrust, electrical propulsion. For a Hohmann transfer, the total time is simply half of the 

transfer orbit’s period, as given in Eq. (9). For a LEO to GEO transfer, this time is only 5.25 hours. The satellite can 

reach GEO in a few hours and can more quickly enter into operation. 

 𝑡𝑡𝑟𝑎𝑛𝑠 = 𝜋√
𝑎𝑡𝑟𝑎𝑛𝑠

3

𝜇
 (9) 

 Electric Propulsion B.

 

For low-thrust, electrical propulsion, the thrust can no longer be treated as an instantaneous impulse. Rather, the 

thruster must burn continually over a long period of time to produce the same ΔV as a chemical rocket. Furthermore, 

the slow change in orbital radius during a burn lead to gravity losses and a lower efficiency than a short chemical 
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burn. While these losses are less significant than the propellant saving due to the higher specific impulse, they do 

affect the propellant mass calculations. 

Equations for electric propulsion use an assumption of vanishingly small thrust that is tangent to the velocity 

vector of the spacecraft. The total ΔV needed is given in Eq. (10).
[9]

 For a transfer from LEO to GEO, this amounts 

to a ΔV of 4.739 km/s. For the XIPS-25 thruster on high-power mode and Eutelsat 115 West B satellite discussed in 

Section 1, a propellant mass of 284.3 kg is required. This propellant takes 13% of the spacecraft’s initial mass of 

2,205 kg. Even though the ΔV is higher than for the chemical rocket, the higher specific impulse causes the 

propellant mass to be lower. 

 𝛥𝑉 = 𝑉𝐿𝐸𝑂 − 𝑉𝐺𝐸𝑂  (10) 

 

One disadvantage of using chemical propellant is the larger transfer time necessary to reach GEO. Equation (11) 

gives the transfer time, assuming that the thruster burns continuously for the entire duration of the transfer.
[9]

 For the 

Eutelsat 115 West B satellite, the thrust is taken to be that of two XIPS-25 thrusters. The satellite possesses four 

thrusters, but in a configuration with two on each side, so only two of the thrusters can ever thrust in the same 

direction. This gives the satellite a constant thrust of 330 mN. The total transfer time is 342.4 days, which is 

significantly longer than that of the chemical rocket case. The savings on propellant mass are offset by the fact that 

the satellite will not be in position for operation for a longer time. 

 𝑡𝑏 =
𝐼𝑠𝑝𝑚𝑖𝑔0

𝐹
(1 − exp (

𝑉𝐺𝐸𝑂 − 𝑉𝐿𝐸𝑂

𝐼𝑠𝑝𝑔0

)) (11) 

 

However, this analysis does not account for the plane change that must lower the inclination of the orbit. It is 

assumed that rather than thrusting tangentially to the satellite’s velocity, the thrusters burn in a direction out of the 

orbital plane by an angle θ. In this case, the tangential thrust used in Eq. (11) is depends on the burn angle, as in Eq. 

(12). The rest of the thrust occurs in the direction normal to the orbital plane and so can change the inclination. This 

thrust can be directed to be below the orbital plane when the satellite is above the equator and to be above the orbital 

plane when the satellite is below the equator, so that the burn continually lowers the inclination. 

 𝐹𝑡𝑎𝑛 = 𝐹 cos 𝜃 (12) 

 

An angle of 40° was chosen for the direction of the electric thrust. According to Eq. (11) and (12), the total burn 

time is 446.9 days. The required propellant mass can be calculated from the burn time and the mass flow rate, as 

given in Eq. (13). This propellant mass is 371.1 kg, or 17% of the initial spacecraft mass.  

 𝑚𝑝𝑟𝑜𝑝 = �̇�𝑡𝑏 =
𝑇𝑡𝑏

𝐼𝑠𝑝𝑔0

 (13) 

 

A numerical simulation is implemented to verify these results. The equations of motion for the satellite are given 

in Eq. (14), which depend on the two-body acceleration due to the Earth’s gravity and the thrust vector of the 

spacecraft. Note that in this simulation, the thrust is not constant in the inertial frame; it is constant in the orbital 

frame of the spacecraft, but must then be rotated into the inertial frame. 

 �̈� = −
𝜇

|𝒓|3
𝒓 +

𝑭

𝑚
 (14) 

  

The numerical simulation integrates Eq. (14) over time for a constant thrust angle of 40°. The results are shown in 

Figures 3 and 4. Figure 3 plots the trajectory of the spacecraft in inertial space over the entire transfer. The vertical 

axis for Figure 3 is not to scale with the horizontal axes; this is necessary for visual clarity in the plot. Figure 3 

shows how the orbit decreases in inclination as its semi-major axis increases, eventually ending at a final inclination 

of 0.02°, which is essentially equatorial. The semi-major axis increases very slowly, such that the early orbits appear 

to overlap. The green dot highlights the initial position, and the red dot gives the final position of the spacecraft. 

Figure 4 shows the semi-major axis and inclination as functions of time. 
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Figure 3. Trajectory for Low-Thrust Transfer to GEO. 

 

 
Figure 4. Semi-Major Axis and Inclination for Low-Thrust Transfer to GEO. 

III. Station Keeping at GEO 

 

After achieving GEO, the satellite’s propulsion system must maintain the desired orbit in the presence of different 

perturbing forces. A numerical simulation is implemented to investigate the magnitudes of these perturbations and 

the required maneuvers that must be performed to maintain GEO.  

 Orbital Perturbations A.

 

Besides the dominant two-body acceleration from the gravity of the Earth, numerous other accelerations affect the 

motion of a satellite in GEO. These include third-body gravitational effects from the Sun and the Moon, higher-

order gravity terms in the Earth’s gravitational field, and solar radiation pressure. Due to the high altitude of the 

GEO orbit, atmospheric drag is quite small, so it will be ignored in this analysis. 

The masses of the Sun and the Moon not only exert a gravitational acceleration on the satellite, but they also 

affect the Earth. A third-body acceleration can be expressed through Eq. (15), where all positions are relative to the 

center of the Earth. The subscript B indicates the third body.
[10]

 

 𝒂𝐵 = 𝜇𝐵 (
𝒓𝐵 − 𝒓

|𝒓𝐵 − 𝒓|3
−

𝒓𝐵

|𝒓𝐵|3
) (15) 
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Solar radiation pressure can be expressed using Eq. (16).
[10]

 In this equation, c is the speed of light, A is the cross-

sectional area of the spacecraft, CR is the coefficient of reflectivity (known to be approximately 0.25 for solar 

panels
[9]

, which comprise most of the are of a GEO satellite), R0 is the average distance from the Earth to the Sun (1 

AU), and ϕ is the average solar radiation flux of 1357 W/m
2
 at a distance of 1 AU. 

 𝒂𝑆𝑅𝑃 = −
𝜙

𝑐
(

𝑅0

|𝒓𝑆𝑢𝑛 − 𝒓|
)

2

(
𝐴

𝑚
) 𝐶𝑅 (

𝒓𝑆𝑢𝑛

|𝒓𝑆𝑢𝑛|
)  (15) 

 

 The gravitational field of the Earth can be represented through a series of harmonic terms, though most of these 

terms are small enough to ignore for a high-altitude orbit. The two largest terms are the J2 term, which represents the 

Earth’s oblateness, and the J3 term. The gravitational potential functions for these terms are given in Eq. (16) and 

(17), respectively, with RE representing the radius of the Earth and z representing the component of position not in 

the equatorial plane.
[11]

 Taking the gradients of these potential functions with respect to the position components 

gives the acceleration vectors; these acceleration equations are omitted for brevity. 

 𝑈𝐽2
= −

𝐽2

2
(

𝑅𝐸

𝑟
)

2

(3 (
𝑧

𝑟
)

2

− 1) (16) 

 𝑈𝐽3
= −

𝐽3

2
(

𝑅𝐸

𝑟
)

3

(5 (
𝑧

𝑟
)

3

− 3 (
𝑧

𝑟
)) (17) 

 

Figure 5 plots the magnitudes of each of the perturbing accelerations as functions of times over a period of one 

month. The dominant accelerations come from Sun and Moon third-body effects and from the J2 oblateness term. 

Solar radiation pressure creates a much smaller effect, and the J3 acceleration is even smaller. Since J3 is so small, it 

demonstrates that other Earth gravity terms (which are smaller than the J3 effect) can safely be ignored. The 

magnitude of the Moon third-body perturbation varies over the course of a month depending on the Moon’s distance 

from the Earth, in addition to the shorter periodic changes due to the satellite’s orbit. 

 

 
Figure 5: Magnitudes of Perturbing Accelerations 

 

Figure 6 shows the changes in the semi-major axis and inclination of the orbit due to these perturbations. The 

semi-major axis experiences large oscillations, as well as a secular decrease. These changes cause the satellite to 

drift from its geostationary position. In addition, the inclination slowly begins to increase, and the satellite leaves the 

equatorial plane. Maneuvers must account for both of these types of drifts to keep the satellite in its geostationary 

orbit. 
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Figure 6: Changes in Orbital Elements Due to Perturbing Accelerations. 

 Chemical Propulsion B.

 

A chemical rocket uses impulse burns to correct for drifts from the orbit. While much research has gone into 

developing algorithms that optimize the maneuvers to save on propellant mass, a simple model will suffice for this 

simulation. At each instant, the position of the satellite is calculated in an Earth-fixed frame, using a rotation matrix 

based on the Earth’s rotational rate to convert from the inertial position to the Earth-fixed position, as in Eq. (18). 

Then, the longitude, latitude, and radius of the satellite can be computed, as in Eq. (19).
[12]

 

 𝒓𝐸𝐶𝐸𝐹 = [
cos 𝜔𝐸𝑡 sin 𝜔𝐸𝑡 0

− sin 𝜔𝐸𝑡 cos 𝜔𝐸𝑡 0
0 0 1

] 𝒓𝐸𝐶𝐼  (18) 

 𝜆 = tan−1 (
𝑟𝐸𝐶𝐸𝐹,𝑦

𝑟𝐸𝐶𝐸𝐹,𝑥

) , 𝜙 = sin−1 (
𝑟𝐸𝐶𝐸𝐹,𝑧

|𝒓|
) , 𝑟 = |𝒓| (19) 

 

The latitude and longitude are then compared to the reference latitude and longitude of the geostationary orbit. 

Following the Eutelsat 115 West B mission, the desired longitude is 114.9° West, and the desired latitude of any 

geostationary orbit is 0°. The simulation is set so that the spacecraft thrusts whenever the latitude or longitude drifts 

by more than a specified threshold from the reference value. To calculate the direction and magnitude of the change 

in velocity, Lambert’s problem is solved to determine the orbit needed to connect the current location of the satellite 

to the desired position over a set transfer time. Solving Lambert’s problem gives the required velocity of the 

spacecraft at its current location, and subtracting the current velocity from this required velocity gives the ΔV of the 

maneuver. The explanation of how to solve Lambert’s problem and compute the required velocity is more detailed 

than can be adequately covered here; Ref. 11 contains more information. 

Figure 7 displays the longitude and latitude of the spacecraft over a period of ten days. A strict requirement of 

0.02° is imposed on both the latitude and longitude, and to maintain this requirement, a burn is executed whenever 

the drift exceeds 0.01°. (It takes time for the satellite to move back toward the reference location after a burn, so the 

maneuvers are always executed well before the requirement of 0.02° is exceeded). The green dot indicates the 

desired position of the satellite, and the red box gives the limits on the latitude and longitude. The blue curve shows 

the trajectory of the satellite. 
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Figure 7: Longitude and Latitude of Satellite with Chemical Thruster 

 

In the ten-day simulation, the satellite executes ten burns, averaging one burn every day. However, each burn is 

quite small, and the total ΔV over all of these burns is 2.12 m/s. Assuming hydrazine propellant, this corresponds to 

the expulsion of 2.89 kg of propulsion. Extrapolating these results over a fifteen-year mission duration, the total ΔV 

is 1,162 m/s, requiring 1,580 kg of propellant. Given that Section 2 calculates a spacecraft mass of 3,071 kg upon 

arrival at GEO, the mass of the spacecraft after these station-keeping maneuvers is 1,490 kg. 

At the end of the satellite’s life, the satellite must be boosted to a higher orbit to clear its geostationary orbit for 

use by future satellites. A Hohmann transfer to a final orbit that is 300 km above GEO requires an additional ΔV of 

10.88 m/s. If the apogee kick motor provides this boost, the propellant needed is 5.82 kg. 

After the final boost, the final mass of the spacecraft is 1,485 kg. This final mass is the mass available (out of the 

launch mass of 5,456 kg) that is actually usable for the structure and payload of the satellite. In other words, 73% of 

the initial mass of the payload is propellant, and only 27% is usable for the actual mission of the satellite. 

 Electric Propulsion C.

 

Next, station keeping is considered for a spacecraft with electric propulsion. Whereas the chemical thrusters burn 

for short periods of time to provide large impulses, electric thrusters must burn continuously over longer periods of 

time to provide the necessary thrust. This changes the analysis needed for station keeping maneuvers. 

A simple control law is set up to determine the necessary thrusts for station keeping. The satellite’s current 

position and velocity are compared to those of the desired GEO, and the errors are multiplied by a gain, according to 

Eq. (20). The output from this control law is the desired acceleration of the spacecraft to maintain its position. This 

control law assumes that perturbations from the reference orbit are small enough that nonlinear orbital dynamics are 

negligible, so that a simple, linear control law is valid. A gain of 10
-5

 is found to be reasonable for this case. 

 𝒂𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝐾((𝒓 − 𝒓𝐺𝐸𝑂) + (𝒗 − 𝒗𝐺𝐸𝑂)) (20) 

 

However, the control law in Eq. (20) assumes a variable thrust, so as to provide the exact acceleration requested. 

The XIPS-25 thruster, though, only operates at two possible thrusts, 79 mN and 165 mN. Therefore, the control law 

is modified so that only constant thrusts are applied. If the necessary thrust calculated from Eq. (20) exceeds 100 

times the acceleration that the thruster could provide in its low-thrust mode, the thruster fires at full thrust in the 

direction specified by Eq. (20). Otherwise, the thruster does not fire, and the satellite moves according to its natural, 

uncontrolled dynamics. 

Figure 8 plots the longitude and latitude of the satellite over a period of ten days. As with the chemical rocket, the 

longitude and latitude are required to be within 0.02° of the reference orbit. However, Figure 8 indicates that the 
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spacecraft never gets near this limit; the thruster keeps the satellite within 0.001° of the reference. In fact, the blue 

trajectory is barely visible near the green dot of the desired GEO. Over such small deviations from the reference 

orbit, the linear control law of Eq. (20) holds, and nonlinear orbital dynamics do not need to be considered. 

 

 
Figure 8: Longitude and Latitude of Satellite with Electric Thruster 

 

Over the course of the ten-day simulation, the thruster is firing for 44% of the time. It expels 0.895 kg of 

propellant to produce a ΔV of 16.3 m/s. While the ΔV required is larger than that for the chemical rocket case, the 

mass of propellant needed is lower. With this average rate of propellant use, the spacecraft expel a total of 490 kg of 

propellant over fifteen years. According to Section 2, the initial mass of the satellite once it reaches GEO is 1,834 

kg. After fifteen years, this mass drops to 1,344 kg. 

Once the satellite has reached the end of its mission, it is boosted to an orbit that is 300 km above GEO. 

According to the corresponding of Eq. (10), the ΔV required to raise the orbit is 10.88 m/s, and the propellant mass 

needed is 0.44 kg. As such, the final mass of the spacecraft is still (after rounding) 1,344 kg. Out of the initial mass 

of 2,005 kg, 39% of the mass is propellant, and 61% is usable for the satellite’s structure and mission payload. 

IV. Results and Conclusions 

 

Table 2 summarizes the masses of the two satellites throughout the simulation. The payload of the satellite with 

chemical propulsion is only 141 kg larger than that for the satellite with electric propulsion, but the initial mass is 

3,251 kg larger. The chemical rockets require much more propellant, such that 73% of the spacecraft mass is 

propellant. In contrast, the case with electric thrusters results in only 39% of the total mass being propellant. 

 

Table 2: Satellite Masses throughout the Simulated Mission 

Mission Phase 

Satellite with Chemical Propulsion Satellite with Electric Propulsion 

Mass (kg) 

Fraction of 

initial mass (%) Mass (kg) 

Fraction of 

initial mass (%) 

Launch 5,456 100 2,205 100 

GEO 3,071 56 1,834 83 

End of mission 1,490 27 1,344 61 

End of life 1,485 27 1,344 61 

 

Using the ratios in Table 2, the initial mass of the satellite with electric propulsion can be calculated if it were 

given the payload of the chemical propulsion satellite. For a payload mass of 1,485 kg, the required propellant mass 

would be 952 kg, and the initial mass would be 2,437 kg. This initial mass is 45% of the initial mass of the satellite 
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with chemical propulsion. In other words, for the same payload mass, the required initial mass using electric 

propulsion is only 45% of the initial mass using chemical propulsion. The initial mass of the satellite can be 

decreased by 55% using electric propulsion, so a less powerful launch vehicle is needed. This drastically decreases 

the launch cost for the satellite. Alternatively, for a 55% decrease in mass, the same launch vehicle can be used to 

launch two spacecraft that use electric propulsion, as was the case for the actual launch of the Eutelsat 115 West B 

satellite. 

Numerical simulations have indicated that while electric propulsion requires a larger ΔV, the higher specific 

impulse ultimately lowers the mass of the propellant needed. One disadvantage of using electric propulsion is the 

significantly longer time needed for the transfer from LEO to GEO, but this delay may be acceptable if it means 

reducing the launch mass by 55%. The cost benefits that arise from saving mass demonstrate the utility of using 

electric propulsion, and demonstrate why recent satellites sent to GEO rely solely on electric propulsion. 
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