Materials for aircraft engines

Aircraft Propulsion ASEN 5063 December 17, 2015

Takehiro Okura

Background – Engine Design

- •To improve engine performance, mainly Specific Fuel Consumption (SFC)
- Increase Bypass ratio
- Increase pressure ratio
- Weight Reduction
- Increase Turbine Entry Temperature (TET)
- Safety Requirement
 Mechanical property test and Engine Test

Material distribution in a modern engine

Ni-based Superalloys

- ~50% of the total weight
- Used in hot sections

Turbine blades, discs, vanes, combustion chamber, etc

- High density of $8 \sim 9 \text{ g/cm}^3$

• Titanium alloys

- Used in relatively cold sections

Fan, Compressor, etc

- Low density of $3.5 \sim 4.5 \text{ g/cm}^3$
- Ti-6Al-4V alloys

Form $TiAl + Ti_3Al$ phases

Composites

- Used in Fan case and blades
- Even lighter than Titanium alloys
- Low high-temperature oxidation resistance
- Carbon Fiber Reinforced Plastic composite (CFRP)

Material Distribution in CF6 (GE engine)

Titanium alloys

Reasons

- Titanium alloys show higher specific strength than Nickel alloys below 800 ~ 900 K
- Weight saving
- Heat resistance
- Resistance to embrittlement at low temperature
- High corrosion resistance
- Low thermal expansion

Application

- Frame and joint
- Fan blade and disc

Ti-6Al-4V alloys

- Low-pressure compressor blade

Ti-6Al-4V alloys

- High-pressure compressor blade

Ti-8Al-1Mo-1V alloys, Ti-6Al-2Sn-4Zr-6Mo alloys, etc

- Compressor disc

Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloys, Ti-6Al-2Sn-4Zr-6Mo alloys

Material	No.
Aluminum alloy	1
Titanium alloy	2
Wrought nickel alloy	3
High-strength nickel alloy	4
Single-crystal superalloy	5

Turbine Blade

Co-based superalloys

Ni-based superalloys

• Why Ni-based superalloys?

- Ni is much cheaper than Co
- high strength
- long fatigue life
- oxidation and corrosion resistance at high temperature

Microstructure of Ni-based superalloys

 γ : Ni matrix

 γ' : Ni₃Al precipitation strengthening phase

Microstructure of Ni-based superalloys

Ni and Ni3Al phases (both FCC structure)

- → Close lattice parameters between two phases
- → Wide composition range

Additives and Cooling systems

Ti, Ta: Solid solution strengthening of Ni₃Al

Cr: Solid solution strengthening and corrosion resistance

C: combines with Cr, gives precipitates in Ni

Co: Improves oxidation and corrosion resistance and stability

Mo, W: solid solution strengthening of Ni

Ti, Ta: solid solution strengthening of Ni₃Al

B: Improves grain boundary and suppresses cavity formation in creep

Hf: Improves ductility

Y: Improves oxidation resistance

Cooling passage

Promising superalloys

Ni-Al alloys

· Co-Al-W alloys

- → has the same structure with Ni-Al alloys
- \rightarrow Co₃(Al,W) phase can be stable over 1200K by adding Ta, Ti, etc.
- → higher strength and higher melting point by 50~100 degC

·Ir-Al-W alloys

- \rightarrow has the same structure with Ni-Al alloys
- → At 1000 degC, has twice Ni-Al alloys strength
- \rightarrow Ir has high melting point (2447 degC)

Science Magazine (2006) Science 7, Vol.312, No.5770, pp.90-91

Conclusion

- Improving the SFC is an essential task.
- Titanium alloys and Composite trend and demand have increased in recent years.
- Ni-based superalloys are main turbine blade materials and have been improved.
- To increase TET, improving turbine blade materials is required for future aircraft engines.
- There are infinite options for material selection.

Questions?

Supplement

How to fabricate Ni-based superalloys

Casting Techniques to form single crystal

- Optical Floating Zone (OFZ) melting method
- → Cannot form big materials
- → Used usually for research to make samples

·Bridgeman method

Slowly cooling a melted material so that the material can grow the single crystal only by using a seed material.

Optical Floating Zone melting: OFZ

