
Comparison of Helicopter Engines

John Schenderlein, Tyler Clayton

Turboshafts...What are they?

- Needed for high power in a small envelope
- Very similar to turboprops
 - many turboshafts derived from turboprop engines
- However,
 - exhaust is not used to propel
 - propeller load is applied to the airframe
- Began ~1950s

Main Uses

- Helicopters
- APUs
- Marine Vehicles
- Tanks
- Motorcycles
- industrial power generation

M1 Abrams

CH-53 Super Stallion

Major Players in the Market

Turbomeca

- French Manufacturer for small/medium turboshafts (500-3000 shp)
- 18000+ in operation
- Most popular engine: Arriel (600-1000 shp)
 - 30 variants
 - 245 lbs
 - SFC = 0.57
 - 1 axial/1 Centrifugal compressor (PR ~9)
 - 2 HPT/1 FPT turbine

Turbomeca

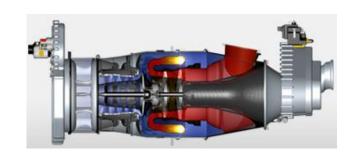
- Newest Engine: Arrano (2018)
 - 10-15% increase SFC
 - new thermodynamic core & use of variable pitch inlet guide blades
 - Uses additive manufacturing for injectors

Rolls-Royce

- Most popular engine: M250 Series
 - inherited from Allison Engine Company (1990s)
 - 31000+ produced (50%+ in operation)
 - 450-715 shp
 - 160-275 lbs
 - 4-6 axial/1 centrifugal compressor (PR 6-9)
 - 2 HPT/2 FPT
 - Also used on the MTT Superbike

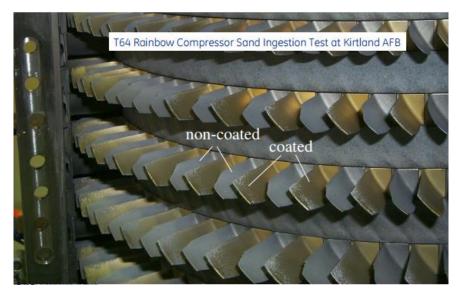
RQ-8A Fire Scout

Allison Engines (Rolls Royce)


- Most noteable engine: T406
 - Build specifically for the V-22
 Osprey
 - 6150 shp
 - 971 lbs (6.33 p/w)
 - 14 axial compressor stages!

Pratt and Whitney Canada

- Canadian based subsidiary of PW
 - focuses on smaller aircraft engines
- Majority of their engines based on the PT6 turboprop
 - PT6B/C series and the PT6T Twin-Pac (1000-2000 shp)
 - 3-4 axial/1 centrifugal
 - SFC 0.59
 - 2 HPT/2 FPT
- PT6T uses two PT6A engines combining gearbox
 - Popular among Bell 412/212 helicopters


GE Aviation

- Entered aviation industry w/ production of super/turbochargers
- First turboshaft: T58
 - 1250-1870 shp
 - SFC = .39
 - 10 axial (PR 8.3) & 2 HPT/1 FPT
 - Used on Marine One
- Major seller today: T700/CT7
 - 1900-2600 shp
 - 5 axial/1 centrifugal (PR18)
 - AH-64 Apache engine

GE Aviation Con't

- Newest Engine: GE38 (upgrade to the T64)
 - Designed for heavy lifting
 - 7500 shp (57% increase)
 - SFC: ~.39 (18% increase)
 - 63% fewer parts
 - sand tolerant/corrosion resistant compressor(TiN coating)
 - improved inlet particle separators w/ CFD
 - CMC's used in turbine
- Fills a gap in the marketnot many engines 6000+ to 10000 shp range

http://tx.technion.ac.il/~jetlab/9aijes/2%20-%20Helicopter%20Engine%20Technology%20Pit ch_v6.pdf

Textron Lycoming

- Put the first turbine engine into a helicopter: UH-1
- Now makes the powerful
 T55 for the US Chinook twin rotor helicopter

Soviet Turboshafts of a Different Era

- Soloviev Design Bureau
 - Responsible for one of the most powerful turboshaft engines ever (D-136)
- Klimov Experimental Design Bureau
 - Produced the TV3-117 engine
 - Powered 95% of Russian Helicopters used throughout the developing world

Conclusions & Comparisons

- Almost all use a 2 spool design with usually 2 HPT and 2 FPT
 - exceptions:
 - smaller use 1 HPT/1 FPT
 - large use 2 HPT/3 FPT
- Most use a combo of Axial/Centrifugal compressors
- SFC
 - New engines: 0.39-0.42 kg/kW/hr
 - Older engine: 0.5-0.6 kg/kW/hr