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1 Introduction

In light of the dramatic worldwide growth in renewable electricity, particularly wind, there

is substantial interest in understanding the costs and benefits of these technologies. U.S.

electricity generation from wind has grown from less than 1% in 2007 to more than 6% in

2017 and growth is likely to continue as costs continue to fall. One longstanding area of

concern is that renewable technologies such as wind and solar are intermittent, in contrast

to conventional electricity sources that can be dispatched as needed. Intermittency can raise

the costs of renewable technologies (Gowrisankaran et al. 2016), and the need to balance

renewable intermittency with conventional backup (e.g. coal and gas) may also affect the

emissions savings potential of renewable technologies. Matching the variability of renewables

typically requires the emissions-intensive process of “ramping” of generation from fossil fuel

generators, potentially undercutting the emission savings from wind or solar. Given emis-

sions reductions, CO2 in particular, are a primary economic justification for the substantial

policy interventions supporting renewable energy (Ambec and Crampes 2015), it is crucial

to understand the extent to which intermittency may undercut emissions savings from wind

generation. As such, this paper asks: How does the grid respond to wind generation and

intermittency? Does wind intermittency reduce the CO2 savings associated with wind gen-

eration? What is the magnitude of this effect, and to what extent does it undercut the

economic justification for renewable policies as the share of wind grows?

A unique feature of this study is the use of 5-minute generation data from the Southwest

Power Pool (SPP).1 This 5-minute data provides a high-frequency look at the intra-hour

1 The Southwest Power Pool is a Regional Transmission Organization (RTO) and is mandated by FERC
to operate the electrical grid to ensure reliability, adequate transmission, and a competitive wholesale market.
SPP primarily covers Nebraska, Kansas, and Oklahoma, with some coverage in neighboring states. During
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evolution of the generation mix. In particular, it allows statistical comparisons of emissions

in two otherwise identical hours (including the same level of wind generation), but with

different levels of intra-hour wind intermittency. Given the plausibly exogenous variation in

intermittency, we can interpret our estimates as the causal impact of intra-hour intermittency

on emission savings.2

To our knowledge, this is the first study to empirically identify the effects of intra-hour in-

termittency on emission savings. In perhaps the most closely related study, Dorsey-Palmateer

(2014) provides empirical evidence from Texas that intermittency over longer time spans (5

hours) shifts the grid from coal to natural gas, generating a reduction in emissions through a

compositional effect. Wheatley (2013) examines 30-minute data in Ireland and argues inter-

mittency substantially reduces emissions savings, but does not causally identify its impact.

Di Cosmo and Valeri (2017) also examine the Irish market, but find no evidence of a strong

negative effect on thermal plant efficiency and thus emissions. Graf and Marcantonini (2017)

examine the impact of increases in intermittent renewable generation on thermal plant an-

nual emission rates and find evidence of modest increases in emission factors, though they

are unable to separate the specific effects of intermittency from other channels by which

increased renewables may affect emission rates (e.g. heat rate changes due to merit order

effects). The remainder of the literature has typically relied on simulation dispatch models

to examine emission savings (Lamont 2008; Lueken et al. 2012; Gutiérrez-Mart́ın et al. 2013;

the sample period, 2012-2014, roughly 10% of SPP’s generation came from wind power.
2 By way of simple analogy, the fuel-efficiency of automobiles depends on how they are driven. Two

drivers who each cover 30 miles at an average speed of 60 mph may have very different fuel consumption
depending on stops, starts, acceleration, etc (Langer and McRae 2013). In the case of electricity, the emission
savings from one hour of steady wind generation will likely be larger than from the same amount of wind
generation with larger intra-hour volatility (Katzenstein and Apt 2009).
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Gowrisankaran et al. 2016).3 While such studies have clear value, our data and approach al-

lows us to empirically estimate and identify the impact of intermittency on emissions savings

without making assumptions about grid operator behavior or plant operations.

We first confirm several of the assumptions described above. We find coal and natural

gas are the primary sources of generation offset by wind, whereby 1 megawatt hour (MWh)

of wind on average offsets 0.52 MWh of coal and 0.37 MWh of gas.4 Next, we show

intra-hour intermittency in wind generation (measured as the intra-hour root-mean-square

of changes in 5-minute generation levels) is also primarily balanced by intra-hour variation in

coal and gas, and this intra-hour variation in coal and gas increases CO2 emissions. Finally,

our key parametric estimation finds 1 MWh of wind reduces CO2 emissions in SPP by

0.726 tons holding intermittency constant, but an increase in the intra-hour intermittency of

wind generation offsets emissions reductions to some extent. Similarly, our semi-parametric

approach finds that in the lowest decile of intermittency, 1 MWh of wind generation reduces

CO2 emissions in SPP by 0.773 tons, while in the highest decile of intermittency, wind

generation reduces CO2 emissions by a substantially smaller 0.703 tons per MWh.

Evaluating the parametric point estimates at the mean values of wind generation and

intermittency, marginal CO2 emissions savings from a MWh of wind are reduced by a modest

3.8% due to intermittency in a static, contemporaneous model, and 6.5% in a dynamic model

3 Gutiérrez-Mart́ın et al. (2013) in particular focus on the effects of wind intermittency on emission
savings in Spain, and find little evidence intermittency substantially reduces emission savings, which is
similar to the conclusions for renewables in the Italian market examined in Graf and Marcantonini (2017)
and Irish market examined in Di Cosmo and Valeri (2017). This stands in sharp contrast to the arguments
in Wheatley (2013) that intermittency is responsible for large reductions in emissions savings in Ireland.

4 The remainder is met by small reductions in fuel oil and hydro, as well as modest changes in imports.
While gas accounts for only 24% of total generation, it is offset by wind more frequently than its average
share. Natural gas generation often plays this role, as it is designed to adjust output levels more quickly
than coal (Green and Staffell 2016). That said, there is substantial research into alternative approaches for
accommodating intermittency, primarily involving storage (Carson and Novan 2013; Jacobson et al. 2015).
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that considers lagged effects. In terms of a Pigovian subsidy for wind, this represents the dif-

ference between a $28.31/MWh subsidy and a $27.22/MWh subsidy for the static estimates.

Furthermore, while we find intermittency concerns will grow as wind share increases, the

effect is likely to remain modest in the near-term (wind shares of 10-20%). Thus, at current

wind generation shares, the concern that intermittency reduces CO2 emissions savings is

borne out, but concerns of its overall importance for policy are not.

2 Emissions savings and intermittency

2.1 Measuring emission savings

This paper contributes to a growing empirical literature that measures the emissions savings

from various renewable technologies, which are often supported through a variety of subsidies

and other policy supports. Economic theory suggests correcting pollution externalities via

a Pigouvian tax on emissions or a Pigouvian subsidy on emissions avoided can yield equal

and efficient outcomes, at least to a first-order approximation. And while there has been

substantial work exploring when that equivalence breaks down from a theoretical or behav-

ioral perspective, a perhaps less obvious distinction between the two policy instruments is

the issue of measurement.

Standard theory shows the efficient tax should be set equal to the marginal external

damages of emissions, which is then applied to the measured level of emissions. Though

determining the marginal external damages may be challenging, the measurement of the

emission levels themselves is typically straightforward (from the perspective of economists)
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- that is to say, the measurement of emissions generated is primarily a matter of physics,

chemistry, and engineering, and not often something economists have much to contribute

towards.5

By contrast, in the context of an efficient subsidy policy, one must be able to measure

the emissions avoided, and this is no longer quite so straightforward from the perspective of

measurement. While one can measure the carbon dioxide (CO2) emissions from a coal-fired

power plant’s smokestack and apply a carbon tax, there is no smokestack to measure the

“non-emissions” from a wind turbine or solar panel. One must determine the counterfactual

level of emissions, which depends on market processes and behavioral responses, and this is

a task economists are better-suited to consider. Similar challenges arise in measuring the

energy consumption avoided through energy efficiency adoption.

A substantial literature has emerged to measure the emissions and energy consumption

avoided from various technologies, driven in part by the fact that subsidies are viewed as more

politically palatable and more frequently utilized than taxes. Recent studies have examined

emission savings from wind (Cullen 2013; Kaffine et al. 2013; Novan 2015; Di Cosmo and

Valeri 2017), solar (Baker et al. 2013; Callaway et al. 2015; Millstein et al. 2017), electric

vehicles (Zivin et al. 2014; Holland et al. 2016), biofuels (Bento et al. 2015), and energy

savings from energy efficiency investments and codes (Fowlie et al. 2015; Levinson 2016).

Our paper contributes to this growing literature by measuring the emission savings from

wind power, accounting for the intermittent nature of wind generation.

5 In the case of ambient pollution problems (Segerson 1988), while it may difficult to attribute emissions
to any particular emitter, the measured level of pollution in the water or the air is not in doubt.
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2.2 Intermittency and Emissions

As discussed above, intermittency of renewables is oft-noted as one of the primary concerns

regarding renewable expansion and integration into the grid (Jacobson et al. 2015). Indeed,

the substantial body of literature on accommodating renewables into the grid, primarily using

simulation methods, is a testament to its importance. Furthermore, much of this existing

literature focuses on what might be described as “big picture” issues of intermittency; in

other words, how should one optimally design and operate the electricity grid to account for

renewable intermittency? By contrast, this study focuses on the very short-run implications

of intermittency on CO2 emissions.

To motivate the following regression analysis, consider the following simple model of

hourly electricity sector emissions Eh as a function of wind generation Wh:

Eh(Wh) =
∑
i

δiQih(Wh), (1)

where δi is the emission rate per MWh from fossil plant i, and Qih(Wh) is the output from

plant i, which depends on the level of wind generation. The change in emissions from

increasing wind power is:

dEh
dWh

=
∑
i

δi
dQih

dWh

, (2)

or simply the sum of changes in generation from each plant times their emissions rate.6

Given the grid has to balance, dWh = −
∑

i
dQih

dWh
and thus dEh

dWh
can (typically) be signed as

negative.7

6 Early examinations of the emission savings from wind adopted an even simpler approach, whereby the
average emissions rate of a state, region or country was simply multiplied by the amount of wind power
generated.

7 Hypothetically, increased wind could cause a compositional shift, such that total fossil generation
decreases, but relatively dirtier plants are dispatched more frequently such that dEh

dWh
> 0. However, when
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However, assuming a constant emission rate of δi ignores the noted impact of intermit-

tency on fossil plant operations and emissions, and ignores the fact that wind generation itself

can affect emission rates (e.g. due to operation at less efficient heat-rates (Graf and Marcan-

tonini 2017)). Thus, if we allow the emission rate to depend on wind Wh and intermittency

σh, then given Eh(Wh, σh) =
∑

i δi(Wh, σh)Qih(Wh), the total differential of emissions is:

dEh = (
∑
i

δi(σh)
dQih

dWh

+
∑
i

∂δi
∂Wh

Qih(Wh))dWh +
∑
i

∂δi
∂σh

Qih(Wh)dσh. (3)

The first term in parenthesis is the change in emissions from decreased fossil fuel generation

holding emission rates constant plus the change in emissions due to changes in the emissions

rate, holding fossil generation constant. Our focus is on the second term, as this term will be

positive (increased emissions) to the extent increased intermittency increases emission rates.

It is this term that drives the concern emission savings from wind may be overstated, or may

even be overturned entirely if the second term grows as the share of wind generation grows.

Looking towards the empirical analysis, we note several important points. First, existing

estimates of emissions savings from wind generation such as Kaffine et al. (2013) and Novan

(2015) are effectively estimating the total marginal effect of wind on emissions, dEh

dWh
. In

other words, the effect of intermittency is reflected in their estimates, but is not separately

identified. Second, the following estimates of emissions savings from wind generation embed

any changes in the composition of dispatched technologies due to the level of wind generation,

e.g. gas being relatively more preferred for dispatch (Dorsey-Palmateer 2014). Finally, while

the above expression reflects the total change in emissions from wind, the empirical estimates

below will decompose the effect of wind on emissions into ∂Eh

∂Wh
, the change in emissions due

the generator-by-generator output estimates in Cullen (2013) are aggregated for Texas, both coal and gas
fall, implying the more expected case of dEh

dWh
< 0.
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to wind while holding intermittency constant, and ∂Eh

∂σh
, the change in emissions due to

intermittency holding wind generation constant.

To further motivate our approach, consider the following thought experiment: Imagine

two hours, identical in every way except for the fact one hour has 2000 MWh of steady intra-

hour wind generation, while the other hour has 2000 MWh of volatile and intermittent intra-

hour generation. The difference in emissions between those two hours will reflect the causal

impacts of intermittency on emission savings. The 5-minute SPP generation data (discussed

in more detail to follow) allows us to empirically approximate this thought experiment and

causally identify the effect of intermittency on emissions. Figure 1 provides a nice illustration

of the research design, whereby 5-minute wind generation for six different hours is plotted. All

six hours had 2000 MWh of generation over the course of the hour, and from the perspective

of hourly data are effectively identical. However, two hours show a dramatic increase in

intra-hour wind generation, two hours decline substantially, and two hours are relatively

flat. It is this variation in the shape of the intra-hour generation profile that will allow us

to identify the effect of intermittency on emissions.

3 Data

The key feature of the dataset used in this analysis is that we have 5-minute generation data

from the SPP RTO, which operates primarily in Kansas, Nebraska, and Oklahoma. This data

covers the period from January 1st, 2012, to April 9th, 2014 and reports 5-minute generation

for wind, gas, coal, nuclear, hydro, fuel oil (DFO), as well as load (demand).8 From this

8 More recent data available from SPP does not include 5-minute load. Given that load intermittency is
also likely important for emissions, we use the earlier time period for which 5-minute load data is available.
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5-minute data, we construct intra-hour measures of intermittency σh for all generation types

and load, with the intra-hour root-mean-square of changes in 5-minute generation as our

preferred measure.9

σh =

√√√√ 1

12

12∑
m=1

(Whm −Whm−1)2 (4)

Thus, for each hour in the dataset, we have the hourly aggregates from each source of

generation, as well as the intra-hour measure of intermittency.

To this generation data, we then add hourly emission data for SPP, available from Ven-

tyx/ABB Velocity Suite (ultimately sourced from EPA’s Continuous Emissions Monitoring

System (CEMS)), as well as hourly, population-weighted temperatures.10 While emissions

data for sulphur dioxide SO2 and nitrogen oxides NOx are available, we initially focus on

CO2 emissions, returning to the other emissions later in the analysis.

Summary statistics for key variables are reported in Table 1. Coal is the largest share

of generation, at 60% of total generation, followed by gas at 23% of total generation. Wind

is the third largest source of generation at 10% and then nuclear at 6%. Hydro and fuel

oil provide less than 1% of total generation. SPP is an exporter of electricity on average,

though on any given hour may import substantial quantities of electricity.11 Relative to

ERCOT in Texas, where many of the previous wind studies have been conducted, this is

a comparable level of wind share, though the existing fossil generation mix is tilted more

heavily towards coal (but not as much as in neighboring MISO). Given the relatively large

9 We also examine the intra-hour range (max-min), standard deviation, and “mileage” (total change in
intra-hour generation) as measures of intermittency. All measures were very correlated with the root-mean-
square (correlation matrix in Appendix Table A.1) and as such estimation results were extremely similar.

10 CEMS reports hourly emissions from all plants greater than 25 MW. For SPP this implies 10 small coal
plants are excluded from reporting requirements (0.4% of total coal capacity), as well as a number of small
gas plants (around 5% of total gas capacity).

11 Neighboring regions include the Electric Reliability Council of Texas (ERCOT), the Midcontinent
Independent System Operator (MISO), and the Western Electricity Coordinating Council (WECC).
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share of coal, average CO2 emissions per MWh are fairly high at 0.83 tons/MWh, though

there is considerable heterogeneity across hours of the sample from a low of 0.59 tons/MWh

to a high of 1.04 tons/MWh.

4 Econometric Strategy

Our econometric strategy follows the existing literature in exploiting the exogenous and

stochastic variation in hourly wind power generation and intra-hourly intermittency (e.g.

Kaffine et al. (2013)).12 We estimate a series of reduced-form regressions of the following

general form:

yhdmy = xhdmyβ + f(zhdmy) + ζhm + θmy + ηd + εhdmy, (5)

where yhdmy is the outcome variable of interest (e.g. emissions, generation by type) for hour

h, day d, month m, and year y. The variable xhdmy represents the explanatory variable(s)

of interest, such as hourly wind generation levels or intra-hour wind intermittency, with β

representing the coefficient(s) of interest. The function f(zhdmy) captures flexible control

variables, such as load and temperature.13 Standard errors for all estimations reported

below are clustered at the weekly level to account for serial correlation.14

While the outcome, explanatory variables of interest, and control variables will vary

depending on the specific regression, the fixed effects strategy remains constant across all

regressions below. These fixed effects control for other sources of variation in our outcome

12 While wind is typically taken by the grid as a “must-run” generation source, there is the potential for
curtailment of wind power at low load levels. However, regressing wind generation on load and conditioning
on fixed effects (discussed below), there is no relationship between wind and load (p = 0.98), even for the
subsample of the smallest 5% of load observations (p = 0.46).

13 Temperature is included in addition to load to account for any thermal effects on plant efficiencies.
14 Estimations using Newey-West standard errors with 24-hour lags (Novan 2015) or daily clustered errors

yielded similar standard errors (slightly tighter) as those reported below.
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variables that may be correlated with our explanatory variables of interest. Hour-by-month

fixed effects ζhm control for changes in wind patterns over the course of the day (diurnal

variation) that may be correlated with changes in the shape or composition of the load

profile. For example, if wind generation was more volatile during daytime hours (due to

more unstable atmospheric conditions) when lower-emission natural gas is a greater share

of generation, then estimations of the effect of intermittency on emissions would be biased

negatively. Similarly, month-by-year fixed effects θmy will control for longer-run trends such

as increasing wind capacity and changes in the generation mix due to changing natural gas

prices or other factors affecting emissions (Fell and Kaffine 2018). Finally, day-of-week fixed

effects ηd captures within-week variation in the load and generation profile, though wind

generation and intermittency should be uncorrelated with the day of the week.

5 Results

In this section, we report the results from a variety of investigations of the effects of wind

generation and intermittency. We begin with a series of parametric regressions to establish

what sources of generation respond to wind generation and intermittency, and then examine

the emissions implications. Further analysis examines a semi-parametric approach to esti-

mate emissions savings by decile of intermittency as well as a dynamic model that considers

lagged effects of wind and wind intermittency.
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5.1 Generation and emission response to wind

Our initial regressions examine a) which sources of generation respond to increases in wind

generation, and b) which sources of generation respond to intra-hour wind intermittency.

Table 2 regresses each generation type (coal, gas, fuel oil, nuclear, hydro, and imports)

against hourly wind generation, controlling for load (quadratic) and temperature (quadratic).

As expected, natural gas and coal account for the bulk of the response to changes in wind

generation levels, whereby a 1 MWh increase in wind generation reduces coal generation by

0.52 MWh and natural gas generation by 0.37 MWh.15 Finally, note the sum of coefficients

in Table 2 gives a 1.0004 MWh response per 1 MWh change in wind, suggesting our general

control variable and fixed effects strategy is appropriate.

Next, Table 3 shows how intra-hour volatility (root-mean-square) of each generation

type responds to intra-hour intermittency of wind. For each generation type, the intra-

hour intermittency measure is regressed against wind levels, the intra-hour intermittency

of wind, the intra-hour intermittency of load, and the control variables from above. The

coefficient on Wind inter can be interpreted as the effect of wind intermittency, holding

wind generation levels (and everything else) constant. From Table 3, coal, natural gas,

and import intermittency responds the most to intra-hour wind intermittency, with a slight

response from fuel oil (which is used for peak hours). As expected, hydro and nuclear do

not exhibit any intra-hour variation due to wind intermittency.

15 Disaggregating natural gas generation by technology type using hourly CEMS data finds that the gas
response is roughly split between combined cycle (CC) plants and non-CC plants. Note, the response of
natural gas to wind generation is roughly twice its average share of generation. However the coal-response
is much larger than that found in Cullen (2013) for ERCOT in the mid-2000s. This difference is likely
driven by a) SPP simply having more coal-fired generation than ERCOT, and b) the growing share of wind
and falling natural gas prices over this time-period and their joint effects on coal-fired generation (Fell and
Kaffine 2018; Millstein et al. 2017).
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The previous tables have established two important facts: First, variation in wind gener-

ation levels is primarily met by changes in the level of coal and gas generation, and second,

holding wind generation constant, a more volatile intra-hour wind profile leads to more vari-

ability in intra-hour generation from coal and gas. Table 4 links these changes in coal and gas

generation and intermittency to CO2 emission outcomes. The first column simply regresses

CO2 emissions on coal, gas and fuel oil generation.16 As expected, an additional MWh of

coal produces around 1 ton of CO2 while an additional MWh of gas produces around a half

ton of CO2. The next column disaggregates natural gas generation into CC and non-CC

generation, where non-CC gas generation produces considerably more CO2 than CC gas gen-

eration. The third column adds in the intra-hour intermittency of coal and gas generation

and importantly shows that, holding generation levels constant, a more variable intra-hour

generation profile increases CO2 emissions.17 This is precisely the concern motivated in

Section 2 whereby more variable operation of fossil plants (ramping) leads to increased emis-

sion rates. The last three columns repeat the previous exercise, but add simple year fixed

effects to control for any longer term trends (e.g. scrubber technologies). Estimates of the

emission impacts from coal and gas generation and variability are similar.

Finally, we turn to the key estimation that motivated this paper. While the above re-

gressions confirm the links between intra-hour wind intermittency and intra-hour fossil gen-

eration variability, and between intra-hour fossil generation variability and increased CO2

emissions, we now examine the reduced-form relationship between wind generation and in-

16 Note that the specifications for this set of regressions are relatively parsimonious, reflecting the “tech-
nical” nature of the relationship between fossil generation and emissions, as observed in the very high R2.
See Appendix Tables A.2 and A.3 for equivalent results for SO2 and NOx.

17 Unfortunately, the five-minute SPP data does not allow us to separate CC from non-CC generation so
we cannot create disaggregated measures of intra-hour intermittency by gas technology.
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termittency and emissions savings in Table 5. The first column regresses CO2 emissions on

wind generation and intermittency, while controlling for load (and its variability), tempera-

ture, and fixed effects. The coefficient on Wind of -0.726 can be interpreted as the tons of

CO2 avoided from a MWh of wind generation, holding intermittency constant.18 However,

the coefficient on Wind inter of 2.393 implies that, holding wind generation constant, wind

intermittency increases CO2 emissions. We will return to the magnitudes and their relative

economic importance below, but the positive and strongly statistically significant coefficient

on Wind inter confirms wind intermittency does increase CO2 emissions.

The first column of Table 5 provides causal estimates of the effect of wind generation

and intermittency on CO2 emissions in the SPP region; however, recall from Tables 2 and 3

that part of the change in wind generation and intermittency is accommodated by changes

in imports (importing less or exporting more). While we cannot explicitly account for the

corresponding changes in emissions in SPP’s trading neighbors, the second column of Table

5 controls for imports and import variability, and as expected, emission savings are a bit

higher. This coefficient provides a rough approximation of the total emission savings from

wind in SPP, where the closeness of the approximation depends on the similarity between

marginal emission rates in SPP and its trading neighbors. That said, from the perspective of

the key contribution of this paper, importantly the wind intermittency coefficient is roughly

the same in terms of magnitude and significance when controlling for imports. The remaining

columns of Table 5 repeat the above analysis for SO2 and NOx, both measured in pounds.

Consistent with previous results, wind generation reduces both of these pollutants. For SO2,

18 This estimate is roughly in line with previous estimates in the literature that have looked specifically
at emission savings or marginal emission rates in SPP or at emissions savings across varying coal-gas mixes
(Kaffine et al. 2012; Zivin et al. 2014; Fell and Kaffine 2018).
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increases in wind intermittency increase emissions (marginally significant), similar to the

case of CO2. However, increases in wind intermittency decrease NOx emissions, and while

point estimates are insignificant, we return to this point below.19

5.2 Further analysis of intermittency effects

While the above analysis demonstrated that intra-hour wind intermittency increased CO2

emissions, we further examine these intermittency effects along several dimensions. First,

the above analysis assumed the emissions response to intermittency was linear. Below we

consider a more flexible semi-parametric examination of emissions savings by decile of in-

termittency that also allows for a more direct examination of the relative importance of the

intermittency effect in terms of emissions savings. Second, while the above analysis considers

contemporaneous emission effects of wind and wind intermittency, there may be dynamic

implications if effects in one hour spill over to subsequent hours (Cullen 2013).

Previously, we assumed intermittency enters linearly into our estimation equation. To

more flexibly examine the effect of intermittency on emission savings, we next create deciles

of wind intermittency, where Db
hdmy is equal to 1 if wind intermittency falls into decile bin

b. We then estimate the following regression on hourly CO2 emissions Ehdmy:

Ehdmy =
10∑
b=1

βb ∗Whdmy ∗Db
hdmy + f(zhdmy) + ζhm + θmy + ηd + εhdmy, (6)

where βb is the CO2 emissions savings from wind generationW given intermittency is in decile

bin b, and control variables zhdmy and fixed effects are the same as in Table 5. Figure 2 plots

19 These analyses are replicated using an alternative fixed effects specification of more restrictive hour-by-
month-by-year fixed effects in Appendix Table A.4, as well as using the alternative measures of intermittency
(the range of intra-hour generation, the standard deviation of intra-hour generation, and the sum of changes
in intra-hour generation or “mileage”) in Appendix Tables A.5, A.6, and A.7, yielding consistent results.
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these emission savings coefficients by decile along with corresponding confidence intervals,

with the solid and dashed lines excluding and including import controls, respectively.20 The

decile estimates for both panels are consistent with the results in Table 5 whereby CO2

emission savings decline as wind intermittency deciles increase. Figure 2 also provides a sense

of the magnitude of the intermittency effects on emissions savings, with a 0.07 tons/MWh

statistically significant decline from the lowest decile to highest decile of intermittency when

import controls are excluded (a 9% decline) and a 0.05 tons/MWh statistically significant

decline when import controls are included (a 6% decline).21

Next, we look for any dynamic effects of wind or wind intermittency on emissions. We

first include a series of lagged variables for wind and wind intermittency. As shown in Figure

3 Panel A, there is little evidence that lagged wind levels affect CO2 emissions. By contrast,

wind intermittency in Panel B exhibits a decaying lag structure that becomes insignificant

after four lags.22 Summing across the coefficients on wind intermittency gives an aggregate

dynamic effect on CO2 emissions of 4.383, or roughly double the “static” effect reported in

Table 5.

We estimate generation and intermittency effects for each pollutant for two different

dynamic specifications that include lagged values. Following Cullen (2013) and Novan (2015),

we subtract the contemporaneous wind generation and/or intermittency value from each of

the lags, such that the contemporaneous coefficient can be interpreted as the aggregate

20 We can interpret the solid line excluding import controls as the emission savings strictly within SPP
due to SPP wind generation, and the dashed line with import controls as an approximation of the total
emission savings due to SPP wind generation, per the previous discussion regarding interpretation of models
with import controls.

21 Repeating this analysis for SO2 shows a similar percentage decline in emission savings across deciles,
while NOx emission savings are non-monotonic across deciles.

22 This pattern is consistent across a variety of specifications and alternative considerations.
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dynamic effect of generation and/or intermittency. Specifically, we estimate:

Ehdmy = β0Whdmy+
4∑
l=1

βl∗W̃h−l,dmy+γ0σhdmy+
4∑
l=1

γl∗σ̃h−l,dmy+f(zh−l,dmy)+ζhm+θmy+ηd+εhdmy,

(7)

where W̃h−l,dmy and σ̃h−l,dmy are the transformed lag values of wind generation and inter-

mittency, and the vector of controls f(zh−l,dmy) may include lagged values. The coefficients

β0 and γ0 represent the aggregated dynamic effect of generation and intermittency and are

reported in Table 6.

In columns (1)-(3) of Table 6 we include just the four transformed lags for wind inter-

mittency, with all other variables included contemporaneously. In columns (4)-(6), we also

include four transformed lags for wind generation, as well as four lags for all other controls.

Taken together, the dynamic analysis suggests: a) there is no evidence of a lagged effect of

wind generation on emissions, b) there are lagged effects of wind volatility on emissions, with

dynamic effects roughly twice as large for CO2 and roughly 30% larger for SO2 and NOx,

and c) lagged controls do not appear to materially affect coefficient estimates.23

5.3 Robustness checks and further extensions

Several variations on the specifications above were also considered. First, as an alterna-

tive approach to addressing import/export issues, we also obtained hourly load and wind

generation data for the neighboring regions of ERCOT and MISO. Including these as con-

trols had little impact on qualitative or quantitative results (Appendix Table A.8). Second,

for the parametric model, we looked for evidence of nonlinear effects of wind intermittency

23 The lack of a lagged effect for wind generation (in levels) is consistent with Novan (2015) who finds little
evidence for dynamic wind effects. By contrast, Cullen (2013) finds substantial dynamic effects of wind.
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and wind generation on emissions (quadratic results in Appendix Table A.9). Interestingly,

wind generation has a significant concave relationship with CO2 and SO2 emissions (greater

marginal emission savings with more wind), but a convex relationship with NOx emissions.

By contrast, there is only weak evidence of a non-linear effect of intermittency. Finally,

there were a small number of hours with very large wind intermittency levels (20 standard

deviations above the mean intermittency) that may represent data errors. Removal of these

few points did not alter the above estimates.

Moving into more substantive extensions, we consider whether or not the effects of inter-

mittency on emission savings varied with the fossil generation mix, defined as the amount of

coal generation relative to natural gas generation in a given hour. Given coal generation is

more emissions-intensive, we expect intermittency effects would be more pronounced when

coal is relatively more prevalent in the generation mix. Results of this exercise are displayed

in Table 7, which confirms our intuition that intermittency matters more for CO2 emission

savings when coal is a greater share of generation. Intermittency effects for SO2 and NOx

do not appear to vary significantly with generation mix.

Next, we examine a semiparametric model where both wind generation and wind inter-

mittency are assigned to quartiles and CO2 emission savings are estimated by joint quartile.

Results are visualized in Figure 4, and are consistent with the above findings - in particular,

emissions savings decline as wind intermittency increases. CO2 emission savings are greatest

in the top quartile of wind generation and bottom quartile of wind intermittency, and roughly

20% smaller in the bottom quartile of wind generation and top quartile of wind intermittency.

Note, mean values of wind generation and wind intermittency have been increasing over time,

moving “southeast” in the figure. For example, mean generation and intermittency levels in
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January-March of 2012 fall in the second quartile for each variable, and then move to the

third quartile of each in January-March of 2014. However, marginal emission savings remain

roughly constant as the falling emissions savings due to increased intermittency are offset by

the greater emission savings from increased hourly wind generation.24

Finally, we consider how the emissions savings coefficients on wind generation and in-

termittency vary by hour, whereby wind generation and intermittency are interacted with

hourly dummy variables. Figure 5 plots the hourly coefficients for CO2 emissions savings,

comparing CO2 emission savings absent intermittency (solid) with CO2 emission savings

including intermittency effects (dashed). From the figure, both CO2 emission savings per

MWh of wind and the effects of intermittency are generally greatest in off-peak hours when

coal is a greater share of generation, and fall during the day as gas share increases to meet

peak load. Appendix Figure A.2 repeats this exercise for SO2 and NOx. Similar to the

findings above, SO2 mirrors CO2, with greater emission savings during off-peak hours when

coal is a larger share of generation. By contrast, NOx exhibits a drastically different pat-

tern, with the greatest emission savings occurring during peak hours when gas is a larger

share of generation. Consistent with Novan (2015), this reflects the fact that gas turbines in

particular are used more intensely during peak periods - gas turbines have similar emission

rates to combined-cycle gas generation for CO2 and SO2, but an order of magnitude higher

emission rates of NOx.
25

24 Appendix Figure A.1 displays equivalent figures for SO2 and NOx. Emissions savings for SO2 are similar
to those of CO2, whereby emission savings are typically greatest in the top quartile of wind generation, likely
reflecting the greater offsetting of coal generation. Interestingly, emissions savings for NOx are generally
greatest in the second quartile, and taper off considerably in the top quartile of wind generation.

25 The fact that NOx emissions consistently respond very differently to wind generation than the other
two emission types is not unique to SPP, as Kaffine et al. (2013) and Novan (2015) find similar patterns in
ERCOT. See Appendix Table A.10 for peak versus off-peak results.
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5.4 Discussion

The above estimation results confirm intra-hour intermittency erodes CO2 emissions savings

from wind power. But to what extent does accounting for intermittency change policy

prescriptions? Suppose avoided CO2 emissions were the only external benefit associated

with replacing fossil fuel generation with wind power. Then standard externality theory

suggests a subsidy per MWh of wind equal to the marginal external benefit per MWh would

be efficient.26

Recall from Table 5 that, holding intermittency constant, the average marginal CO2

emissions savings in SPP from 1 MWh of wind is 0.726 tons/MWh. Similarly, holding gen-

eration constant, the average marginal increase in emissions due to intra-hour intermittency

(also measured in MWh via the intra-hour rme) is 2.393 tons/MWh. Assuming an external

damage value of $39 dollars per ton of CO2, this would imply an efficient subsidy of $28.31

dollars per MWh of wind ignoring intermittency effects (reasonably close to the current

federal Production Tax Credit of $23/MWh).

To examine how intermittency would affect this subsidy, we evaluate the marginal emis-

sion savings per MWh at the mean levels of wind generation (2558 MWh) and intermittency

(30 MWh). At the mean intermittency level, the marginal emissions savings rate is re-

duced to 0.698 tons/MWh, and the efficient subsidy declines by 3.8% to $27.22/MWh.27

Suffice to say, while intermittency does matter, the difference in efficient subsidies is very

26 In practice of course, there are potentially other external benefits and costs associated with wind
power. However, given the importance of reduced CO2 emissions as a major economic justification for
policy interventions to support renewable energy, we focus on them in order to understand the importance
of intermittency.

27 Average marginal emission savings per MWh of wind are calculated as (0.726∗2558−2.393∗30)/2558) =
0.698 tons/MWh.
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small. Even at the 95th percentile of intermittency (64 MWh), the efficient subsidy would

be $25.98/MWh. Finally, using the larger dynamic estimates from Table 6, intermittency

effects reduce the efficient subsidy by 6.5% to $26.50/MWh.

Thus, it does not appear intermittency is a large factor in determining efficient subsidies

or other policy interventions for wind power at currently observed wind generation levels.

However, many of the concerns regarding intermittency are motivated about future levels of

intermittency, under wind shares greater than the 10% in SPP during our sample years. If

we examine the in-sample relationship between hourly generation and intermittency, inter-

mittency exhibits an inverted U-shape (concave) with respect to wind generation (peaked

around 3000 MWh). This would suggest doubling wind generation would actually decrease

intermittency, though we have reason to believe this interpretation would be inappropriate

due to the relationship between wind speed and power output at the turbine level.28 Alter-

natively, a better way to think about how intermittency may change in the future is to note

both average generation and average intermittency depend on wind capacity.

During the sample period, wind capacity grew by a substantial 60%, from 5326 MW

to 8912 MW, with the bulk of the capacity additions in 2012. Figure 6 plots weekly wind

generation, capacity and intermittency, normalized to the first week of 2012. Both wind

generation and intermittency track capacity roughly proportionately, suggesting the 60%

increase in wind capacity leads to a roughly 60% increase in generation and intermittency.29

28 This observed decline in intermittency at higher levels of hourly generation is likely driven by the fact
that at high wind speeds, wind turbines are hitting their rated capacity. At “normal” wind speeds, the
power curve is cubic, such that small changes in wind speeds can lead to very different power levels; however,
at wind speeds in excess of roughly 11 meters per second, the wind turbine is producing at 100% of rated
capacity, such that even large changes in wind speeds do not alter power output (Kaffine and Worley 2010).
Examination of the 5 minute generation data supports this - during hours with high wind generation (in
excess of 6000 MWh for example), the 5 minute generation level is very constant as wind speeds have “buried
the needle” in terms of generation.

29 A simple regression of generation on capacity and intermittency on capacity, with Newey-West corrected
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As such, a doubling of capacity would roughly increase wind’s share of total generation to

20%, and would double mean generation from 2565 MWh to 5130 MWh and mean hourly

intermittency from 30 MWh to 60 MWh, assuming this proportionality locally holds. This

suggests the intermittency effect on emissions savings calculated above at 3.8% would also

roughly double to 7.6% at a 20% wind share.30 Thus, while it is true intermittency will

have larger impacts on emissions savings at higher wind shares, given the linear relationships

between capacity and intermittency and between intermittency and emissions, the effect

remains rather modest in the near-term of 10-20% wind shares.

6 Conclusions

In this paper, we contribute to the growing literature on measuring the environmental ben-

efits of low-emission technologies such as wind power. In particular, we provide causal

estimates of the effect of wind intermittency on CO2 emissions savings from wind power

using a unique dataset of 5-minute generation observations from SPP. We show intra-hour

wind intermittency does affect operations of coal and gas generators and correspondingly

emissions, and thus it appears there is some merit to the concern that wind intermittency

reduces emissions savings. For example, at the highest levels of intermittency, CO2 emission

savings may be reduced by just under 10%.

standard errors cannot reject a coefficient of 1. However, one should not extrapolate this proportional
relationship too far, as the relationship between intermittency and new wind capacity in particular will
depend on the spatial distribution of wind turbines. That said, based on Figure 6 there is little to suggest a
convex relationship between capacity and intermittency over the span of our data.

30 Note the above hypothetical doubling of wind capacity leads to average hourly generation and inter-
mittency levels that are well within those observed during the sample period. For example, this aligns with
marginal emission savings rates in Figure 2, whereby a doubling of intermittency moves us from the mid-
deciles to the 9th decile. Evaluating increases in capacity beyond a doubling or so would require significant
extrapolation beyond the generation/intermittency levels observed in the data.
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However, at current levels of wind penetration (around 10% in SPP), concerns of the

overall importance of wind intermittency for wind policy are not borne out, as intermittency

reduces marginal CO2 emissions savings by a modest 3.8% on average. Dynamic estimates

suggest slightly larger reductions in emissions savings of 6.5%. Further examination of the

relationships between wind capacity, generation and intermittency suggest that while the

importance of intermittency will increase as the share of wind generation grows, the effect

on emissions savings will likely remain modest in the near-term (wind shares in the 10-20%

range).31 Of course, as wind generation continues to grow as a share of generation, future

research should examine whether intermittency does begin to considerably erode emissions

savings at 40%, 60% or 80% wind shares.
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Table 1: Summary Statistics

Mean Standard Min Max
Deviation

Generation (MWh)
Wind 2,558 1,526 2 6,561
Coal 15,955 2,691 8,084 22,628
Hydro 123 127 -215 507
DFO 70.21 56.73 -0.01 409.3
Nat Gas 6,191 3,119 1,987 20,777
Nuclear 1,665 570 232 2539
Load 26,563 4,906 16,836 44,249
Imports -311 744 -2,693 3,376
Intermittency (MWh)
Wind inter 29.93 18.69 0 624.5
Coal inter 49.11 33.71 0 1,144
Hydro inter 6.64 6.55 0 85.4
DFO inter 1.71 2.85 0 40.67
Nat Gas inter 58.04 41.5 0 1,083
Nuclear inter 0.93 3.76 0 272.2
Load inter 90.12 56.19 0 2,130
imports inter 64.64 35.46 0 1,620
Other
SO2 (lbs) 63,335 11,666 31,229 99,637
NOx (lbs) 38,627 9,843 18,504 80,060
CO2 (tons) 21,940 4,272 11,820 36,200
Temp (◦F) 57.35 20.62 1 106

Values are reported in MWh for generation sources, degrees Fahren-
heit for temp, tons for CO2 and lbs for SO2, NOx. Intermittency
values report intra-hour calculations for intermittency based on the
rme of intra-hour changes in generation.
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Table 2: Marginal generation response to wind generation

(1) (2) (3) (4) (5) (6)
Variables Nat gas Coal DFO Nuclear Hydro Imports

Wind -0.368*** -0.519*** -0.00352*** -0.0139 -0.00529*** -0.0907***
(0.0178) (0.0174) (0.000711) (0.00886) (0.00123) (0.00963)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.952 0.926 0.624 0.705 0.795 0.699

Coefficients represent change in MWh of generation per MWh of wind. All regressions
include hour-by-month, month-by-year, and day-of-week fixed effects, as well as quadratic
controls for load and temperature. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Marginal intermittency response to wind intermittency

(1) (2) (3) (4) (5) (6)
Variables Coal Nat gas DFO Nuclear Hydro Imports

inter inter inter inter inter inter

Wind 0.00394*** -0.00384*** -3.03e-05 -4.02e-05 -7.48e-05* -0.000107
(0.000205) (0.000187) (2.63e-05) (3.32e-05) (3.95e-05) (0.000200)

Wind inter 0.252*** 0.216*** 0.00405*** 0.00651* 0.00263 0.434***
(0.0575) (0.0265) (0.00148) (0.00374) (0.00276) (0.0842)

Load inter 0.282*** 0.337*** 0.00533*** 0.0102 0.00872*** 0.462***
(0.0640) (0.0723) (0.00124) (0.00671) (0.00212) (0.103)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.486 0.671 0.222 0.032 0.386 0.328

Coefficients on “Wind inter” represent changes in intra-hour rme of generation source due
to a 1 unit change in the intra-hour rme of wind generation. All regressions include hour-
by-month, month-by-year, and day-of-week fixed effects, as well as quadratic controls for
load and temperature. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Marginal emissions response to fossil - CO2

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 CO2 CO2 CO2 CO2

Coal 1.114*** 1.140*** 1.138*** 1.130*** 1.162*** 1.160***
(0.0153) (0.0165) (0.0166) (0.0163) (0.0181) (0.0181)

Nat gas 0.557*** 0.543***
(0.0171) (0.0162)

DFO 1.626*** 1.740*** 1.753*** 1.666*** 1.720*** 1.730***
(0.559) (0.606) (0.604) (0.550) (0.580) (0.577)

CC gas 0.308*** 0.307*** 0.277*** 0.275***
(0.0251) (0.0264) (0.0256) (0.0266)

Non-CC gas 0.806*** 0.809*** 0.805*** 0.808***
(0.0285) (0.0288) (0.0261) (0.0265)

Coal inter 0.934*** 0.880***
(0.347) (0.308)

Nat gas inter 0.360 0.490
(0.355) (0.308)

Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.987 0.986 0.986 0.987 0.987 0.987

Coefficients represent changes in tons of CO2. Final three columns include year
fixed effects. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Marginal emissions response to wind generation and intermittency

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.726*** -0.786*** -1.832*** -1.978*** -1.656*** -1.749***
(0.0142) (0.0145) (0.0931) (0.0985) (0.0459) (0.0483)

Wind inter 2.393*** 2.379*** 5.706* 6.028* -1.873 -2.168
(0.628) (0.551) (3.362) (3.498) (1.812) (1.777)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.982 0.885 0.889 0.951 0.953

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. All regres-
sions include hour-by-month, month-by-year, and day-of-week fixed effects, as well
as quadratic controls for load and temperature (and imports if included), and linear
controls for load and import intermittency. Robust standard errors clustered by week
in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Marginal emissions response to wind generation and intermittency - dynamic

(1) (2) (3) (4) (5) (6)
Variables CO2 SO2 NOx CO2 SO2 NOx

Wind -0.789*** -1.981*** -1.748*** -0.784*** -1.950*** -1.732***
(0.0147) (0.0988) (0.0484) (0.0167) (0.112) (0.0545)

Wind inter 4.383*** 8.155 -2.734 4.702*** 8.477 -2.391
(1.199) (7.448) (4.000) (1.217) (7.594) (4.095)

Controls lagged N N N Y Y Y
Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports Y Y Y Y Y Y
Observations 19,700 19,700 19,700 19,700 19,700 19,700
R-squared 0.982 0.889 0.954 0.983 0.891 0.954

Coefficients represent changes in tons of CO2 , lbs of SO2, lbs of NOx. First three
columns include 4 lags of wind intermittency, while final three columns also include 4
lags for all control variables. All regressions include hour-by-month, month-by-year,
and day-of-week fixed effects, as well as quadratic controls for load, temperature,
and imports, and linear controls for load and import intermittency. Robust standard
errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Marginal emissions response - generation mix

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.762*** -0.821*** -2.048*** -2.191*** -1.716*** -1.805***
(0.0125) (0.0121) (0.0812) (0.0824) (0.0468) (0.0488)

Wind inter x Genmix 0.297** 0.271** -0.954 -1.051 -0.307 -0.454
(0.145) (0.118) (0.734) (0.769) (0.458) (0.444)

Genmix 564.5*** 569.3*** 3,451*** 3,515*** 889.9*** 857.4***
(44.07) (45.08) (254.0) (260.8) (170.0) (175.4)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.983 0.987 0.908 0.913 0.954 0.955

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. The variable “Genmix”
is defined as total hourly coal generation divided by total hourly natural gas generation. All
regressions include hour-by-month, month-by-year, and day-of-week fixed effects, as well as
quadratic controls for load and temperature (and imports if included), and linear controls
for load and import intermittency. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Figure 1: 5-minute wind power levels in SPP for 6 hours with 2000 MWh of hourly wind
generation.
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Solid line excludes import controls, dashed line includes controls for imports.
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Figure 3: Panel A) Wind coefficient for CO2 emissions savings (tons/MWh) with four lags.
Panel B) Wind intermittency coefficient for CO2 savings with four lags.
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Figure 5: CO2 emissions savings from wind (tons/MWh) by hour of day. Top panel -
solid line is emissions savings without intermittency, dashed line is emissions savings with
intermittency. Bottom panel - solid line is emissions savings inclusive of intermittency when
intra-hour generation is falling, dashed line is emissions savings inclusive of intermittency
when intra-hour generation is rising.
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Table A.1: Correlation between alternative intermittency measures - wind generation

Standard Deviation Range RMS Mileage

Standard Deviation 1.0000
Range 0.9912 1.0000
RMS 0.8775 0.8822 1.0000
Mileage 0.9173 0.9318 0.9659 1.0000

Correlation between alternative wind intermittency measures.
“Standard Deviation” is the intra-hour standard deviation of 5-
minute wind generation. “Range” is the difference between intra-
hour min and max wind generation. “RMS” is the intra-hour root-
mean-square of changes in 5-minute wind generation. “Mileage” is
the intrahour sum of changes in 5-minute generation.
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Table A.2: Marginal emissions response - SO2

(1) (2) (3) (4) (5) (6)
Variables SO2 SO2 SO2 SO2 SO2 SO2

Coal 3.804*** 3.842*** 3.845*** 4.144*** 4.249*** 4.245***
(0.103) (0.107) (0.107) (0.116) (0.122) (0.122)

Nat gas 0.341*** 0.0418
(0.106) (0.0997)

DFO -3.494 -4.026 -3.810 -2.851 -5.231 -5.106
(5.542) (5.817) (5.777) (5.153) (5.251) (5.242)

CC gas 0.0229 0.0697 -0.558*** -0.544***
(0.183) (0.205) (0.192) (0.208)

Non-CC gas 0.679*** 0.699*** 0.678*** 0.694***
(0.237) (0.239) (0.211) (0.212)

Coal inter 7.492** 5.479*
(3.534) (3.136)

Nat gas inter -2.934 0.149
(3.408) (2.557)

Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.849 0.849 0.849 0.872 0.875 0.876

Coefficients represent changes in lbs of SO2. Final three columns include year fixed
effects. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Marginal emissions response - NOx

(1) (2) (3) (4) (5) (6)
Variables NOx NOx NOx NOx NOx NOx

Coal 1.595*** 1.637*** 1.665*** 1.985*** 2.079*** 2.099***
(0.0789) (0.0786) (0.0798) (0.100) (0.0955) (0.0980)

Nat gas 1.834*** 1.491***
(0.0814) (0.100)

DFO 7.239* 7.320* 7.476* 7.918*** 6.112** 6.168**
(3.703) (3.844) (3.794) (2.781) (2.986) (2.957)

CC gas 1.267*** 1.364*** 0.636*** 0.701***
(0.167) (0.192) (0.154) (0.163)

Non-CC gas 2.454*** 2.439*** 2.451*** 2.432***
(0.263) (0.257) (0.219) (0.215)

Coal inter -3.066 -5.135**
(2.343) (2.029)

Nat gas inter -11.26*** -7.991***
(3.843) (2.567)

Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.847 0.854 0.856 0.891 0.899 0.900

Coefficients represent changes in lbs of NOx. Final three columns include year
fixed effects. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Marginal emissions response to wind generation and intermittency - alternative
fixed effects

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.727*** -0.786*** -1.831*** -1.987*** -1.669*** -1.742***
(0.0144) (0.0146) (0.0943) (0.0998) (0.0466) (0.0483)

Wind inter 2.450*** 2.407*** 5.250 5.556 -1.333 -1.718
(0.636) (0.560) (3.411) (3.550) (1.752) (1.766)

Load/Temp Y Y Y Y Y Y
HMY Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.983 0.887 0.891 0.957 0.958

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. All regressions
include hour-by-month-by-year and day-of-week fixed effects, as well as quadratic con-
trols for load and temperature (and imports if included), and linear controls for load
and import intermittency. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Marginal emissions response - intermittency as intra-hour wind range

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.723*** -0.783*** -1.826*** -1.971*** -1.658*** -1.752***
(0.0141) (0.0144) (0.0930) (0.0985) (0.0460) (0.0484)

Wind inter 0.226*** 0.209*** 0.544 0.534 -0.281* -0.353**
(0.0534) (0.0449) (0.335) (0.332) (0.164) (0.158)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.982 0.885 0.889 0.951 0.954

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. The variable
“Wind inter” measures intermittency as the maximum range in intra-hour wind gen-
eration for a given hour. All regressions include hour-by-month, month-by-year, and
day-of-week fixed effects, as well as quadratic controls for load and temperature (and
imports if included), and linear controls for load and import intermittency. Robust
standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Marginal emissions response - intermittency as intra-hour standard deviation

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.723*** -0.783*** -1.826*** -1.970*** -1.658*** -1.753***
(0.0141) (0.0144) (0.0930) (0.0985) (0.0460) (0.0484)

Wind inter 0.644*** 0.598*** 1.585* 1.612* -0.768* -1.003**
(0.152) (0.127) (0.947) (0.934) (0.462) (0.449)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.982 0.885 0.889 0.951 0.954

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. The variable
“Wind inter” measures intermittency as the intra-hour standard deviation of wind
generation for a given hour. All regressions include hour-by-month, month-by-year,
and day-of-week fixed effects, as well as quadratic controls for load and temperature
(and imports if included), and linear controls for load and import intermittency.
Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.7: Marginal emissions response - intermittency as intra-hour “mileage”

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.725*** -0.785*** -1.831*** -1.976*** -1.657*** -1.750***
(0.0142) (0.0144) (0.0931) (0.0984) (0.0459) (0.0483)

Wind inter 0.246*** 0.235*** 0.591* 0.604* -0.192 -0.233
(0.0562) (0.0513) (0.335) (0.346) (0.184) (0.179)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.982 0.885 0.889 0.951 0.953

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. The vari-
able “Wind inter” measures intermittency as the sum of intra-hour changes in wind
generation - “mileage” - for a given hour. All regressions include hour-by-month,
month-by-year, and day-of-week fixed effects, as well as quadratic controls for load
and temperature (and imports if included), and linear controls for load and import
intermittency. Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Marginal emissions response - MISO/ERCOT controls

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.715*** -0.792*** -1.869*** -2.064*** -1.607*** -1.725***
(0.0139) (0.0152) (0.0946) (0.103) (0.0444) (0.0481)

Wind inter 2.443*** 2.508*** 6.551* 6.932* -1.866 -2.120
(0.623) (0.549) (3.406) (3.562) (1.822) (1.801)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
MISO/ERCOT Load Y Y Y Y Y Y
MISO/ERCOT Wind Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,698 19,698 19,698 19,698 19,698 19,698
R-squared 0.979 0.983 0.886 0.891 0.952 0.954

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. All regressions
include hour-by-month, month-by-year, and day-of-week fixed effects, as well as quadratic
controls for load and temperature (and imports if included), and linear controls for load
and import intermittency and ERCOT and MISO load and wind levels. Robust standard
errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.9: Marginal emissions response to wind generation and intermittency - nonlinear

(1) (2) (3) (4) (5) (6)
Variables CO2 CO2 SO2 SO2 NOx NOx

Wind -0.590*** -0.607*** -0.519* -0.607* -2.184*** -2.154***
(0.0456) (0.0439) (0.304) (0.307) (0.164) (0.169)

Wind2 -2.36e-05*** -3.11e-05*** -0.000227*** -0.000238*** 9.09e-05*** 7.01e-05***
(7.19e-06) (6.84e-06) (4.69e-05) (4.76e-05) (2.60e-05) (2.62e-05)

Wind inter 2.091*** 1.276* -4.053 -5.657 4.541* 2.814
(0.796) (0.699) (4.592) (4.685) (2.479) (2.414)

Wind inter2 -0.00440** -0.00126 0.00165 0.0106 -0.0167*** -0.0127**
(0.00199) (0.00153) (0.00818) (0.00858) (0.00549) (0.00529)

Load inter -0.920** -0.594* -1.673 -0.620 -3.050*** -2.766**
(0.353) (0.316) (2.040) (2.100) (1.165) (1.201)

Load inter2 0.000623** 0.000769*** 0.000498 0.00153 0.00216** 0.00164*
(0.000281) (0.000277) (0.00168) (0.00167) (0.000977) (0.000982)

Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N Y N Y N Y
Observations 19,704 19,704 19,704 19,704 19,704 19,704
R-squared 0.979 0.983 0.887 0.891 0.952 0.954

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. All regressions include hour-
by-month, month-by-year, and day-of-week fixed effects, as well as quadratic controls for load and
temperature (and imports as noted). Robust standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table A.10: Marginal emissions response to wind generation and intermittency - offpeak vs
peak

(1) (2) (3) (4) (5) (6)
Variables CO2 SO2 NOx CO2 SO2 NOx

Wind -0.779*** -2.253*** -1.541*** -0.689*** -1.538*** -1.746***
(0.0175) (0.105) (0.0473) (0.0163) (0.106) (0.0547)

Wind inter 3.128*** 2.564 0.0365 1.744*** 3.639 -0.292
(0.911) (4.745) (2.536) (0.621) (3.460) (1.836)

Time Offpeak Offpeak Offpeak Peak Peak Peak
Load/Temp Y Y Y Y Y Y
Hour-Month Y Y Y Y Y Y
Month-Year Y Y Y Y Y Y
DOW Y Y Y Y Y Y
Imports N N N N N N
Observations 8,210 8,210 8,210 11,494 11,494 11,494
R-squared 0.971 0.896 0.938 0.977 0.859 0.949

Coefficients represent changes in tons of CO2, lbs of SO2, lbs of NOx. All regressions in-
clude hour-by-month, month-by-year, and day-of-week fixed effects, as well as quadratic
controls for load and temperature and linear controls for load intermittency. Robust
standard errors clustered by week in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Figure A.1: SO2 emissions savings (top) and NOX emissions savings (bottom) from wind
(lbs/MWh) by quartile of wind intermittency and wind generation.
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Figure A.2: Emissions savings from wind (tons/MWh) by hour of day. Top panel - solid line
is SO2 emissions savings without intermittency, dashed line is SO2 emissions savings with
intermittency. Bottom panel - solid line is NOx emissions savings without intermittency,
dashed line is NOx emissions savings with intermittency.
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