
Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 9960

Angular velocimetry for fluid flows: an optical
sensor using structured light and machine
learning

E. F. STRONG,1,6 A. Q. ANDERSON,2 M. P. BRENNER,3,4 B. M.
HEFFERNAN,5 N. HOGHOOGHI,1 J. T. GOPINATH,2,5 AND G. B.
RIEKER1,7

1Department of Mechanical Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA
2Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Boulder,
CO 80309, USA
3John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138,
USA
4Google Research, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
5Department of Physics, University of Colorado, Boulder, Boulder, CO 80309, USA
6elizabeth.strong@colorado.edu
7Greg.Rieker@colorado.edu

Abstract: Most velocimetry approaches for fluid flows measure linear components of the
velocity vector; yet, the angular velocity components, particularly at small scales in turbulent
flows, also need to be resolved to study energy transfer and other important flow characteristics.
Here, we detail an optical sensor approach to determine a component of the angular velocity
vector. This approach uses beams of structured light and a machine learning-based analysis.
We discuss the methodology to train the machine learning model and test it in experimentally
validated simulations. This approach represents an interesting new direction for fluid flow
velocimetry which may be extended to sense other flow parameters by selecting different light
structures.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Experimental techniques are critical for studying fluid flows, especially if the flows cannot
be studied numerically due to physical restrictions or computational limitations. As such,
velocity sensors are a primary class of diagnostic tool. Velocity sensors typically measure linear
components of the velocity vector. Yet, many flows have important angular velocity components.
In turbulent flows, for example, regions with elevated local angular velocities give rise to and
mediate the most salient characteristics of the flow, including how and where energy is dissipated.

Traditionally, the mismatch between that which can be sensed (linear velocities) and that which
is of interest (angular velocities) has been addressed by deriving the latter from the former. For
example, metrics such as vorticity and circulation which characterize the local rotation of flows
are calculated by numerically differentiating measured multi-component linear velocity fields.
However, such strategies come at the cost of resolution, as the numerical differentiation inherently
introduces spatial uncertainty. While increasing the density of the field samples can increase
the spatial resolution, increasing the number of samples comes the cost of reduced temporal
resolution. Thus, if a high degree of temporal resolution is required, poor spatial resolution may
result. To refine the spatial and temporal resolutions of measurements which quantify rotation,
we seek to measure a component of the angular velocity field without needing to first measure
components of the linear velocity fields. This direct strategy will facilitate measurements with
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both short temporal and small spatial resolutions, positioning the measurements well for studying
flows which change rapidly in both time and space.

Our sensor uses a strategy common in fluid velocity sensing: seeding the flow with small
particles which scatter light. Assuming the particles are sized properly so they travel faithfully
with the flow [1], their velocities are assumed to match the velocity of the flow around them.
When these particles pass through an optical probe beam, the light they scatter is imaged or
collected on a photodetector. Information regarding the size, surface properties, and kinematics
of the reflector as well as characteristics of the probe beam such as its intensity are encoded in the
scattered signal and can be extracted using appropriate signal processing techniques. Examples of
existing techniques which calculate linear components of flow velocities from the light scattered
by seeded particles include field sensors like particle image velocimetry (PIV) and point sensors
like laser Doppler velocimetry (LDV). Other techniques, such as spatial filtering velocimetry,
imprint temporal periodicity into the scattered light signal using spatially periodic masks [2],
gratings [3], or optical fiber arrays [4]. These and related flow visualization techniques have been
developed extensively, and are commonly used in research and development settings in contexts
ranging from flume experiments to study coral reefs [5,6] to blood flow [7] to combustion systems
[8,9].

In this paper, we build on these earlier approaches that probe the fluid with structured light
(light with engineered phase, polarization, and intensity profiles). In particular, we take advantage
of structured light that is tailored to match particular properties we wish to measure (e.g. a
pattern with radial symmetry to measure to measure angular velocity [10]), while allowing for
resulting scattered light signals to be complicated with no simple relationship to the flow property
(e.g. wavelength shift to velocity in LDV). In order to ascertain a correlation between these
expected signals and the angular velocity, we train a modern machine learning regression model
to interpret the signals. We demonstrate this approach by measuring angular velocity using the
interference of two conjugate beams with orbital angular momentum (OAM). To the best of
our knowledge, this is the first time that structured light and machine learning have been used
together in a velocimetry application.

Our angular velocity sensor is closely related to LDV. The behavior of both our sensor and LDV
can be described in the spatial domain. Interference fringes (intensity modulations) generated by
superimposing two coherent beams of light comprise the probe beam. Particles traveling through
these fringes scatter light proportionally to the local intensity. In one configuration of LDV [11],
interfering plane waves give rise to sinusoidal fringes. As depicted in Fig. 1(a) and Fig. 1(b), the
distance between fringes multiplied by the frequency at which the scattered light is modulated
yields the component of the velocity orthogonal to the fringes.

Modifications to the structure of the probe beam can yield alternative interference patterns
which can be used to sense different properties of the flow. For example, the fan-like fringes
created by interfering light with cylindrical wavefronts can be used to infer velocity gradients close
to a wall [12–14]. Likewise, radial interference fringes can be used to measure angular velocities
[10,15–17]. As shown in Fig. 1(c) and Fig. 1(d), the angular velocity of a particle traveling on a
circular trajectory concentric with radial interference fringes can be determined from the product
of the radial fringe spacing and the intensity modulation frequency, Ω = ∆ϕ × fmod [15,17]. In
most fluid flows, however, particle orbits are not concentric with the probe beams, and orbit
radii may be larger than the size of the beam. What results is a signal processing challenge: no
one-to-one relationship between the angular velocity and the expected signal necessarily exists
(compare the signals in Fig. 1(d) and Fig. 1(f) which correspond to the same angular velocity).
These more complex scenarios therefore require an alternative strategy for signal analysis. The
sensor concept that we develop in this paper accommodates complicated signals with a machine
learning-based signal processing scheme.
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Fig. 1. The light scattered by a particle traveling through interference fringes is encoded
with information regarding the particle’s kinematics. a, c, f) Simulated schematics of
scattering particles (red dots, radii A) traveling on trajectories (indicated with the bold
white line) which pass through spatially varying intensity fields created by a) interfering
two plane waves with a relative angle of 5.73◦ or c, f) interfering conjugate Laguerre
Gauss beams with ; = ±4 and ? = 0 modes. b, d, f) resulting normalized scattered
light signals as a function of time. a, b) the fringe spacing 3 divided by the period of
the normalized signal + yields the component of the velocity vector of the particle in
the direction perpendicular to the interference fringes, +⊥. c, d) the fringe spacing Δq
divided by the period of the normalized signal + yields the component of the velocity
vector of the particle in the angular direction, Ω. e, f) if the particle orbit and the light
are not concentric, interpreting the resulting normalized signal is not straightforward
and requires an alternative approach.

measure of the local angular velocity) of small spherical particles with embedded planar mirrors
are measured with a spatial grating system [18]. The spatial and temporal resolutions of this
strategy are small (`m) and fast (ms). However, the environments in which measurements of
this type can be conducted are limited, as matching the optical and physical properties of the
seeding particles to those of the flow is required but can only be accomplished in specific cases.
Moreover, fabricating the seeding particles is quite involved.
In the class of direct rotation sensors which illuminate readily available small particles with

structured light, one approach calculates the fluid circulation by statistically analyzing the
frequency shifts present in the scattered light when particles traverse a ring-shaped Laguerre-
Gauss (LG) beam [19]. LG beams have phases which vary azimuthally as exp (8;q), where 8 is
the imaginary number, ; is the azimuthal mode number, and q is the azimuthal angle about the
beam axis. LG beams also have radial modes indexed with ?; here, all LG beams have ? = 0.
These beams possess ;ℏ of OAM. Because changes in phase give rise to changes in frequency,
particles passing through such beams scatter frequency shifted light. The system of Ref. [19]
was demonstrated using a flow field simulated on a digital micromirror device (DMD), and was
found to estimate the vorticity with a spatial resolution of 0.1 cm. However, the statistical signal
processing technique requires many particle transits through the probe beam, and this limits the
temporal resolution of the sensor. In the simulations from Ref. [19], for example, the transits

Fig. 1. The light scattered by a particle traveling through interference fringes is encoded
with information regarding the particle’s kinematics. a, c, f) Simulated schematics of
scattering particles (red dots, radii r) traveling on trajectories (indicated with the bold white
line) which pass through spatially varying intensity fields created by a) interfering two plane
waves with a relative angle of 5.73◦ or c, f) interfering conjugate Laguerre Gauss beams
with l = ±4 and p = 0 modes. b, d, f) resulting normalized scattered light signals as a
function of time. a, b) the fringe spacing d divided by the period of the normalized signal V
yields the component of the velocity vector of the particle in the direction perpendicular
to the interference fringes, V⊥. c, d) the fringe spacing ∆ϕ divided by the period of the
normalized signal V yields the component of the velocity vector of the particle in the angular
direction, Ω. e, f) if the particle orbit and the light are not concentric, interpreting the
resulting normalized signal is not straightforward and requires an alternative approach.

Previous direct attempts to measure rotation in fluids fall into two classes: scattering of
unpatterned light by specially engineered particles [18], and scattering of patterned or structured
light by the same particles used for PIV and LDV [15,19]. In the first class, the vorticity (a
measure of the local angular velocity) of small spherical particles with embedded planar mirrors
are measured with a spatial grating system [18]. The spatial and temporal resolutions of this
strategy are small (µm) and fast (ms). However, the environments in which measurements of
this type can be conducted are limited, as matching the optical and physical properties of the
seeding particles to those of the flow is required but can only be accomplished in specific cases.
Moreover, fabricating the seeding particles is quite involved.

In the class of direct rotation sensors which illuminate readily available small particles with
structured light, one approach calculates the fluid circulation by statistically analyzing the
frequency shifts present in the scattered light when particles traverse a ring-shaped Laguerre-
Gauss (LG) beam [19]. LG beams have phases which vary azimuthally as exp (ilϕ), where i is
the imaginary number, l is the azimuthal mode number, and ϕ is the azimuthal angle about the
beam axis. LG beams also have radial modes indexed with p; here, all LG beams have p = 0.
These beams possess lℏ of OAM. Because changes in phase give rise to changes in frequency,
particles passing through such beams scatter frequency shifted light. The system of Ref. [19]
was demonstrated using a flow field simulated on a digital micromirror device (DMD), and
was found to estimate the vorticity with a spatial resolution of 0.1 cm. However, the statistical
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signal processing technique requires many particle transits through the probe beam, and this
limits the temporal resolution of the sensor. In the simulations from Ref. [19], for example,
the transits of 250 particles were assembled for each measurement. The experiments from Ref.
[19] were conducted in a highly controlled environment that allowed for frequency shifts to be
measured via optical heterodyne, interfering the scattered light with a reference beam on the
photodetector. In such a configuration, the probe and reference beam travel separately to the
photodetector, with the probe beam traveling through the fluid and the reference beam bypassing
the fluid. Consequently, the beams experience different environments could induce phase noise
and beam steering, complicating detection in actual fluid applications.

An alternative approach for characterizing fluid rotation by measuring vorticity also uses LG
beams to probe a seeded flow, but bypasses the challenges associated with the detection scheme
of Ref. [19] by combining the signal and the reference beams before they enter the flow [15]. As
such, optical modes remain overlapped and maintain their mutual coherence, even if features
of the environment distort the wavefronts. The resulting beam has a petal-shaped interference
pattern with 2l lobes. As the angular analog to LDV, this technique relates the frequencies of the
intensity modulated scattered light to the angular spacing of the petal fringes to determine the
angular velocities of the particles. The working principle of this sensor is illustrated in Fig. 1(c)
and Fig. 1(d). However, two assumptions limit the applicability of this technique to more general
flows. The first limiting assumption is that the particle orbits are concentric with the beam
axis. This restricts where in the flow the sensor can function and makes the sensor sensitive
to misalignment between the beam and rotating structures in the flow. The second limiting
assumption is that the fluid moves obeying solid body rotation. The sensor always predicts the
vorticity of the flow to be twice the angular velocity, even if the vorticity has contributions due to
shear, meaning the flow behavior does not consist fully of the solid body rotation mode.

The sensor we present in this paper builds on the above approach, adding a more complex
signal processing scheme in order to remove the limitations on which flow configurations it can
be used with. As before, this is an Eulerian sensor, meaning that it remains fixed in the lab frame
and it monitors the flow as it passes by. In our approach, we measure the angular velocity instead
of the vorticity because in general cases, the Biot-Savart Law indicates that the velocities in a flow
are due in part to contributions from both local and nonlocal vorticities [20] (See more on angular
velocity versus vorticity measurements in the Appendix). We measure the angular velocity of a
single particle embedded in a 2-dimensional flow (no velocity components in the direction of the
probe beam) as it travels on a curved pathline and passes through a probe beam. Specifically, we
model the pathline of each particle to be a circular arc, and we predict the particle’s steady state
angular velocity Ω along that arc. Approximating particle trajectories as curved can be justified
by noting that many other flow velocimetry techniques assume particles travel only in straight
lines. As in LDV, we sense this motion using a probe beam with interference fringes whose
geometries are well characterized, and like the sensor of Ref. [15], these interference fringes are
formed by conjugate LG beams having azimuthal modes ±l. Also like these sensors, we make no
assumptions about the viscosity of the fluid.

As we will explain below, while both LDV and Ref. [15] use frequency domain signal
processing strategies, such an approach is not appropriate for the expected signals from this
technique. The signal processing strategy which accompanies our angular velocity sensor requires
characterizing each burst in the return signal resulting from the light scattered as a particle transits
the probe beam and extracting a set of metrics with which we predict Ω. These predictions
are conducted with a supervised machine learning regression model which is trained using
experimentally validated simulated data. We expect that this sensor will function at short time
scales defined by the duration of the particle transit as well as at short length scales set by the
relative sizes of the particle and the transverse intensity profile of the probe beam. We anticipate
that this sensor will find applications in systems which can accommodate only one optical access
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port, where imaging techniques might not be possible, and where pathlines through probe beams
cannot be approximated as linear.

The structure of the paper is as follows. In Sec. 2 we formalize the sensor, presenting the
mathematical model we implement to simulate expected experimental signals. Experimental
validation of these simulated signals is described in Sec. 3. With the simulated signals
experimentally validated, we consider signals collected via simulations and experiments as
interchangeable, and therefore are able to more flexibly and efficiently formulate and evaluate
the signal processing strategy associated with the sensor using simulated results. The signal
processing technique is discussed in Sec. 4. First, we describe the signal conditioning steps of
the technique in Sec. 4.1. Then, in Sec. 4.2, we present the machine learning regression model at
the heart of the sensor that predicts the angular velocity and orbit radius of particles. The results
are discussed in Sec. 5. Sensor limitations are outlined in Sec. 6, where we pay special attention
to the parameters which set the resolution of the sensor. Finally, we close with a discussion in
Sec. 7, where we explain strategies extending the capabilities of the sensor to more complex
fluid flows.

2. Sensor overview and simulations

In the case of LDV, the velocity component orthogonal to the interference fringes is given simply
by the product of the distance d [L] between the fringes and the frequency at which the intensity
of the scattered light varies [T−1] (Fig. 1(a, b)). In the case of angular velocity sensing with
conjugate LG beams, the distance from the LDV argument is replaced with the angular spacing
∆ϕ [rad] [15] (Fig. 1(c, d)). However, if misalignment between the probe beam and the particle
axis of rotation exists, as depicted in Fig. 1(e), the particle no longer traverses interference fringes
spaced equally in angle, and the resulting time series no longer possesses a single temporal
frequency that can be used in such an analysis. In fact, as shown in Fig. 2, particles can travel on
orbits with the same radius and at the same angular velocity but yield very different time series if
these orbits are centered at even slightly different locations. Thus, a more sophisticated signal
processing scheme is required to predict the angular velocity Ω of the particle under the many
possible combinations of orbit radii, centers of rotation, and angular velocities.

To train and validate our machine learning regression model for predicting the angular velocity
and orbit radius of scattering particles traversing our probe beam, we numerically simulate the
expected backscattered light that forms our data. In these simulations, we artificially sample an
intensity petal pattern formed by interfering two LG beams with azimuthal modes l = ±4, radial
modes p = 0, and a beam waist w(z) with a minimum of w0 (z) = 93.84 pixels on a 986 × 616
pixel grid. These values were set to match the experiment that we use to validate the simulated
signals, which is discussed in Sec. 3. Positions on the grid are referenced to its center using a
radial coordinate system, (R, ϕ).

The expected signal is modeled to be proportional to the scattered light from a particle. For
simplicity, we model the scattering particle as a mirror oriented towards the detector, assuming
that the particles have the same size, shape, and reflectivity so that the intensity of the light incident
on the detector depends only on the intensity field at the particle location. Such assumptions are
employed in the analogous technique of LDV [1] and are valid when the ratio of the spatial extent
of the intensity pattern to the distance between the detector and the particle is small. Further,
the simulated particles have identical radii of r = 20 pixels. Homogeneous seeding particles
are readily available for fluid sensors due to advances in particle fabrication techniques [1]. In
what follows, the size of the particle and the ratio r/w0 remains unchanged and therefore is not
necessarily optimized.

The simulated time series consists of signals from many particles passing through the petaled
beam in series, with no more than one particle traversing the beam at a time. These passes are
spaced in time to reflect a low density of seeding particles such that the time between transits is
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Fig. 2. Particle transit parameter space. A particle radius A travels on an arc radius
' (broken lines) at an angular velocity Ω = 3\/3C. This orbit is centered at position
(�, q) (orbit centers marked with crosses) relative to the center of the interference
pattern (normalized beam intensity simulated in background). As the particle passes
through the interference pattern, it scatters light proportional to the intensity of light
within the area of the particle. The size of the interference pattern is set by the beam
waist, F0, and the azimuthal index of the light, ;. Three particles are shown as orange,
blue, and gray circles. Each particle travels on an orbit of the same ' at the same Ω ,
but the positions (�, q) of these trajectories are slightly different. b) simulated time
series for the particles shown in a), each normalized by its maximum value. Although
the particles can all be considered to obey the same physics, the resulting signals
are dissimilar due to where they cross the interference pattern. This illustrates the
fundamental problem this sensor addresses, that particles which travel obeying the
same physics, but which are probed at slightly different positions yield time series may
not resemble each other. Parameters for particles 1, 2, and 3): F0 = 93.84 pixels,
; = ±4, A = 20 pixels, ' = 400 pixels, � = [340.3, 367.7, 396.6] pixels, respectively,
q = [−0.178,−0.205, −0.88] rad, respectively, and Ω = 250 rad/sec.

The relevant particle transit parameters to this problem are illustrated in Fig. 2a. We model
the motion of each particle to have a constant angular velocity along a circular trajectory. The
backscatter signal which results from a particle traversing the interference pattern is
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where the particle is considered to be a perfect mirror using a tophat function 6(R, q) equal to 1
within radius A and 0 otherwise. The particle functions as the kernel of a round blurring function
which operates on the calculated intensity field of the interference pattern, � (R, q). The particle
trajectory - (R, q, C) is centered at (�, q) relative to the beam center. The blurred intensity is
sampled as a function of time C along the trajectory of the particle at a sample rate of 100 kHz.
We add white noise to the time series to generate the expected detector signal + .

The parameter space consists of 7 variables, {F0, ;, A, ', q, �, Ω}, and is illustrated in
Fig. 2a. We reduce the dimensionality of the parameter space by fixing the characteristics of
the light (F0, ;) as well as the particle radius (A). Additionally, we leverage the radial symmetry
of the light to restrict q, limiting the orbit center positions relative to the beam axis to angles

Fig. 2. Particle transit parameter space. A particle radius r travels on an arc radius R (broken
lines) at an angular velocity Ω = dθ/dt. This orbit is centered at position (D, ϕ) (orbit
centers marked with crosses) relative to the center of the interference pattern (normalized
beam intensity simulated in background). As the particle passes through the interference
pattern, it scatters light proportional to the intensity of light within the area of the particle.
The size of the interference pattern is set by the beam waist, w0, and the azimuthal index of
the light, l. Three particles are shown as orange, blue, and gray circles. Each particle travels
on an orbit of the same R at the same Ω , but the positions (D, ϕ) of these trajectories are
slightly different. b) simulated time series for the particles shown in a), each normalized
by its maximum value. Although the particles can all be considered to obey the same
physics, the resulting signals are dissimilar due to where they cross the interference pattern.
This illustrates the fundamental problem this sensor addresses, that particles which travel
obeying the same physics, but which are probed at slightly different positions yield time
series may not resemble each other. Parameters for particles 1, 2, and 3): w0 = 93.84
pixels, l = ±4, r = 20 pixels, R = 400 pixels, D = [340.3, 367.7, 396.6] pixels, respectively,
ϕ = [−0.178,−0.205, −0.88] rad, respectively, and Ω = 250 rad/sec.

at least as long as half the average time of a transit. As we will see in the signal conditioning step
described in Sec. 4.1, spacing of approximately this time or longer is necessary for identifying
the salient features of the signals.

The relevant particle transit parameters to this problem are illustrated in Fig. 2(a). We model
the motion of each particle to have a constant angular velocity along a circular trajectory. The
backscatter signal which results from a particle traversing the interference pattern is

V(t)⏞⏟⏟⏞
signal

∝ [g(R, ϕ)⏞ˉ̄⏟⏟ˉ̄⏞
particle

∗ I(R, ϕ)⏞ˉ⏟⏟ˉ⏞
intensity

] × X(R, ϕ, t)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
trajectory

+ n(t)⏞⏟⏟⏞
noise

, (1)

where the particle is considered to be a perfect mirror using a tophat function g(R, ϕ) equal to 1
within radius r and 0 otherwise. The particle functions as the kernel of a round blurring function
which operates on the calculated intensity field of the interference pattern, I(R, ϕ). The particle
trajectory X(R, ϕ, t) is centered at (D, ϕ) relative to the beam center. The blurred intensity is
sampled as a function of time t along the trajectory of the particle at a sample rate of 100 kHz.
We add white noise to the time series to generate the expected detector signal V .
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The parameter space consists of 7 variables, {w0, l, r, R, ϕ, D, Ω}, and is illustrated in
Fig. 2(a). We reduce the dimensionality of the parameter space by fixing the characteristics of
the light (w0, l) as well as the particle radius (r). Additionally, we leverage the radial symmetry
of the light to restrict ϕ, limiting the orbit center positions relative to the beam axis to angles
π/(2l) ≤ ϕ<3π/(2l). At each (D, ϕ), where D is the distance between the orbit center and the
beam axis, the orbit radius R is limited to values that allow the particle to pass through the petals
of the interference fringes. Noting that the beam width at full width half maximum intensity

scales by rp ∼ w0

(︂
|l+1 |

2

)︂1/2
[21], this limitation constrains R to D − rp − r<R<D + rp + r. Any

particle radius r on an orbit with radius R centered at (D, ϕ) relative to the beam axis, then, will
travel through the interference fringes.

In Fig. 2 we plot the simulated signals corresponding to three particles traveling on orbits with
the same radii at the same angular velocities, but with slightly offset orbit centers. Though the
particles in each of these simulations move according to the same physics, the resulting time
series appear to have no similarities. These traces emphasize the signal processing challenge of
this sensor, which is to create a model which relates a set of metrics from these dissimilar signals
to predict the same Ω.

In this section, we have presented LDV in its fringe configuration, but we note that LDV can
also be operated in a heterodyne configuration, wherein the flow is illuminated with only one
beam (no interference fringes) [22]. In this alternative setup, particles in the flow backscatter
Doppler shifted light which interferes with a second (local oscillator) beam on the detector, and
the velocity of the particles is related to the measured frequency shift. Likewise, the rotation
measurements we present here could also operate in this alternative heterodyne configuration in
which the flow would be illuminated with a single LG beam and then the backscattered light
would interfere with a conjugate LG (local oscillator) beam on the detector. While the fringe and
heterodyne optical arrangements are mostly equivalent [23,24], the fringe method that we detail
in the paper provides an increased tolerance to scattering, as phase aberrations do not affect the
overlap of the beams. The fringe method also eases the alignment constraints in the detection
system. In our experience working with LG beams in the lab, we have found that obtaining
sufficient modal overlap can be challenging. Knowing that passing only one of the two beams
through a fluid environment would probably aberrate its wavefront, we have opted to mimic the
fringe strategy.

Because simulations provide a more controllable environment than experiments, we use the
simulations detailed in this section to develop and evaluate our sensor. We proceed by first
ensuring that the simulations capture the important experimental features by comparing them to
experimental results. This validation process is described in the following section. The code for
the simulations detailed in this section and the analysis which follows are publicly available [25].

3. Experimentally validating the backscattered light simulations

To experimentally validate our simulations, we conduct highly controlled experiments and
compare the results to our simulations with a cross correlation. While we have designed our
sensor to be used in fluid flows, the proof-of-concept experiments we present here follow the
strategy of Ref. [19] and replaces the fluid system with a digital micromirror device (DMD).
This gives us precise control of the dynamics of the ‘flow’ and allows consistent repetition of a
particular condition. Ultimately, this allows us to verify that, up to the assumptions outlined in
Sec. 2, our simulations match our experiments. In the first subsection below, we present our
experiment and discuss the experimental data acquisition process. In the second subsection, we
describe the experimental validation strategy which we use to justify replacing experiments with
simulations in developing the sensor.
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3.1. Experimental setup

In Fig. 3(a) we present a schematic of our experiment. Using a HeNe (Thorlabs, HNL050LB) as
our light source, we prepared a Laguerre-Gauss beam of light with l = ±4 using a spatial light
modulator (SLM, Cambridge Correlators, SDE 1024). The SLM was programmed to display a
computer-generated hologram consisting of a forked grating and a mask that selects only the
LGp=0 radial orders in each of the diffracted beams [26]. The first diffracted order was then
isolated from the others with a spatial filter and directed towards a digital micromirror device
(DMD, Texas Instruments, DLP4500). The DMD displayed a video of a small circle (radius 0.15
mm) traveling on a circular trajectory. These videos were designed so that no more than one
particle passed through the light at a time. The video framerate was fixed at fdmd = 0.225 Hz.
The light sampled by this moving group of mirrors was collected on a photodetector (Thorlabs,
Det36a). The resulting time series was low pass filtered (Mini-Circuits BLP-1.9+, 1.9 MHz
cutoff frequency lumped LC low-pass filter) and then digitized with a data acquisition system
(DAQ, National Instruments, USB6215) with a sampling rate of fs = 100 kHz. Though the cutoff
frequency of the low pass filter was greater than half the sampling rate of the DAQ meaning that
aliasing could have occurred, the dynamics of the experiment (0.225 Hz) were far slower than
either the cutoff frequency (1.9 MHz) or the sampling rate (100 kHz), so this was not a concern,
and any data that was aliased was interpreted as noise.

computer-generated hologram consisting of a forked grating and a mask that selects only the
LG?=0 radial orders in each of the diffracted beams [26]. The first diffracted order was then
isolated from the others with a spatial filter and directed towards a digital micromirror device
(DMD, Texas Instruments, DLP4500). The DMD displayed a video of a small circle (radius 0.15
mm) traveling on a circular trajectory. These videos were designed so that no more than one
particle passed through the light at a time. The video framerate was fixed at 53<3 = 0.225 Hz.
The light sampled by this moving group of mirrors was collected on a photodetector (Thorlabs,
Det36a). The resulting time series was low pass filtered (Mini-Circuits BLP-1.9+, 1.9 MHz
cutoff frequency lumped LC low-pass filter) and then digitized with a data acquisition system
(DAQ, National Instruments, USB6215) with a sampling rate of 5B = 100 kHz. Though the cutoff
frequency of the low pass filter was greater than half the sampling rate of the DAQ meaning that
aliasing could have occurred, the dynamics of the experiment (0.225 Hz) were far slower than
either the cutoff frequency (1.9 MHz) or the sampling rate (100 kHz), so this was not a concern,
and any data that was aliased was interpreted as noise.
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SLM: spatial light modulator b-d) experimental (red solid lines) and simulated (black
broken lines) normalized signals as a function of time. Parameters for simulations and
experiments shown in b-d: F0 = 93.84 pixels, ; = ±4, A = 20 pixels, ' = 1200 pixels,
� = [1250, 1265, 1250] pixels, respectively, q = 0 rad, and Ω = [654, 548, 223]
rad/sec, respectively.

In principle, we could have run our experiments at a rate set by the ultimate speed of the DMD,
4225 Hz. However, because the objective of these experiments was to generate data with which to
validate our simulations, we opted to operate at a fraction of this speed so that we could average
the signal at each frame to improve its signal to noise ratio (SNR). Each video frame played for
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= 4.44 seconds, and the voltage corresponding to the intensity of the light impinging on
the photodetector for that frame was calculated using the signal from the middle 4 seconds of

Fig. 3. a) Experimental setup. The optical system prepares the probe beam to be directed
to the fluid simulation module by converting the Gaussian laser beam from the HeNe laser
to a superposition of conjugate ±l = 4 Laguerre Gaussian beams. The fluid simulation is
conducted on a digital micromirror device (DMD). Simulated scatterers reflect light to the
detection system, which digitizes the intensity of the light impinging on a detector, yielding
the signal we analyze. λ/2: half wave plate, L1-5: lenses, SLM: spatial light modulator b-d)
experimental (red solid lines) and simulated (black broken lines) normalized signals as a
function of time. Parameters for simulations and experiments shown in b-d: w0 = 93.84
pixels, l = ±4, r = 20 pixels, R = 1200 pixels, D = [1250, 1265, 1250] pixels, respectively,
ϕ = 0 rad, and Ω = [654, 548, 223] rad/sec, respectively.

In principle, we could have run our experiments at a rate set by the ultimate speed of the DMD,
4225 Hz. However, because the objective of these experiments was to generate data with which to



Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 9968

validate our simulations, we opted to operate at a fraction of this speed so that we could average
the signal at each frame to improve its signal to noise ratio (SNR). Each video frame played for
f −1
dmd = 4.44 seconds, and the voltage corresponding to the intensity of the light impinging on
the photodetector for that frame was calculated using the signal from the middle 4 seconds of
data. Prior to averaging, we applied a numerical Butterworth filter (5th order, cutoff frequency
50 Hz) to the signal for smoothing. These steps increased the SNR by reducing the effects of
noise arising from the influence of the multimodal nature of the laser as well as the noise induced
by circuitry implemented to support the DAQ. The SNR, calculated as the ratio of the mean and
the standard deviation of the numerically smoothed signals, was found to be, on average, 42.

We designed the DMD videos so that the averaged signal would correspond to the motion of a
particle traveling on an arc with a specific angular velocity, sampled at fs. The particle position
was calculated such that it moved along its arc by an angular spacing ∆ϕ = fs/Ω. Because fs was
fixed, we varied the angular velocity of the experiments by changing the angular spacing between
the frames.

3.2. Comparing signals from simulations and experiments

We conducted 47 experiments to validate our simulations varying D and Ω (1150 ≤ D [pixels, 10
values] ≤ 1305, and 223 ≤ Ω [rad/sec, 7 values] ≤ 655) while fixing the remaining parameters at
the following values: w0 = 93.85 pixels, l = ±4, r = 20 pixels, R = 1200 pixels, ϕ = 0.0 ± 0.01
rad. Examples of the experimental results compared to their simulated counterparts are shown in
Fig. 3(b-d). To assess the similarity of the experimental and simulated signals, we calculated the
maximum cross correlation, normalizing it by the autocorrelation of each of the signals at zero
lag: max(R̂xy) = max ((︁RxxRyy

)︁− 1
2 Rxy), where

Rxy(m) =
⎧⎪⎪⎨
⎪⎪⎩

N−m−1∑︁
n=0

xn+my∗n, m ≥ 0

R∗
yx(−m), m<0

(2)

for −∞<n<∞, m>0, N being the length of the longer signal x or y, and where ∗ represents
the complex conjugate. We find high correlations between the simulated and experimentally
collected signals, with the mean and the standard deviations of the correlations of each of the 47
experiments with its corresponding simulation being 0.96 and 0.03, respectively.

As discussed above, our simulations were constructed with a discretization selected to match
the pixelation of the DMD, with pixels in both cases being square having widths s = 7.637 µm
[27]. Projecting the radial pattern on the square grid created the possibility that the pixel
orientations were rotated relative to each other, and this could have an influence on the calculated
and measured intensities. However, because the particle is large relative to the pixels (r/ s = 20)
and blurs the intensities from every pixel within it, we found this effect to be negligible. As seen
in Fig. 3(b) and Fig. 3(d), the agreement between the simulation and the experiment appears
to break down when the particle starts and finishes its transit through the light. We believe
this is due to imperfections in our beam. The holograms displayed on the SLM were generated
assuming the incident beam was Gaussian in intensity, but a beam profiling system (WinCamD
LCM, DataRay) indicated that a Gaussian fit to the intensity of the beam at its centroid by
iteratively adjusting its height and width deviated in its integrated area from that of the beam by
approximately 7%. Such deviations in the incident beam would propagate through the hologram
and manifest as unexpected intensity variations in the LG beam. This could be related to the
same features which led to the discrepancy between the experimental and simulated intensities
shown in Fig. 3(b) and Fig. 3(d). Noting that these discrepancies were small and anticipating
such variations between experiment and simulations due to the complexities associated with
directing light into a fluid, we decided that because the maximum cross correlation between the
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experimental and simulated signals was higher than a threshold we set of 0.90, that we would
proceed with the sensor demonstration.

4. Signal processing

The signal processing algorithm consists of two modules: signal conditioning and angular
velocity prediction. The conditioning step begins by first identifying which portions of the signal
contain information from a particle transiting the interference pattern. Only small portions of
the signal which we call bursts contain information. These bursts correspond to the transit of a
particle through the probe beam. In our signal processing scheme, we first isolate these bursts and
then parameterize them by fitting with multiple Gaussian functions. The resulting parameters are
used as the inputs for the machine learning (ML) model, which predicts the angular velocities and
orbit radii of the trajectories of the particles. This ML model is pre-trained using data generated
via the simulations described in Sec. 2.

In the present section, we outline the signal conditioning we apply to the all of the data,
first discussing the details of the burst detection scheme and then moving on to describe multi-
Gaussian fit step. We note that all data, be it experimental or simulated, for model development
or evaluation, is processed identically following the steps outlined here. We close this section
with a discussion of the architecture of the machine learning model.

4.1. Signal conditioning

The time series data associated with these experiments is both intermittent and aperiodic because
particles transit the beam unpredictably while the data acquisition system runs continuously. The
challenge is to first determine which portions of the time series correspond to bursts, transits
of scattering particles through the beam, and then to extract information from these bursts by
parameterizing them.

4.1.1. Burst detection

A particle passing through the interference fringes scatters light proportionally to the intensity of
the light incident on the particle. When the particle is positioned within a null of the interference
pattern, no light is scattered at all. Therefore, a burst may contain valleys of only noise between
high intensity regions. Consequently, bursts cannot be detected directly with a zero-crossing
algorithm, as this may errantly split a single burst into many. Instead, we smooth the signal
by convolving it with a rect function whose width is greater than the expected duration of the
longest null. We then use a crossing algorithm to determine when a burst starts and finishes by
comparing this smoothed copy of the signal to a threshold set by the convolution of the rect
with a portion of the signal which consists of only noise. To ensure we select the entirety of the
burst without clipping any information, buffering regions which we call tails are added to the
beginning and end of each burst. Though these tails contain little or no information about particle
movements, they can have an influence on the burst parameterization. To prevent artifacts from
the burst detection scheme in later stages of the analysis, the tail durations of each burst are
selected at random within a range that keeps the tail small relative to the total burst duration.

4.1.2. Multi-Gaussian fits

Once we identify the bursts, we parameterize them to summarize their dominant features for use
as inputs to the machine learning (ML) model. In principle, the time series of the burst itself
could be directly input to the ML model, but we found that this approach was highly sensitive to
the length of the tails of the burst which contain little or no information. Therefore, we used a
curve fitting scheme to parametrize and extract the features from the burst.

One parameterization strategy that is commonly used by optical sensors involves using a
Fourier decomposition. However, such an approach proved futile here because the bursts have
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relatively little periodic behavior. Moreover, sinusoidal basis functions are continuous in time,
whereas the bursts are discrete and localized in time. Due to the periodic nature of Fourier
decompositions, such a parameterization would have a strong dependency on the length of the
tails of the bursts. Therefore, we opted for an alternative parameterization technique which
incorporated basis functions which trend to zero away from their maxima, more closely resemble
the bursts, and deemphasize the lengths of the burst tails.

In this paper, we parameterize the bursts with a sum of multiple Gaussian functions and a
small vertical offset which allows for noise. Noting that a burst corresponding to a single pass
of a particle through the interference pattern should contain no more peaks than petals in the
interference pattern, we sum up to 2l (here, 2l = 8) of these Gaussian functions as follows:

y = h +
2l∑︂

n=1
An exp

[︃ (µn − t)2
σ2

n

]︃
. (3)

In this sum of Gaussian functions, A, µ, and σ are the amplitude, temporal offset, and width of
the Gaussian functions, respectively, and h is a vertical offset. Examples of bursts fit in this way
are shown in Fig. 4. We note that alternative orthogonal decompositions with compact support
like wavelet transforms might also provide a means for this processing step.

decompositions, such a parameterization would have a strong dependency on the length of the
tails of the bursts. Therefore, we opted for an alternative parameterization technique which
incorporated basis functions which trend to zero away from their maxima, more closely resemble
the bursts, and deemphasize the lengths of the burst tails.
In this paper, we parameterize the bursts with a sum of multiple Gaussian functions and a

small vertical offset which allows for noise. Noting that a burst corresponding to a single pass
of a particle through the interference pattern should contain no more peaks than petals in the
interference pattern, we sum up to 2; (here, 2; = 8) of these Gaussian functions as follows:

H = ℎ +
2;∑
==1

�= exp
[ (`= − C)2

f2
=

]
. (3)

In this sum of Gaussian functions, �, `, and f are the amplitude, temporal offset, and width of
the Gaussian functions, respectively, and ℎ is a vertical offset. Examples of bursts fit in this way
are shown in Fig. 4. We note that alternative orthogonal decompositions with compact support
like wavelet transforms might also provide a means for this processing step.
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Gaussian functions do not form an orthogonal basis, so a great deal of care was taken to
ensure that the parameterizations converged to realistic and physical solutions. Curve fits were
performed sequentially on each burst. The vertical offset was initialized as the noise level of
the signal. Initially, a peak finding algorithm identified the number and locations of the local
maxima of the burst. If there were fewer than 2; peaks, the first fit was conducted with Gaussian
functions positioned at each maxima. These Gaussian functions each had an amplitude A equal
to the difference of the burst value at that position and the noise level, and widths f calculated to
be 1/10 the rect effective width of the signal, calculated by numerically integrating the difference
between the signal and the noise level, then dividing this quantity by the maximum amplitude
of the difference between the signal and the noise level. Fits were weighted with smoothed
copies of the bursts to emphasize the portions corresponding to the signal while simultaneously

Fig. 4. Bursts parameterized by fitting Eq. (3) to them. Each of the fitted Gaussians
is shaded with a color corresponding to its amplitude. Parameters for bursts in a, b, c,
and d: Ω = 284.4, 100.4, 346.3, 268.5 rad/sec, R = 535.9, 435.9, 312.1, 608.2 pixels,
D = 362.5, 391.0, 379.7, 670.9 pixels, and ϕ = 0.64, 0.51, 0.76, 0.94 rad. In all cases,
r = 20 pixels and l = ±4.

Gaussian functions do not form an orthogonal basis, so a great deal of care was taken to
ensure that the parameterizations converged to realistic and physical solutions. Curve fits were
performed sequentially on each burst. The vertical offset was initialized as the noise level of
the signal. Initially, a peak finding algorithm identified the number and locations of the local
maxima of the burst. If there were fewer than 2l peaks, the first fit was conducted with Gaussian
functions positioned at each maxima. These Gaussian functions each had an amplitude A equal
to the difference of the burst value at that position and the noise level, and widths σ calculated to
be 1/10 the rect effective width of the signal, calculated by numerically integrating the difference
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between the signal and the noise level, then dividing this quantity by the maximum amplitude
of the difference between the signal and the noise level. Fits were weighted with smoothed
copies of the bursts to emphasize the portions corresponding to the signal while simultaneously
deemphasizing the tails. If the residuals between the resulting fit and the signal were greater than
a threshold set by 110% of the noise level, a new fit was conducted, this time with a new Gaussian
function at the position of the residual with the largest magnitude. As before, the previously
placed Gaussian functions were located at the peak positions with parameters set by the peak at
that location. The newest Gaussian function was now permitted to have a negative amplitude.
We iterate this process until either the magnitude of the residuals was smaller than the noise floor,
or until more than 2l Gaussian functions were necessary. Though in some cases the Gaussian
functions were found to have significant overlap to characterize a single peak in the burst, we
set the threshold to be equal to the number of petals in the interference pattern (2l, which is 8
here) based on the intuition that the signal would not have more peaks than petals. If more than 8
Gaussian functions were needed to parameterize the signal, or if the fits failed to converge at any
step, the burst was eliminated. Approximately 80% of our bursts had fits which converged with 8
or fewer Gaussian functions in the parameterization. The remaining 20% of the bursts which
appeared to have no common features with each other were discarded.

4.2. Predicting angular velocity and orbit radius with a machine learning model

A machine learning regression algorithm allows us to discern correlations between the angular
velocities of the rotating particles and parameterizations of their resulting bursts. The machine
learning model used in this paper is built using APIs from the open source software libraries
Keras [28] and TensorFlow [29]. The model is a sequential model with two densely connected
layers which use the rectified linear unit (ReLU) nonlinearity and an output layer which returns
two continuous values, Ω and R. The predictions of R have large uncertainties so we do not
consider them to be a part of our sensor, but we include them in the quantities the model predicts
because they improve the fidelity of predictions ofΩ. As an input, the model takes the parameters
of the bursts described above, as well as several additional parameters characterizing the duration
of the burst and the quality of the fit. The amplitudes An of each burst are normalized to the
largest An of the burst. This serves to permit fluctuations in the intensity of the probe beam on
time scales longer than the duration of the burst. In order to remove the influence of the tail
length, the temporal offsets µn are referenced to the earliest µn parameterizing the burst. To
ensure all parameters are equally represented in the model and to stabilize the training, each
variable is independently scaled to approximately the same range ([0,100]) based on the minimum
and maximum expected values based on the properties of the experiment and the flow. Identical
normalizing factors were used in model training and evaluation. The model has 6,210 trainable
parameters which are trained by minimizing the mean square error using the RMSprop optimizer.
To avoid overfitting, the model is trained with an EarlyStopping [29] callback that halts the
training when little improvement is seen in the validation error. Training data is also augmented
by fitting up to three copies of each burst, each padded with tails of different length. In total,
83,885 parameterizations of 51,182 bursts are used to train the model. These bursts correspond
to simulations conducted with the following parameters: 300 ≤ D [pixels]≤ 700, 100 ≤ R
[pixels]≤ 920, 50 ≤ Ω [rad/sec]≤ 1040, π/8 ≤ ϕ [rad]≤ 3π/8.

5. Results and discussion

Once the machine learning model was trained, it was evaluated with a second set of parameteri-
zations of 2,948 bursts selected independently and at random within the same parameter range as
the training set. The results are shown in Fig. 5, where we plot the predicted angular velocity, ΩP,
as a function of the actual angular velocity, ΩA. The results are binned into 25 angular velocity
partitions of width 39.5 rad/sec.
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Fig. 5. Predicted angular velocity as a function of actual angular velocity. 2,948 bursts
with varying ', q, �, and Ω sampled in the ranges described in the text are used to
evaluate the machine learning model. The mean (closed circles) and standard deviation
(uncertainty bars) of predicted angular velocities are plotted for each of the 25 partitions
of width of 39.5 rad/sec of the sampled angular velocity range. Each partition contains
predictions for more than 70 bursts.

smaller than the ultimate angular velocity used to train the model, we were unable to attribute
this observation to physical characteristics underlying the simulations. Therefore, we recommend
training the model with simulations which have angular velocities larger than those expected in
the experiment.
Within the dynamic range of the sensor, the mean measured Ω% is biased and systematically

over predicts Ω�; however, this effect could be calibrated by subtracting the average bias from
the prediction since the model is evaluated with “known” simulated reference standards. In this
demonstration, we forgo such a calibration step in an effort to emphasize the ML component of
the signal processing algorithm. After such a calibration step, the resulting predictions would still
retain the dispersion shown in Fig. 5 but with no bias. We define the measurement uncertainty as
the standard deviation of the angular velocity predictions within each angular velocity prediction
since this dispersion relates directly to the quality of the measurement. As indicated with
uncertainty bars in Fig. 5, the measurement uncertainty is a function of Ω�, but is no more than
162 rad/sec for Ω� ≤ 800 rad/sec. The uncertainties are, on average, ±14% for each burst.

We expect that the uncertainty discussed above has two dominant sources, (1) the geometry of
the sensor, and (2) burst parameterizations. In the first case, the radial symmetry of the probe
beam and the circular trajectories of the scattering particles can conspire to generate very similar
bursts with multiple parameter combinations. An example of this situation is illustrated in Fig. 6,
where the simulated trajectories of particles with different orbit centers, orbit radii, and angular
velocities are shown to yield almost identical bursts. Given the parameterization of one such burst,
the model may ascribe an incorrect angular velocity to the burst is not uniquely generated by one
set of values of the underlying parameters. The other dominant source of uncertainty arises as a
consequence of the non-orthogonal basis functions used to fit the burst: many parameterizations
of the same burst exist.

In this proof-of-concept demonstration, we have chosen to sacrifice uncertainty for simplicity.

Fig. 5. Predicted angular velocity as a function of actual angular velocity. 2,948 bursts with
varying R, ϕ, D, and Ω sampled in the ranges described in the text are used to evaluate the
machine learning model. The mean (closed circles) and standard deviation (uncertainty
bars) of predicted angular velocities are plotted for each of the 25 partitions of width of 39.5
rad/sec of the sampled angular velocity range. Each partition contains predictions for more
than 70 bursts.

This sensor has a dynamic range of 50 ≤ ΩA [rad/sec] ≤≈ 800, wherein ΩP scales linearly
with ΩA.The limit of linearity of the sensor beyond which this sensor no longer provides useful
predictions of ΩA is ΩA ≈ 800 rad/sec. Though we found that the limit of linearity was always
smaller than the ultimate angular velocity used to train the model, we were unable to attribute
this observation to physical characteristics underlying the simulations. Therefore, we recommend
training the model with simulations which have angular velocities larger than those expected in
the experiment.

Within the dynamic range of the sensor, the mean measured ΩP is biased and systematically
over predicts ΩA; however, this effect could be calibrated by subtracting the average bias from
the prediction since the model is evaluated with “known” simulated reference standards. In this
demonstration, we forgo such a calibration step in an effort to emphasize the ML component of
the signal processing algorithm. After such a calibration step, the resulting predictions would still
retain the dispersion shown in Fig. 5 but with no bias. We define the measurement uncertainty as
the standard deviation of the angular velocity predictions within each angular velocity prediction
since this dispersion relates directly to the quality of the measurement. As indicated with
uncertainty bars in Fig. 5, the measurement uncertainty is a function of ΩA, but is no more than
162 rad/sec for ΩA ≤ 800 rad/sec. The uncertainties are, on average, ±14% for each burst.

We expect that the uncertainty discussed above has two dominant sources, (1) the geometry
of the sensor, and (2) burst parameterizations. In the first case, the radial symmetry of the
probe beam and the circular trajectories of the scattering particles can conspire to generate very
similar bursts with multiple parameter combinations. An example of this situation is illustrated
in Fig. 6, where the simulated trajectories of particles with different orbit centers, orbit radii,
and angular velocities are shown to yield almost identical bursts. Given the parameterization
of one such burst, the model may ascribe an incorrect angular velocity to the burst that is not
uniquely generated by one set of values of the underlying parameters. The other dominant source
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of uncertainty arises as a consequence of the non-orthogonal basis functions used to fit the burst:
many parameterizations of the same burst exist.
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Fig. 6. Particles traveling with different angular velocities on orbits of different sizes can
generate similar signals. a) particle trajectories with 1: Ω = 600 rad/sec and R = 426
pixels and 2: Ω = 312.5 rad/sec and R = 220 pixels. b) simulated time series for particle
trajectories shown in a), each normalized by its maximum value. Traces offset by 0.12 ms
for clarity. Parameters for trajectories 1, 2: D = 425, 238 pixels and ϕ = 0.393, −0.005 rad.
In both cases, r = 20 pixels and l = ±4.

In this proof-of-concept demonstration, we have chosen to sacrifice uncertainty for simplicity.
Nonetheless, we have identified several ways to reduce the uncertainty of the measurements. We
expect that the contribution to the uncertainty from the non-orthogonal basis functions can be
refined by training, evaluating, and using the model with multiple parameterizations of each burst.
One approach to improve the uncertainty of the sensor due to the geometry is to first determine
which bursts can be generated by more than one set of orbit centers, orbit radii, and angular
velocities, and then to exclude these bursts from analysis by preventing their use in training the
model and by rejecting them from being evaluated by the model. An alternate approach is to limit
the parameter range used to train the model to a narrow window centered about the expected flow
conditions.

A different strategy to improve the uncertainty of these measurements is to modify the
illumination beam, optimizing it so that non-unique signals are not generated in the first place.
Building on the previous work of Refs. [15,19], we developed and tested this signal processing
toolbox using a probe beam consisting of conjugate LG beams which formed a petaled pattern.
However, we expect that better spatially structured beams could be optimized to augment angular
velocity predictions. For example, an asymmetric pattern could be used to reduce the set of
possible parameter combinations that can generate any given signal and to disambiguate direction.
Further direction disambiguation could be accomplished by structuring the polarization field
[30].

In this study, we have fixed the size of the scattering particle with a radius r = 20 pixels.
Recalling that the scattering particle acts as a blurring filter, changing its size to smooth different
amounts of the beam may serve as a means for tuning the uncertainties discussed above. Likewise,
increasing l might reduce the number of non-unique bursts.

When using this sensor in a flow which evolves more slowly than the time it takes to conduct
multiple measurements, the uncertainty of the angular velocity could be further refined with
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a statistical treatment of the predicted angular velocities using a Student’s t-test since the
distributions of Ωp about ΩA are well approximated with normal distributions.

In this demonstration, we extended the traditional capabilities of laser Doppler velocimetry
by developing a signal processing toolbox which predicts the angular velocity of a particle
traveling on a circular orbit using a machine learning approach to develop a model to relate
parameterizations of a signal to the angular velocity. This strategy was shown to be particularly
effective in predicting the angular velocities of small particles traveling on circular orbits, where
no one-to-one relationship existed between characteristics of the scattered light signal and the
spatial pattern of the illuminating beam. We also point to the possibility of predicting related
or different kinematic quantities such as the location of the orbit center or accelerations with a
similar machine learning-based signal processing scheme.

6. Current sensor limitations

As with any sensor, we expect this angular velocity sensor to function only within a certain
parameter range. In this section, we first discuss why this sensor is capable of measuring the
angular velocities of particles moving only along arcs with radii below a critical radius set by the
size of the interference patterns. Next, we discuss the minimum and maximum angular velocities
we expect the sensor to be able to resolve. Additionally, we describe the spatial and temporal
resolutions of the sensor. Then, we touch on the physical limitations which set the beam size and
the particle size. Finally, we discuss how this measurement has no depth resolution.

6.1. Orbits require curvature through interference fringes

As the orbit radius R grows large relative to the interference fringes, R ≫ w0
√︁
|l + 1| /2, the

particle trajectory becomes increasingly well approximated using the first order, straight line
tangent to the arc. We call this trajectory R∞. This concept is illustrated in Fig. 7(a), where we
show particle trajectories of several radii, all passing through the same point with the same tangent
velocity, V = 2πRΩ. As R grows, much of the particle trajectory through the interference fringes
mimics that of the tangent, and only as the particle first enters and finally exits the interference
fringes do deviations of the trajectory from that of the tangent appear. In the inset of Fig. 7(b) we
plot the time series which correspond to the trajectories plotted in Fig. 7(a). We see that as the
orbit radius approaches the tangent line (R → ∞), the signals begin to resemble each other.

When R>Rc, where Rc is the critical orbit radius above which curvature in the trajectory is
negligible, the values of R and Ω become ambiguous. That is, the tangent velocity could be the
product of any R>Rc with a compensating angular velocity Ω to yield V . Therefore, we expect
our sensor to function only for R<Rc.

The specific value of Rc is a function of r, l, w0, D, and ϕ. Instead of calculating Rc we use
the normalized cross correlation Rxy defined in Eq. (2) to compare bursts from a set of simulated
particle trajectories which pass through the same point within the interference pattern but have
orbits with different R to the burst corresponding to the tangent trajectory through the common
point. In this normalized cross correlation, x and y represent time series corresponding to the
trajectories with orbit radius R and R∞, respectively. To facilitate this comparison, all particles
pass through the common point with the same tangent velocity V calculated as V = Ω/(2πR) for
R ≠ R∞. Because the orbit curvature of particles on transits with R>Rc is negligible through the
interference pattern, the normalized cross correlation of bursts corresponding to these conditions
with the burst of the tangent case is close to 1. The influence of nonnegligible orbit curvature
manifests as a difference in the beginnings and ends of a burst and results in a normalized cross
correlation less than 1. The results of this comparison are shown in Fig. 7(b) as a function of
R. To emphasize the strong dependence of this function on D and ϕ, Rxy is plotted for several
different common points with different tangent angles. We define Rc as the radius at which Rxy is
greater than 0.98. In the case of the data shown in Fig. 7, Rc ≈ 1000 pixels.
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Fig. 7. a) As the orbit radius ' grows, the trajectory of a particle moving through the
interference fringes approaches that of the tangent to the arc. Colors of trajectories
match those in panel b) and correspond to orbit radii ' = [200, 260, 400, 900, 1210,∞].
All arcs pass through (50, 5c/16), and all arcs share the tangent shown in brown. b)
Normalized cross correlation 'GH between each signal and its corresponding tangent.
Each gray line corresponds to 'GH for sets of arcs passing through several randomly
chosen different common points. The gray line with red circles corresponds to the
common point illustrated in panel a). Inset: signals corresponding to those in panel a)
and indicated with colored diamonds in panel b).

pixels at every point, and we use only ' < 1000 pixels in both the training and test data to
eliminate any trajectories which might resemble the tangent trajectory.

6.2. Sensor resolution

As the angular velocity increases, the number of sampled points per burst decreases for a
fixed sampling rate. With fewer data points, the number of degrees of freedom in the burst
parameterization fits decreases. As the number of degrees of freedom decreases, so too does
the quality of the fit. At a minimum, these fits require the same number of points as there are
parameters, which here is 3 × 2; + 1 = 25. However, we found that when bursts had fewer than
approximately 50 points, the fitting scheme was sensitive to noise in the burst. Therefore, we
established a criteria for selecting fits for use in training or testing the machine learning model
which controlled the quality of the fit, accepting fits only if their coefficient of determination
A2 > 0.9, meaning that the model explained more than 90% of the variation in the burst. For a
given trajectory, increasing the sampling frequency increases the number of points in the burst,
so the angular velocity range can be tuned by modifying the sampling frequency.

The temporal resolution of each measurement is given by the duration of the burst: XC = C1DABC .
An upper limit of the time resolution can be estimated from the time it takes a particle orbiting
with the smallest angular velocity along the smallest orbit to traverse the widest portion of the
beam, XC<0G ≈ 2A?/('Ω). 1, 2, 4, 6, and 7 have C1DABC on the order of 10 ms. Increasing the
angular velocity refines the temporal resolution.
We define the spatial resolution of the sensor XG to be the distance between the probe beam

and the center of orbit of the particle. Given a particular center of orbit (�, q), XG is limited
by � − A? − A < XG < � + A? + A since only orbits which transit the beam are measurable. The
upper limit of the spatial resolution is approximated by XG<0G ≈ �<0G + A? + A, where �<0G
denotes the furthest center of orbit from the beam of light about which particles traverse the

Fig. 7. a) As the orbit radius R grows, the trajectory of a particle moving through the
interference fringes approaches that of the tangent to the arc. Colors of trajectories match
those in panel b) and correspond to orbit radii R = [200, 260, 400, 900, 1210,∞]. All arcs
pass through (50, 5π/16), and all arcs share the tangent shown in brown. b) Normalized
cross correlation Rxy between each signal and its corresponding tangent. Each gray line
corresponds to Rxy for sets of arcs passing through several randomly chosen different common
points. The gray line with red circles corresponds to the common point illustrated in panel
a). Inset: signals corresponding to those in panel a) and indicated with colored diamonds in
panel b).

In principle, the angular velocity of a measurement which predicts R>Rc should not be accepted
because of the ambiguity between R>Rc and Ω discussed above. To avoid needing to reject
measurements in our proof-of-concept sensor demonstration, we estimate that Rc ≈ 1000 pixels
at every point, and we use only R<1000 pixels in both the training and test data to eliminate any
trajectories which might resemble the tangent trajectory.

6.2. Sensor resolution

As the angular velocity increases, the number of sampled points per burst decreases for a
fixed sampling rate. With fewer data points, the number of degrees of freedom in the burst
parameterization fits decreases. As the number of degrees of freedom decreases, so too does
the quality of the fit. At a minimum, these fits require the same number of points as there are
parameters, which here is 3 × 2l + 1 = 25. However, we found that when bursts had fewer than
approximately 50 points, the fitting scheme was sensitive to noise in the burst. Therefore, we
established a criteria for selecting fits for use in training or testing the machine learning model
which controlled the quality of the fit, accepting fits only if their coefficient of determination
r2>0.9, meaning that the model explained more than 90% of the variation in the burst. For a
given trajectory, increasing the sampling frequency increases the number of points in the burst,
so the angular velocity range can be tuned by modifying the sampling frequency.

The temporal resolution of each measurement is given by the duration of the burst: δt = tburst.
An upper limit of the time resolution can be estimated from the time it takes a particle orbiting
with the smallest angular velocity along the smallest orbit to traverse the widest portion of the
beam, δtmax ≈ 2rp/(RΩ). Figures 1, 2, 4, 6, and 7 have tburst on the order of 10 ms. Increasing
the angular velocity refines the temporal resolution.
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We define the spatial resolution of the sensor δx to be the distance between the probe beam
and the center of orbit of the particle. Given a particular center of orbit (D, ϕ), δx is limited by
D − rp − r<δx<D + rp + r since only orbits which transit the beam are measurable. The upper
limit of the spatial resolution is approximated by δxmax ≈ Dmax + rp + r, where Dmax denotes
the furthest center of orbit from the beam of light about which particles traverse the beam on
trajectories with R<Rc. The spatial resolutions of the bursts described above are approximately
δxmax ≈ 1500 pixels = 1.45 cm.

6.3. Physical limitations to probe size

In this demonstration, we have fixed the sizes of both the particle and the interference pattern
while we have varied the other parameters with the goal of predicting the angular velocity and
the orbit radius of a particle embedded in the flow. However, both the particle size and the
interference pattern size can be changed.

As in other velocimetry sensors which use scattering particles, particle radii r should be set by
the parameters of the flow such that the particles are neither too small to have motion dominated
by Brownian motion nor too large to carry enough inertia to travel along paths which are not
fluid pathlines [1].

The scattered light must have ample power to be distinguished from noise by the detector.
This power is limited by the intensity of the incident beam, which, given a laser source can be
limited by two factors, the efficiency of reshaping the Gaussian intensity profile from the laser
to the requisite LG modes, and the ultimate size of the beam. When an LG beam is generated
from a beam with a Gaussian intensity profile and a fixed beam waist w0 using an SLM as was
done in this project, the efficiency of the diffraction gratings decreases as l increases due to the
decreasing spatial overlap between the input and desired mode [21]. The transverse spatial extent
of the generated LG beam can be altered using a telescope setup after the SLM. As the size of the
beam increases, its total power remains constant, so the power incident on the scattering particle
diminishes.

We expect that the smallest beam size possible is limited by the visibility of the fringes, the ratio
of the intensities of the radial peaks and nulls. As the beam size decreases past approximately
the wavelength of the light, this visibility decreases, and the fringes appear to bleed into one
another [31]. Though we did not study its effect in this paper, we expect this decreased visibility
to directly impact the sensor resolution by decreasing the sizes of the features in the bursts.

The ratio of the particle to interference pattern sizes is very important to the behavior of this
sensor. Recall that the particle acts as a blurring function on the interference fringes. If the size
of the particle is such that it occupies one fringe and one null of the interference pattern, one
can imagine how moving the particle through an intensity peak, into an intensity null, and back
through a different intensity peak would decrease the contribution to the blurred intensity from
the waning edge while symmetrically increasing the contribution to the blurred intensity from
the waxing edge, resulting in little signal modulation. In the case of laser Doppler velocimetry,
the problem of selecting relative interference fringe and particle sizes to maximize the signal to
noise ratio has been studied extensively [1]. While we did not study the effect of relative sizes in
this paper, we do expect this to be an important parameter for designing specific implementations
of this sensor.

6.4. Depth of measurement

The sensor we have demonstrated has no longitudinal sensitivity. That is, the scattered light we
measure contains no information regarding the depth of the particle. We expect that in future
iterations of this sensor, this limitation could be lifted by incorporating a confocal sectioning
geometry into the probe beam, by relating the absolute scattered intensity to the absorption of the
fluid which scales linearly with depth according to Beer’s Law, or by selectively seeding the flow.
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7. Conclusion and future work

In this paper, we have developed a sensor which uses structured light and machine learning to
predict flow properties. Specifically, we have demonstrated that we can calculate the angular
velocity of particles traveling in a 2D flow along circular arcs by analyzing the intensity of the
light they scatter. In laser Doppler velocimetry, the analogous technique used to sense linear
components of the velocity vector, these components are directly related to the spatial and
temporal frequencies of the illuminating interference fringes and the scattered light. In contrast,
no simple mapping from the spatial pattern of the light and characteristics of the signal exists for
predicting the angular velocity with this sensor. However, a machine learning regression model
trained on simulations of the expected scattered light was shown to be capable of predicting the
angular velocities of scattering particles to within uncertainties of, on average, ±14%. While
many possible probe beam conformations exist, we have explored just one geometry. We suspect
that other flow properties can be inferred using different probe beams with a similar signal
processing scheme to the one presented here.

In Sec. 2 we presented mathematical model we implemented to simulate the expected signals.
In Sec. 3, we described idealized experiments to validate the simulations. In Sec. 4, we detailed
our signal parameterization approach, noting that because the Gaussian basis functions we used
were not orthogonal, the resulting parameters had strong dependencies on how our fits were
initialized. Consequently, the ML model was trained using particular instances of many possible
parameters. Because the ML model was able to handle this variability, we suspect that our
sensor would still function in more complex experimental environments which may induce
random intensity fluctuations in the resulting signals. Such effects might mirror the effect of the
non-orthogonal basis functions, both inducing a degree of variability on the output parameters.
Here, by using non-orthogonal basis functions, we artificially introduce variability into the ML
model, and we suspect that this facilitates studying noisier signals.

There remain ample opportunities for refining this sensor. We attempted to adapt the ML
model to simultaneously predict combinations of variables in addition to the angular velocity, but
we found that these predictions were poor. One interesting direction is to design the ML model
to return a probability distribution of the possible angular velocities instead of a single value.
Because the uncertainties associated with non-unique bursts arising from the multiple parameter
configurations like that illustrated in Fig. 6 are restricted to quantized values, the outputs of such
a model could be compared to physical intuition or multiple measurements to refine the selected
angular velocity.

We expect that with a different structured light pattern, predicting such quantities as the
direction in which the particle orbit is centered might be possible. Also, probing the flow with
multiple, potentially multiplexed, light patterns could provide additional information to improve
precision and accuracy or open up a broader range of parameter prediction. This could be done
either simultaneously by multiplexing several patterns on beams with different polarizations or
wavelengths, or by changing the patterns as a function of time.

The sensor we developed predicts the angular velocities of particles traveling on circular orbits
in a plane orthogonal to the probe beam but in its current implementation does not allow for this
plane to be positioned at a different angle relative to the beam. If the beam and the plane of orbit
were not orthogonal, the particle would no longer appear to travel with a circular orbit and would
instead take an elliptical trajectory through the beam. To extend our sensor to 3D, we anticipate
that the longitudinal Doppler shift of the scattered light [32] could be incorporated into the ML
model.

In its current form, the sensor we present in this paper measures angular velocities. Measure-
ments of angular accelerations may also be of interest. Such measurements could be possible if
the particle accelerated on, or faster than, a time scale set by the residence time (the time the
particle is in the probe volume), τ ≈ 2rp/U⊥, where U⊥ = ΩR. While the rotational Doppler
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shift has been used to measure angular accelerations by creating spectrograms which monitor the
frequency shift as a function of time [33], we expect that adapting such a paradigm to this problem
would be challenging due to the short expected residence times. Expanding the parameter space
of the machine learning model to include accelerating particle trajectories might be a more viable
strategy.

In cases of simple motion like particles moving in straight lines or particle orbiting about
a known point on circular trajectories, structured probe beams can be engineered which yield
readily interpretable signals [10]. Here, we have attempted to address the question of what are we
to do when the motion we expect is more complicated? In particular, we have studied particles
which orbit according to circular trajectories, but these orbits are not concentric with the probe
beam. The sensor we have developed measures the angular velocities of particles obeying such
circular trajectories offset from the probe beam axis. We have accomplished this by developing a
more sophisticated signal processing strategy. We have shown that, even if the motion and the
structure of the light no longer match, a history of the particle’s kinematic information can be
revealed from the information encoded in the signal. However, we have found that a new form of
uncertainty which previously did not exist is present in this more general case because signals
may no longer uniquely correspond to the parameters of interest.

As we noted above, this uncertainty can be overcome by excluding signals like those shown in
Fig. 6 known to have multiple possible origins, by refining the machine learning model, or by
illuminating the flow with multiple, potentially multiplexed, light patterns. However, we must
ask, if there does not exist a single pattern of structured light which can provide signals which
are easy to interpret, does there exist some optimal probe beam structure? To begin to offer an
answer to this question, we draw an analogy to the field of compressive sensing. A major finding
which has propelled the field of compressive sensing in recent years is that samples of sparse
signals collected as the inner product of random vectors with the signal can, with high probability,
reconstruct the signal nearly perfectly [34]. This is because sampling randomly in this way
spreads the information contained in the signal efficiently across many of the measurements.
Likewise, we expect that illuminating the fluid with a known but random structure of light
could encode bursts with more information by which to identify the parameters which generated
them. Ultimately, combining such an illumination pattern with a machine learning-based signal
processing scheme might facilitate more precise measurements.

Appendix

Angular velocity and vorticity

Particles orbiting a point move according to two modes: solid body rotation flow and free vortex
flow. In the former case, the orientation of the particle (the direction the particle points) remains
fixed about the center of rotation throughout the trajectory of the particle. In the latter case, the
orientation of the particle remains unchanged relative to a stationary point as the particle moves.
In these cases, the steady state angular velocities of the particle about the axis of rotation can be
expressed as Ω⃗ = [0, 0,Ω]T and Ω⃗ = [0, 0,αr−2]T , respectively, where Ω is the angular velocity,
α is a constant, and r is the orbit radius. The vorticity is calculated as the curl of the velocity,
ω⃗ = ∇⃗ × U⃗, where the velocity is given by U⃗ = Ω⃗ × r⃗ given the particle position r⃗. Consequently,
whereas the vorticity of the solid body rotation mode is ω⃗ = 2Ω⃗, the vorticity of the free vortex
mode is identically ω⃗ = 0⃗.

The sensor we present in this paper correlates the scattered-light burst generated from the
pathline of a scattering particle traveling through the probe beam. If this pathline is curved, the
sensor cannot distinguish if the curvature is due to solid body rotation or free vortex flow.

Just as curved pathlines do not necessarily imply nonzero vorticity, nonzero vorticity does not
necessarily imply that the pathlines are curved. For example, shear flows like one with a velocity
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profile given by U⃗ = [βx2, 0, 0] where the velocity in the x̂1 direction depends linearly on the x̂2
position scaled with a constant β have straight pathlines in the x̂1 direction but nonzero vorticity:
ω⃗ = [0, 0,−β].

In fluid mechanics, vorticity is commonly interpreted as twice the local angular velocity
[35]. We caution the reader that, in general, the angular velocities measured by the sensor we
present here cannot be interpreted as local angular velocities from which vorticity fields can
be deduced but are rather the angular velocities of the tracer particles about their orbit centers.
Therefore, these measurements of angular velocity should not be used to calculate vorticity.
However, we note that there does exist a special case in which vorticity can be deduced from
these measurements: when the system is known to be rotating exclusively according to the solid
body rotation mode (as in the experiments of Ref. [15]).
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