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We demonstrate collinear phase-shifting holography for measuring complex optical modes of twisted light beams
with orbital angular momentum (OAM) generated by passing a laser through a spatial light modulator (SLM).
This technique measures the mode along the direction of propagation from the SLM and requires no additional
optics, so it can be used to aid alignment of the SLM, to efficiently check for the effects of beam wander, and to
fully characterize generated beams before use in other experiments. Optimized error analysis and careful SLM

alignment allow us to generate and measure OAM with purity as high as 99.9%.
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1. INTRODUCTION

An optical mode with orbital angular momentum (OAM) is
characterized by a helical wavefront with an integer winding
number ¢, leading to an OAM per photon of A [1]. Lights
OAM provides a discrete parameter space, with bounds limited
only by the numerical aperture of the system [2,3], that has al-
ready been utilized in high-torque light—matter interactions [4],
quantum entanglement [5,6], and terabit-bandwidth communi-
cations based on multiplexing OAM states. [7,8]. These exciting
applications require high-purity generation of optical OAM,
which is a challenge to measure directly and efficiently in the
lab because, while the helical phase of light is an efficient carrier
of angular momentum information, it does not directly affect the
intensity of the light measured by a camera.

There are many demonstrated methods to characterize and
measure light's OAM. The simplest and oldest method is to
interfere the beam with a Gaussian reference; the number of
azimuthal interference fringes is equal to |#] [9]. Diffraction
from apertures of various geometries has also been shown to
contain information about the nearest-integer £ [10,11], even
in the presence of other modes [12]. More recent work has
shown that the average OAM can be measured quantitatively
with a cylindrical lens [13] or by integration of the local OAM
density [14]. Finally, modal decomposition methods can take
measurements of the OAM power spectrum by log-polar op-
tical transformations [15], diffraction forked grating correlation
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filters [16—18], or Fourier analysis of interference patterns [19].
Direct measurement of the optical phase profile is another
promising route to full OAM measurement: if the full, complex
field of a mode can be measured, then the beam would be
completely characterized. Unfortunately, the two traditional
methods of measuring a complex mode are insufficient: inter-
ferometry using a reference beam with a fixed phase can recover
only partial phase information in the form of a forked grating
[20] because of sign ambiguity caused by the inverse cosine
operation in the recovery of phase information from an inter-
ferogram [21], and wavefront sensors are expensive, low reso-
lution, and cannot handle the phase singularities necessarily
present within twisted light. Recent work showed that a custom
implementation of phase-shifting holography in an interferom-
eter can be used to reconstruct the complex field of a twisted
light mode [22]. This work required construction of an inter-
ferometer with a separate reference path that can introduce
additional phase noise. Other works have utilized similar inter-
ferometric methods, including phase-shifting holography, for
measurement of complex optical fields such as vortex knots,
beams that contain a noninteger vortex structure, and interfer-
ence of several plane waves from which the phenomenon of
laser speckle arises [14,23,24]. In these experiments, a lens
imaged the interference between the zero-order and first-
diffracted-order beam. While the beams both travel through
the same optics, which reduces noise from vibrations, misalign-
ments in the lens can cause distortions in the field, and the
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reference beam is not propagated collinearly with the beam
under test [25].

In this paper, we show that when a spatial light modulator
(SLM) is used to generate complex optical fields with OAM,
the beam can be characterized and aligned with collinear phase-
shifting holography techniques [21] and no additional optics.
We explicitly describe the process of using composite gratings
on the SLM, which generates both the studied beam and a
copropagating, phase-controlled reference. This complex field
measurement is sufficient to decompose the field in a Laguerre
Gaussian (LG) basis, providing a fast, direct, and accurate
determination of the complete radial mode and OAM mode
spectrum. Using this technique, we demonstrate sensitive trans-
verse SLM alignment and complex field measurements, includ-
ing full £-p spectra from the decomposition, for a variety of
OAM modes and a donut mode that does not contain OAM.
This inline, collinear technique with no additional optics min-
imizes phase error and uncertainty from misalignment, and
enables straightforward and accurate experimental measure-
ment of small differences in generated optical fields. We also
show how to minimize errors from finite size, pixel count, and
tilt angle of the detector relative to the beam. The minimization
of each of these errors and lack of intermediary optics allow us
to confidently generate and measure very high-purity OAM,
up to 99.9%.

2. COMMON-PATH PHASE-SHIFTING DIGITAL
HOLOGRAPHY OF VORTEX BEAMS

We begin by describing our collinear implementation of phase-
shifting digital holography, which is an extension of interferom-
etry that enables phase and amplitude measurements of an
arbitrary optical field [21]. This technique requires the mea-
surement of four interferograms with intensities /(x,y, ¢p)
and relative phase ¢p between the studied mode and a
Gaussian reference beam. The transverse phase of the desired
mode, ®@(x,y), can then be calculated as [21]
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illustrated schematically in Fig. 1.
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Fig. 1. Schematic representation of phase-shifting digital holography.

Resulting
Intensity

Vol. 58, No. 2 / 10 January 2019 / Applied Optics 405

To obtain the optical fields with the needed four phase
shifts, we begin by generating a series of four holograms.
Each hologram is encoded with the sum of (1) the field of
the studied mode superimposed with a plane wave, and
(2) a phase reference grating such that the amplitude of the
hologram is given by [26]

Eudied (%5 x| m
AH(X,_)/) — Studled(x )/) % & + gT+¢R’ (2)

Eincident (X, ,y)

where L is the grating constant. We normalize the studied
mode by the experimentally measured field incident onto
the SLM [27], and subsequently for each value of ¢p, these
holograms generate the interferograms needed for Eq. (1) in
the first diffracted order.

For the case of generating OAM, the plane wave is super-
imposed with a spiral phase, €%, where £ is the OAM of the
beam [27]. Without the last term in Eq. (2), this creates a holo-
gram such as that shown in the first column of Fig. 1, which
does not include a reference beam. The next column of Fig. 1
shows images of the last term in Eq. (2) that generate the refer-
ence beams at four phase steps from 0 to 2%, as demanded by
Eq. (1). Summing columns one and two [i.e., including both
terms in Eq. (2)] results in superposition holograms (column
three) that each generate the desired mode with a phase-
controlled reference beam along a common direction.

Light incident onto one of these holograms results in an
interferogram, /(x,y, ¢p), in the first diffracted order. Each
of the four interferograms can be recorded successively on a
CCD before combining the images via Eq. (1) to calculate
the phase of the desired mode at each pixel location.

To obtain the complete optical field, we must also measure
the field amplitude of the beam under test, which is produced
by the hologram that contains no additional reference, as in
the first column of Fig. 1. This is recorded with a CCD, and
by taking the square root of each pixel value, we obtain the
amplitude of the mode. This allows for complete measurement
of the complex amplitude and phase of the mode being studied.

[lluminating a standard forked diffraction grating, such as
the first hologram in Fig. 1, with a Gaussian beam results
in a beam with pure OAM, but a superposition of LG radial
modes. These beams are referred to as hypergeometric Gaussian
(HyGG) modes [26]. Pure LG modes can be produced via an
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Fig. 2. Experimental schematic. A He—Ne laser passes through a spatial filter onto a SLM from which light in the first diffracted order is collected
on a CCD. We project holograms with either HyGG or LG modes plus a phase-controlled reference.
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Fig. 3. Experimental measurements of several complex laser modes; phase was measured by collinear phase-shifting digital holography.

additional amplitude mask within the hologram to match the
amplitude of the desired LG mode [26]. Each of these LG
and HyGG modes have unique phase profiles, even when they
carry the same OAM. With this process, we can produce and
measure these types of complex optical fields.

For experimental demonstration, a collimated and spatially
filtered He—Ne laser is passed through a modified Epson 83H
projector LCD panel used as a transmission SLM [28],
as shown in Fig. 2. The light in the first diffracted order is
measured by a Nikon D5200 camera at an arbitrarily chosen
distance of 15% of the Rayleigh range of the generated beam
from the SLM. All other diffracted orders are blocked. Figure 3
shows the results of the full complex measurements of HyGG
modes with £ = +4 and £ = -1, of LG modes with Z = +4
and Z = -1, and of a “flat donut.”

The measured amplitude and phase are consistent with our
expectations. In the amplitude measurements, we see smaller
vortex cores for smaller £ values. We observe many radial
modes in the HyGG beams, in contrast to the single, low-
est-order mode in the LG beams with p = 0. The phase infor-
mation also shows a significantly higher amount of curvature in
the HyGG modes as compared to the LG modes, as expected
due to the additional radial modes present in HyGG beams
[26]. The expected topological charge is clearly and directly
seen in both the HyGG and LG beams. While a discussion
of stability of this measurement is reserved for later, these com-
plete measurements of complex fields give us the ability to
quantify the OAM spectrum in each beam.

3. MODAL DECOMPOSITION

Given a direct measurement of the amplitude and phase of
an optical field, the field can be computationally decomposed

into any basis. If the LG basis is used, OAM and radial mode
power spectra can be determined. This method has distinct ad-
vantages over all-optical modal decomposition methods [22],
including minimally required data acquisition (one complex
beam profile is all that is needed to perform a computational
modal decomposition, while an optical decomposition requires
separate measurements for each mode), the ability to check
other modal bases without acquiring more data, and minimal
alignment error. Here, we review the theory for modal decom-
position in an LG basis and demonstrate LG modal decompo-
sition of our experimentally measured data shown in the
previous section.

A. Theory of Modal Decomposition

We begin by considering an arbitrary complex scalar field ¥,
corresponding to that which can be measured through the tech-
niques described above. This field can be expanded into the
sum of LG components, so that

v=3Y Y g @

=00 p=0

Orthogonality of LG modes allows for full characterization of
the modal composition of ¥ by way of

cl = / WLG*dA (@
All

Given experimental measurements of the complex image of
arbitrary field ¥, we can measure Cj by multiplying that image
by a calculated image of LG]f* and then by summing over all
pixels. Thus, after we have a complex image of a field, our
method becomes a matter of iterating through digital transmis-
sion filters (LG;* for all relevant values of #, p) and summing
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over all pixels, which allows us to measure C% over a very large
portion of the {¢,p} parameter space very quickly, without
having to take additional physical measurements for each 7.

Based on the decomposition techniques demonstrated in
this work and elsewhere [14-19,23,24], one might be tempted
to attempt measuring the £ power spectrum more directly by
using spiral phases alone as a basis for decomposition into an
angular momentum distribution. We take a moment to make
very clear that for an input field ¥ with arbitrary radial distri-
bution, one cannot measure the angular momentum distribu-
tion with spiral phase-only transmission filters. That is to say
that in general, the power spectrum coefficient

(o)

1CelP ="

»=0

"

/ YLG,*dA?
All

2
/ ‘I‘e‘if'/’dA‘ . (5)
All

That this direct spiral decomposition does not work can be
understood conceptually as a statement of the nonuniformity
of the radial decomposition of a plane wave. One can imagine a
beam of the form y = J=(LG;! + LG}?), in which p, # p,
and 7| # ¢,. The angular momentum spectrum of y is clearly
such that the power is split evenly between the £, and £, OAM
states. However,
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(A) Hypergeometric Gaussian ¢ = -1

(B) Laguerre Gaussian £ = -1
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Thus, as the integral of the absolute value of LG;:1 does not

¢ o
equal that of LG, the correct angular momentum distribution
is not recovered.

B. Example of Modal Decomposition with
Experimental Data

Modal decomposition onto an LG basis reveals a full £-p spec-
trum measurement, and a projection onto the ¢ axis yields the
OAM power spectrum. Figure 4 shows results of LG decom-
position on three experimentally generated and measured
modes: a HyGG with topological charge £ = -1, a LG mode
with £ = -1 and p = 0, and a composite “flat donut” that is
a sum of LG p =0 and p =1 with £ = 0. Power spectra
calculations reveal extremely high OAM purity for all of these
measurements, on the order of 99.9%. To the authors’ knowl-

edge, this OAM spectral purity is the highest measured to date.

4. ERROR AND STABILITY ANALYSIS

Successfully quantifying the errors affords us high confidence in
our ability to accurately measure these OAM modes and
confirm our high purities.

A. Finite Window and Pixelation Error Analysis

As was described above in Section 3.A, the modal decomposi-
tion of a discretized complex field requires the generation of a
set of transformation fields whose centers match that of the
field of study. The alignment of the pixel edges of the generated
transformation fields in respect to those of the measured image

(C) Laguerre Gaussian =0, g =0&1

1 1 1
0.999 0.999 0.998
D 101 8 101 8 1o
é;? g 0 % 10
o o
® s I
=102 102 =402
g £ 10 £ 10
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Fig. 4. Results of modal decomposition on three experimentally measured laser modes: (A) a HyGG beam with £ = -1, (B) an LG beam with
¢ =-1, p=0, and (C) a composite “flat donut” mode composed of LGZ;z% - LGZ;jJ. The top graphs show the OAM power spectrum on
a logarithmic scale, and the bottom shows the amplitude spectrum in LGS space.



408 Vol. 58, No. 2 / 10 January 2019 / Applied Optics

-o- 0 pixels
-o- 1/4 pixel
-»- 1/2 pixel
1 pixel

Modal Purity

o
©
a

0.94

oosl—L o+ o S0 P R R
0.05 0.1 0.15 0.2 0.25 0.3

Ratio of Beam Waist to Window

Fig. 5. Modeled modal purity of a pure LG§ mode as a function of
beam waist to the total image window. Each curve shows the misalign-
ment error resulting from the measured mode and calculated mode
having no relative displacement (blue), a quarter-pixel displacement
(purple), a half-pixel displacement (red), and one pixel displacement
(orange). We conclude there is an optimal ratio for which the error is
mostly negligible, and at which very small (subpixel) misalignment is
at its most forgiving. This relative size is approximately 2/5 of the win-
dow, for all values of . We find slight variations in these errors for
different OAM values, but the error-minimizing value of the beam-to-
window ratio remains the same.

turns out to be extremely important. However, as the pixel
edges are generally fixed for a physical measurement system,
and as the alignment of pixel edges can take any place during
computational analysis, we show in Fig. 5 that if understood,
errors from pixelation are very small even for low-resolution
images.

That the errors stemming from pixelation are not a function
of resolution as much as they are a function of pixel-edge align-
ment is surprising, and is a result that can be exploited to
achieve high spectral resolution from easy-to-compute, low-
resolution data.

Although even inexpensive consumer camera CCDs can be
used to record complex images with resolutions on the order of
thousands of pixels squared, here we choose to analyze modeled
images with only 100 pixels squared to demonstrate that excel-
lent results can be achieved with low-resolution, rapidly comput-
able data. We calculated the spectrum of pure, but discretized,
LG modes using different relative displacements between the
pixel edge of the modeled image and the transformation filter,
and by changing the relative waist size of the mode with respect
to the size of the image window. We found that the error in such
a measurement is dependent on this relative beam size: too small
and the pixel effects are less forgiving, but too large and the beam
is clipped by the window. This trend is shown for LGé in Fig. 5,
in which each line represents the measured modal purity as a
function of beam size in a fixed window, for different pixel-edge
displacements.

B. Detector Tilt Error Measurements

Further measures could be taken into account such as
correcting for any potential misalignments in the detector that
is measuring the OAM [29]. However, in Fig. 6, we show that
our technique is highly insensitive to the tilt of the detector
when measuring the OAM. We see only a small deviation
in the OAM power spectrum as we increase the tilt of the
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Fig. 6. Measured modal power spectra of a LG} beam from CCD
images taken at 0°, 10°, and 20° of misalignment from the axis of
propagation. Top and bottom parts show the same data represented
in the OAM (top) and radial (bottom) bases. Data are for integer
OAM and radial modes; results for different CCD tilts are slightly
offset for clarity.

camera to 10°. When increased to 20°, we see slightly more
power in the surrounding modes, but continue to measure a
purity of 99.9% in this case. The radial mode spectrum proves
to follow the same pattern, but we do observe a decrease in the
purity of the p = 0 mode. That we observe high OAM purity
in the measured mode even in the case of dramatic detector
misalignment is indicative of the strength of this technique.
This makes some intuitive sense in that a tilted OAM beam
may look oblong in the intensity measured on a camera, but
because we also recover the phase, the OAM measurement is
preserved at the expense of radial mode purity. These complete
error analyses combined with decomposition results demonstrate
the robustness of the combined methods of collinear phase-
shifting digital holography and our digital modal decomposition.

5. CONCLUSION

In conclusion, we have demonstrated a novel collinear imple-
mentation of phase-shifting digital holography to measure the
complex field of twisted light. This robust phase recovery allows
for fast computational determination of the LG modal spectrum,
and therefore the OAM power spectrum. We demonstrate how
to mitigate sources of error in such a modal decomposition and
find that using these methods, we can reliably measure OAM
modal purity up to 99.9%.
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