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We show that the average orbital angular momentum
(OAM) of twisted light can bemeasured simply and robustly
with a single stationary cylindrical lens and a camera.
Theoretical motivation is provided, along with self-
consistent optical modeling and experimental results. In
contrast to qualitative interference techniques for measuring
OAM, we quantitatively measure non-integer average OAM
in mode superpositions. © 2016 Optical Society of America
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Light can have two forms of angular momentum: spin angular
momentum related to the polarization, and orbital angular
momentum (OAM) arising from a helical phase front around
a beam. As a result of these helical phase fronts and the resulting
singularity at the center, light with OAM is often referred to as
“twisted” or “vortex” light. While the spin angular momentum of
light has been understood for nearly a century, in 1992 Allen et al.
were the first to demonstrate that laser light can be made to carry
well-defined OAM [1] and, since then, it has seen steadily
increasing scientific and engineering interest. The interest in
OAM has been driven largely by its promise in applications,
including rotational control in optical tweezers [2] and super res-
olution stimulated emission depletion (STED) microscopy [3].

The measurement of OAM is a vibrant area of active re-
search. The earliest OAMmeasurements used interference with
a Gaussian reference beam, such that the number of dark
fringes observed around a beam was equal to the absolute value
of the OAM [4,5]. Other work showed that passing a beam
with OAM through a cylindrical lens leads to an interference
pattern at the lens focus; the dark fringes in this interference
pattern yield an integer value of the OAM, and the direction
of the skew gives the sign of OAM [6–9]. Recently, alternatives
based on self-interference [10] or counting dark fringes due to
diffraction from apertures of different shapes [11,12] or at the
focus of a cylindrical lens [6] have been demonstrated. These
methods only work for optical modes with clearly identifiable

patterns and, thus, have the disadvantage of being limited to
nearest-integer assessment of OAM values. Such qualitative
techniques cannot measure OAMmode mixtures or even assess
the alignment quality for pure OAM mode generation, so
quantitative measurement techniques capable of measuring
non-integer OAM are needed.

An alternative method for measuring non-integer OAM is
mode separation, which can be done in multiple ways, some of
which include geometrical phase transformation from helical to
linear using spatial light modulators [13] or custom phase op-
tics [14], extended arrays of Dove prisms [15], or focusing the
output of a forked diffraction grating into a single-mode fiber
[16]. Other techniques, such as OAM density [17] and skew-
angle measurements [18] could measure non-integer OAM,
although this has not been explicitly demonstrated. These
methods have various drawbacks, including high cost, custom
fabrication, complicated setup, and slow speed.

In this Letter, we combine an analytical model with experi-
mental results to show that average non-integer OAM can be
measured quantitatively with only a single, stationary cylindrical
lens and a CCD. Our measurement technique is motivated by
the momentum space mapping of a lens; that is, a lens transforms
incident photon momentum to position at the focal plane, as
illustrated in Fig. 1. The small azimuthal momentum component
in twisted light leads to anOAM-dependent skew at the focus of a
cylindrical lens. We show that this skew can be connected quan-
titatively to the average OAM of the incident light and that these
measurements are effective, even with highly multimode beams.
This Letter moves beyond qualitative interference techniques for
measuring OAM, the importance of which is demonstrated by
the OAM measurements of vortex chain beams.

The angular momentum of a single photon relative to the
center of a beam can be calculated from the classical mechanics
definition of the angular momentum ~L � ~r × ~p of a point par-
ticle, where �~r; ~p� are the photon’s in-plane distance from beam
center and momentum, respectively. Defining the z-direction
to be along the beam propagation, the angular momentum is

Lz � ~r × ~p · ẑ � xpy − ypx � ℏ�xky − ykx�; (1)

where �x; y� are the Cartesian coordinates in the plane of the
beam, and �px; py� are the in-plane photon momentum
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components. The right side of Eq. (1) follows from the fact that
the linear momentum of light is related to the wavevector, ~k, as
~p � ℏ~k. The transverse components of the wavevector, kx
and ky give the local direction of propagation relative to the
z-direction.

Now we want to relate the transverse wavevectors incident
on the lens �kx; ky� to position in the focal plane of the
cylindrical lens. For kx, geometrical optics shows that tan�θ� �
x 0∕f � kx∕kz , where x 0 is the position in the focal plane along
the same direction as x, f is the focal length of the lens, and θ is
the transverse angle of incidence on the lens. Solving for kx,
repeating the calculation for ky, and approximating kz ∼ k �
�2π∕λ�, we can write Eq. (1) as

Lz �
2πℏ
f λ

�xy 0 − yx 0�; (2)

where λ is the wavelength of the light. The kz ∼ k approxima-
tion is a statement that the azimuthal momentum of twisted
light is much smaller than 2π∕λ, which leads to a correction
term on Lz of ∼λ2l2∕w2ℏ, where l is the OAM quantum
number such that the single-photon OAM is lℏ, and w is
the beam radius. This correction is on the order of 10−6 for
optical wavelengths and typical beam sizes and OAM. For a
collection of photons, the average OAM can be written as [19]

hLzi �
2πℏ
f λ

�hxy 0i − hyx 0i�; (3)

where hi indicates an average over an entire beam.
Our derivation arrives at the same results yielded by the

treatment of the Poynting vector [20] or a raised operator
method [21]. In addition, the expression for average OAM
in Eq. (3) is closely related to the twist parameter used to char-
acterize astigmatic beams [22,23], as has been noted by others
[24]. Previous measurements of the twist parameter were made
by careful beam profile measurements at numerous positions
through the focus of both spherical and cylindrical lenses
[23,25]. However, we note that each of the two terms in

parentheses in Eq. (3) can be directly measured at the focus
of a cylindrical lens (since a cylindrical lens transforms a direc-
tion of incidence on the lens to position at the focal plane).

The mode at the focal plane of a cylindrical lens can be
calculated analytically with a simple one-dimensional (1D)
Fourier transform. This enables the calculation of the average
OAM in the case of a known model.

To determine the OAM of a particular laser mode measured
by a camera, we square the E-field to obtain intensity and then
calculate hyx 0i, known as the x 0, y covariance V x 0 ;y:

V x 0 ;y � hyx 0i �
RR∞

−∞ jE�x 0; y�lj2x 0y dx 0 dyRR∞
−∞ jE�x 0; y�lj2 dx 0 dy

: (4)

The covariance calculation in the Fourier spatial domain pro-
vides a direct connection with the measured OAM per ℏ, lmeas:

lmeas �
2πℏ
f λ

�V x 0 ;y − V x;y 0 �∕ℏ: (5)

In the case that there is reflectional symmetry (i.e., the in-
tensity distribution on one side of a line matches the intensity
on the other side if reflected about that line) about an axis � π

4
rad from the axis of the cylindrical lens, V x;y 0 � −V x 0 ;y and,
thus, Eq. (5) has only one covariance term:

lmeas �
4π

f λ
V x 0 ;y �

4π

f λ

RR∞
−∞ I�x 0; y�lx 0y dx 0 dyRR

∞
−∞ I�x 0; y�l dx 0 dy

; (6)

where I�x 0; y� is the spatially resolved light intensity at the focal
plane of the lens. This equation can be used to calculate the
average OAM of a beam, given a CCD-recorded image of
the beam at the focus of a cylindrical lens I�x 0; y�.

The general expression for a Laguerre–Gaussian (LG) mode
withOAM l and radial quantum number p can be written as [26]

E�r;ϕ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p!
π�p�jlj�!

s
1

w

�
r

ffiffiffi
2

p

w

�jlj
e−r2∕w2

×Lp;jlj�2r2∕w2�eilϕ;

(7)

where Lp;jlj�x� is a Laguerre polynomial, (r, ϕ) are the polar co-
ordinate analogs to (x, y), and w is the beam waist. Since we are
only interested in the intensity at the focus, the Gouy phase is
omitted. The 1D Fourier transform can be performed after map-
ping the LG mode in Eq. (7) to �x; y�. A Fourier transform for
arbitrary integers �l; p� is analytically intractable, but it can be
performed for a particular integer values of �l; p�.

To test the OAM measurement of a superposition of LG
modes, we also modeled hypergeometric Gaussian (HyGG)
modes, which can be represented as an infinite superposition
of LG modes with fixed l and varying p [27]. HyGGmodes are
important because they directly describe the twisted light gen-
erated by Gaussian illumination of a spiral phase plate or forked
diffraction grating, rather than a single LG mode [28]. We cal-
culate 1D Fourier transforms of HyGG beams to model the
modes at the focal plane of a cylindrical lens, and show
a few representative cases in the first row of Fig. 2.
The measured OAMs from Eq. (6) for both LG and HyGG
models match identically with expectations and with each
other, even though HyGG beams are composed of many
p modes, which reinforces that this measurement technique
does not require pure LG modes as input.

In our experimental setup for demonstrating quantitative
OAM measurement, shown in Fig. 3, light beams with
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Fig. 1. Concept for simple OAM measurement with a cylindrical
lens. (a) Side view of a beam incident on a cylindrical lens. (b) Top
view illustrates how the direction at the lens is translated to the posi-
tion at the focus. (c) Incident intensity profiles for different OAM
values; the arrows show the transverse component of the Poynting
vector. (d) CCD images at the focal plane for OAM values correspond-
ing to the modes in (c). Blue arrows show how the OAM-induced
angle of incidence on the cylindrical lens leads to a shift at the focus.
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controllable OAM are generated by passing a collimated zeroth-
order Gaussian beam (w0 � 2.6 mm) from a HeNe laser (λ �
633 nm) through an amplitude modulated forked diffraction
grating on a computer-controlled spatial light modulator.
The OAM beam is then collimated with a two-lens telescope
before passing through a cylindrical lens with a focal length of
1 m. A CCD is placed at the focus [Fig. 1(a)], and a series of
images are acquired for input OAM values l � −5 → 5.

This setup uses a spatial filter, an SLM, and a telescope to
generate and collimate tunable light with OAM. The OAM
measurement requires only a cylindrical lens and a CCD.
The only calibration parameters are the lens to camera distance,
the rotation angle of the cylindrical lens with respect to the
CCD, and the collimation of the input beam. The following
calibration method is a simple one-time procedure, and sub-
sequent measurements can be made without further calibra-
tion. We start by passing a collimated beam through a
cylindrical lens and placing the camera at the focus; collimation
and lens−camera distance are not critical here because they will
be optimized in the calibration. The calibration method is as
follows. (1) Take OAMmeasurements at l � �5 by acquiring
images on the CCD and processing the intensity distribution
using Eq. (6); rotate the cylindrical lens until the measurements
are equal in magnitude and opposite in sign. (2) Fine-tune the
collimation to optimize OAM measurement linearity with

changing incident OAM. (3) Adjust the lens−camera distance
to optimize the measurement slope (lmeas − l) to one.

As shown in Fig. 2, the images from a CCD camera at the
focus of a cylindrical lens (bottom row) match the calculated
1D Fourier transforms of the corresponding HyGGmodes (top
row), which is expected for our OAM generation technique
[27,28]. The measured images show integer OAM carrying
beams, each with the corresponding integer number of dark
fringes, in accordance with the model.

To quantify the OAM of a beam, each measured image at
the focus of the cylindrical lens is treated as a two-dimensional
intensity array I�x 0; y�, where (x 0 � 0, y � 0) is the centroid of
the intensity distribution, except in the case of non-integer
OAM modes, for which (x 0 � 0, y � 0) is defined by the in-
tensity centroid of a reference Gaussian with the same center.
The OAM is then calculated from Eq. (6). In the case of integer
OAM beams, the resulting OAM measurements are expected
to match the topological charges of the forked diffraction gra-
tings used to make them. The measured OAM as a function of
the expected integer OAM is shown in Fig. 4.

Although individual photons carry integer OAM, a super-
position of photons can have a non-integer average OAM.
Many sources of non-integer OAM, including direct mode ad-
dition with beam splitters or multimode mixing in fibers [23],
produce beams with a single vortex and match the linear
expectation shown in Fig. 4. In the special case of OAM beams
produced from non-integer spiral phase plates or non-
integer forked diffraction gratings [29], the superposition of
topological charges leads to a phase singularity along a radial
direction [10], as shown in the top row of Fig. 5. Individual
OAM modes diffract at different angles off of this singularity,
leading to the formation of a vortex chain perpendicular to the
phase discontinuity [29]. This vortex chain introduces off-axis
angular momentum, so the total OAM measured scales
nonlinearly with the combined topological charge of the forked
diffraction grating [10,29].

meas = 0

meas = 0.006 0.931 1.902 2.940

2 31
= 0  = 1  = 2  = 3

Experiment

HyGG
model

Fig. 2. Intensity modes at the focus of a cylindrical lens for an in-
cident beam with OAM of l � 0 → 3. The first row shows modeling
results for a hypergeometric Gaussian HyGG (l) mode, and the bot-
tom row shows experimental results. Quantitative OAM values calcu-
lated from each image using Eq. (6) are indicated for each mode
(lmeas); the calculated values for the modeled images are calculated
to be exact integers.
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Fig. 3. Experimental setup for testing quantitative OAM measure-
ment technique. SL, spherical lens; PH, pinhole; CL, cylindrical lens;
SLM, spatial light modulator; CCD, CCD camera. Light diffracted
from a forked grating on a SLM has tunable OAM (pink beam in
the figure), which is quantitatively measured by the cylindrical lens
and CCD. The OAMmeasurement portion of the setup is highlighted
in the gray box with a dotted edge.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Programmed OAM from SLM

-5

-4

-3

-2

-1

0

1

2

3

4

5

M
ea

su
re

d 
O

A
M

Experiment (integer):

Linear expectation: 

Fig. 4. Quantitative OAM measurements of integer OAM inputs
from l � −5 → �5. The dotted line corresponds to an ideal measure-
ment of integer values, and all corresponding models for LG and
HyGG modes fall on this line. Data are from experimental measure-
ments using Eq. (6). The error bars showing the standard deviation of
analyzing five sequential images are smaller than the dots.
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In order for a beam with a vortex chain to meet the sym-
metry requirement for a single-lens OAM measurement, the
vortex chain must be oriented along a direction � π

4 from the
axis of the lens [see the discussion before Eq. (6)]. We can do
this by defining our forked diffraction gratings with a diagonal
discontinuity (first row, Fig. 5) with respect to the axis of the
cylindrical lens (vertical). Experimentally measured modes gen-
erated by these gratings and the resulting modes at the focus of
a cylindrical lens are shown in the middle and bottom rows of
Fig. 5, respectively.

Figure 6 shows the measured OAM of non-integer OAM
beams as a function of the topological charge of the forked gra-
tings that produced them. The nonlinearity of the non-integer
OAM measurements is not an artifact of the OAM generation
or measurement methods; in fact, our results are consistent
with a theoretical prediction for non-integer OAM [29] (also
shown in Fig. 6) which connects the nonlinearity of the
average OAM to the formation of off-axis vortex chains. Our
measurements are also in agreement with self-interference
mode-fitting results from Leach et al. [10]. As seen in Fig. 5,

the OAM of beams with non-integer topological charge cannot
be determined by visual mode examination.

In conclusion, we have proposed, modeled, and demon-
strated a method for quantitative measurement of the average
OAM of a beam of light. The method is simple, inexpensive,
robust, and fast; it can accurately measure both integer and
non-integer OAM of multimode beams. This measurement
technique could find applications in many areas of OAM
research for both scientific and technological applications.
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Fig. 5. Fractional OAM forked diffraction gratings (top row) with
the corresponding fractional OAM modes (middle row). The bottom
row shows modes at the focus of a cylindrical lens.

Fig. 6. Measurement from l � −1.5 → �1.5 with steps of
l � 0.1. The dotted line corresponds to the theoretical average
OAM produced by a forked diffraction grating [29].
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