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For the first time, to the best of our knowledge, light with
orbital angular momentum (OAM) of �2ℏ per photon is
produced using commercially available polarization-
maintaining fiber with modal purity of 96%. Twist
measurements demonstrate that the average orbital angular
momentum can be continuously tuned between �2ℏ. The
authors consider beams of non-integer OAM, created using
the presented method, as superpositions of integer OAM
states. © 2017 Optical Society of America
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The orbital angular momentum (OAM) of light has garnered
immense interest since the seminal 1992 paper of Allen et al.
The work showed that Laguerre–Gaussian (LG) beams have
well-defined OAM of lℏ, where l is the azimuthal index
[1]. This has led to exciting investigations into fundamental
physics such as geometric phases, spin-orbit interaction of light
[2,3], and light-matter interactions [4], as well as revolutioniz-
ing understanding of photon momentum [5]. It has also been
applied to a wide range of applications, including optical tweez-
ing, micromachines, quantum computing, imaging, and infor-
mation multiplexing [6,7]. The ability to generate, transport,
and control OAM through optical fiber could directly advance
many of these fields.

There are two main approaches to managing OAM in op-
tical fiber. In one method, specialty fiber is designed to support
OAM states as eigenmodes of the fiber by tailoring the refrac-
tive index profile [8,9]. This is important for spatial division
multiplexing in communications, as OAM allows for orthogo-
nal channels to carry information, and it is possible to propa-
gate OAM modes over long distances with little loss or
crosstalk. However, these custom fibers are not commercially
available. The second method involves standard fiber, where
phase-controlled combinations of fiber eigenmodes are used
to construct an OAM beam at the output [10–12]. We focus
on the latter approach, which can yield unique control over the

resulting light [13,14]. While OAM modes with l � �1 have
been generated using mode addition in optical fiber
[10,12–14], higher-order OAM modes have not been gener-
ated. In this Letter, we demonstrate the generation of
higher-order OAM modes (l � �2).

In theory, constructing a beam with an azimuthal phase and
OAM > 1 in standard step-index fiber can be achieved by cou-
pling to HE or EH modes. Both modes have two orientations,
giving rise to four total modes of interest: HEeven

L�1;m, HEodd
L�1;m,

EHeven
L−1;m, and EH

odd
L−1;m. By excitingHEeven

L�1;m andHEodd
L�1;m with

a relative π∕2 phase difference, a beam with spin angular
momentum (SAM) and OAM aligned to the same direction
can be realized, resulting in stable propagation of the intensity
profile along the fiber. Repeating the process with EH modes
results in anti-aligned SAM and OAM, producing periodic
changes in the intensity profile along propagation [15].
However, the even and odd mode orientations are completely
degenerate in standard fiber, meaning even small, random per-
turbations to the fiber cause crosstalk and make it impractical to
sustain pure optical vortices in a fiber of any significant length
[8,11]. An attractive alternative is offered by polarization-
maintaining fiber (PMF).

PMF has full vector eigenmodes that we represent as
PM

s;f
lpe;o, where l is the azimuthal index, p is the radial index,

“e” denotes even orientation, and “o” denotes odd. The super-
script gives the polarization alignment; s represents the electric
field vector along the slow axis; and f represents the fast. We
assume polarization along the slow axis for the remainder of this
Letter and, thus, suppress the superscript. These modes have
the form

PMlpe;o � f jl jp�r�
�

cos�lθ� for e
sin�lθ� for o ;

(1)

where θ is the azimuthal coordinate in the transverse plane of
the beam, and f jl jp�r� describes the radial dependence of the
mode. The stress rods of the PMF that create birefringence also
break cylindrical symmetry and lift the degeneracy between dif-
ferent orientations of the same mode (including polarization),
such that both orientations are stably propagated without cross-
talk in 2 m of fiber. The break in symmetry is due to spatially
varying stress along the transverse direction of the fiber, which
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causes a non-uniform refractive index distribution [16,17]. For
a mode with given p and l , combining the even and odd ori-
entations with a half-integer of π phase difference results in an
azimuthal phase of the form exp��ilθ�. This combined mode
has OAM and a topological charge of l . The PM21e;o modes
that will be of interest for the rest of this Letter are accurately
approximated by the Hermite–Gaussian (HG) modes HG11e
and HG11o, where the first index describes the order along
x and the second, y. Figure 1 demonstrates addition between
these two modes.

We implement higher-order OAM generation using a 2 m
long polarization-maintaining patch cord that is single-mode at
1550 nm (Thorlabs P5-1550-FC-2). At 632.8 nm, this fiber
supports six modes for each linear polarization, leading to
12 total modes. In our experiment, shown in Fig. 2, fiber
modes are selectively excited by generating an HG11o mode
using a He–Ne laser and a spatial light modulator (SLM).
The beam is split into two arms, and a Dove prism is used
in one of these arms to rotate the beam into the even orienta-
tion. The two beams are recombined, and a half-wave plate and
polarizer balance the power between the beams and align the
polarization to the slow axis of the fiber. The phase between
these two modes can be finely tuned using a piezo-actuated
translation stage. Additionally, the beam generated from fiber
can be interfered with a Gaussian reference to qualitatively
verify OAM (Fig. 2 inset). A beam of OAM �1ℏ can also
be realized by exciting the HG10 and HG01-like modes of
the fiber, as demonstrated in [13].

Due to the large number of modes supported by the fiber,
crosstalk and intermodal coupling should be considered. The
stress rods of the PMF that serve to create birefringence also
perturb the refractive index profile of a step index fiber.
They can cause changes in the fiber modes when sufficient
bending or twisting is applied [11]. Higher-order modes are
particularly susceptible. Using a coupled mode theory
[18–21], we can calculate the effect that a perturbation will
have on modal cross talk. The matrix of coupling coefficients
is given by

Cnm �
Z

δn2�x; y�E�
nEmdxdy; (2)

where En is the transverse field profile of the nth eigenmode of
the unperturbed fiber, and δn2�x; y� is the change of the cross-
sectional refractive index due to the perturbation defined as

δn2�x; y� � n2�x; y� − n20�x; y�; (3)

where n is the perturbed refractive index, and n0 is the unper-
turbed index.

It has been shown that a coiled fiber with a constant bending
radius can be represented by a tilted refractive index profile
[19,22–24]. Assuming a constant bend radius in the xz plane,
this then gives the form of n�x; y� as

n�x; y� � n0

�
1� x

Rc

�
; (4)

where Rc is the radius of curvature.
This results in non-zero coupling coefficients between

PM01, PM21e , and PM02. Even in the case of ideal excitation
of one of these modes, power can still leak into other modes.
Although orthogonal orientations of the same mode (PM21e
and PM21o) have nearly degenerate effective indices, they
remain orthogonal under this index perturbation, so no power
is coupled between them.

The modes of a bent fiber can also be calculated directly
using the tilted refractive index [Eq. (3)]. Simulations show that
beyond a radius of curvature of 50 mm, the quality of PM21e
begins to degrade, and there is no longer an intensity null in its
center. This is consistent with experimental observations.

We mitigate the effects of mode coupling by avoiding bends
of the fiber with radii of curvature smaller than ∼50 mm, as
this could easily couple power from the PM21;e into azimuthally

Fig. 1. Two modes supported in polarization maintaining fiber
(PMF), approximated in this figure by HG modes, are added to pro-
duce a beam of either (a) OAM � 0 or (b) OAM � �2ℏ, depending
on the relative phase between modes. The color represents the phase,
and the brightness represents intensity. Note that a beam of zero OAM
can also be produced if the two modes are π out of phase, resulting in
an intensity profile that is rotated by 45 deg from the result in (a).

Fig. 2. Pol. BS, polarizing beam splitter; BS, beam splitter; λ∕2
half-wave plate. Experimental setup. A 5 mW cw He–Ne laser at
632.8 nm is incident on a SLM. The first diffracted order is an
HG11o mode used to selectively excite fiber modes. A polarizing cube
beam splitter is used to create a Mach–Zehnder interferometer. In one
of the arms, a dove prism mounted at 22.5° rotates the excitation beam
by 45°. A piezo-actuated delay stage is used to control the relative
phases between the two arms before they are recombined at a
50∶50 cube beam splitter. A half-wave plate is used to balance power
from each arm before coupling into the PMF. The inset shows the
interference between an OAM beam of l � 2 generated from fiber
and a tilted Gaussian reference. A three-pronged “fork” is seen,
indicating a phase singularity with a topological charge of 2.
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symmetric modes (such as PM01 or PM02) with a non-zero field
in the center.

To measure the OAMof the beam quantitatively, two differ-
ent methods are employed: a “twist”measurement and a modal
decomposition. Quantitative measurement for OAM is impor-
tant for distinguishing non-integer OAM beams from one an-
other. In our experiment, the “twist” measurement [13,14,25]
is implemented by splitting the beam under test and passing
each new beam through a cylindrical lens. We use two orthogo-
nally oriented lenses to make the measurement independent of
collimation. At the focus of each lens, the one-dimensional
Fourier transform results in spatial separation of different mo-
mentum components transverse to the focusing axis [23].
Recording the intensity on a CCD allows the xy covariance
to be calculated:

hxyi �
RR

I�x; y��x − hxi��y − hyi�dxdyRR
I�x; y�dxdy : (5)

I�x; y� is the intensity of the beam profile at the Fourier
plane and hxi, hyi are the coordinates of the centroid.

The average OAM of a beam can be calculated by taking the
difference of the xy covariance along the two lens axes (here
assumed to be the x and y axes):

hOAMi � ℏ
2πf
λd 2 �hxyix − hxyiy�; (6)

with f as the focal length of the cylindrical lenses and d as the
distance between the lens and measurement plane. The sub-
scripts on covariances denote the direction of focus of the lens.

The setup is calibrated with a Gaussian beam input (without
OAM) and an OAM beam of l � �1, generated with a vortex
phase plate. We measure the OAM of the beam generated in
fiber by continuously performing twist measurements, as the
phase between the two excitation HG modes is varied with
a piezo translation stage. This phase is independently measured
by monitoring the fringe pattern of the two beams with a pho-
todiode. As expected, the OAM shows smooth, sinusoidal
oscillations between �2ℏ per photon. When the two modes
have a relative phase of an integer multiple of π, the OAM
is zero (Fig. 3). A pure OAM state is achieved when the
two modes are added with a half-integer of π relative phase.

We are also able to control and tune beams with non-integer
average OAM per photon. Non-integer OAM has been studied
theoretically using spiral phase plates [26], mode-addition
methods similar to those presented here [27–29], and differen-
tial operators in the Fourier domain [30]. In our system, the
total beam in the LG basis is expressed as the coherent addition
of two LG modes of opposite l values, meaning some portion
of the photons have OAM � 2ℏ, while the others have
OAM � −2ℏ. Any non-integer OAM beam generated from
our fiber can be described as a weighted superposition of these
two states. These superpositions can have fractional average
values of OAM.

To illustrate the behavior of the average OAM beam, we
examine the case of hli � 1. The intensity profile of an
OAM state of hli � 1 lacks the characteristic “donut” shape
of pure LG twisted light (Fig. 3). The l � 1 beam can be
analyzed entirely in the LG basis as an unevenly weighted
sum of l � 2 and l � −2 modes. The petal beam shape is
due to azimuthally dependent constructive and destructive in-
terference between modes. Note that the azimuthal phase of

this composite state does not increase linearly with the angle,
as it would for a pure OAM state; instead, the possessing steep
phase changes near the lines of minimum intensity [28]. These
average OAM beams do not rotate while propagating in free
space, as the phase velocity is identical for both LG
modes [28,31].

For an electric field at the end of the fiber, E , an expression
for the average OAM can be derived by considering the
addition of the two fiber modes with a relative phase, ϕ, and
expanding in the LG basis (LGlp), keeping only the
zeroth-order radial terms:

E � PMe
21 � exp�iϕ�PMo

21; (7)

E ≈
LG20 � LG−20

2
� exp�iϕ�LG20 − LG−20

2i
; (8)

E � eiϕ 0 �−iLG20 sin�ϕ 0� � LG−20 cos�ϕ 0�	; (9)

ϕ 0 � 1

2

�
ϕ� π

2

�
: (10)

Only the lowest-order radial term is considered, as the radial
function of the fiber eigenmodes closely resembles that of LG
modes. The power in each LGmode weights its contribution to
the total OAM, so we find

hli � 2 sin �ϕ�: (11)

An alternative derivation can be attained by following [5] and
integrating the angular momentum density over the entire
beam.

To measure the OAM mode content, a modal decomposi-
tion measurement is performed (Fig. 4). The beam diffracts
from a SLM with a forked diffraction pattern of variable l .
After the SLM, a lens is used to Fourier transform the result,

Fig. 3. Twist measurement, quantifying OAM as a function of the
phase between the excitation beams. Two different trials are plotted
(red circles and black squares). The maximum values demonstrate the
ability to generate an OAM of�2ℏ, while the continuous variation of
OAM shows smooth control of non-integer values. These non-integer
values signify the average OAM of the beam, as individual photons
must have an integer ℏ of OAM. The error on each data point is
estimated to be 2%.
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and a CCD at the focus records the resulting intensity
distribution [32]. The intensity at the centroid is measured,
which is the correlation of the beam under test with a beam
of OAM � lℏ [33–35]. For a given data set, these intensities
are normalized by the total of intensities detected at the
centroid for that set. Simulations on pure LG beams give an
estimated uncertainty of 2% on the modal decomposition.
For a relative phase between excitation beams of −π∕2, corre-
sponding to a generated OAM of −2, decomposition shows that
96% �2% of the power is contained in a state of l � −2, sim-
ilar to the previous application of this mode addition method
for l � �1 [13].

The presented method for OAM generation relies the on a
relative phase between two modes in a fiber. External condi-
tions, such as temperature and stress, can alter the relative phase
and cause a change in OAM output. Consequently, this tech-
nique is particularly well suited for applications in fiber sensing.
Under laboratory conditions, pure OAM states are stable
for ∼5 min .

In conclusion, we have demonstrated the generation of
higher-order OAM in commercially available PMF. This
OAM can be continuously tuned from 2ℏ to −2ℏ per photon,
and the states with maximum OAM have high modal purity.
Wide tunability of OAM opens the possibility for new technol-
ogies and control of light, while the sensitivity of the relative
phase between the modes of the fiber makes it a good candidate
for fiber sensing.
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strating the ability of our method to generate high-purity optical vor-
tices. As shown here, 96% of the power measured is contained in the
l � −2 OAM state. These values are normalized to the total power
detected.
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