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There are two established methods for measuring rota-
tional Doppler shift: (1) heterodyne and (2) fringe. We
identify a key distinction, that only the heterodyne method
is sensitive to the rotating object’s phase, which results in
significant differences in the signal-to-noise ratio (SNR)
when measuring multiple rotating particles. When used
to measure randomly distributed rotating particles, the
fringe method produces its strongest SNR when a single
particle is present and its SNR tends to zero as the number of
particles increases, whereas the heterodyne method’s SNR
increases proportionally to the number of particles in the
beam. ©2020Optical Society of America

https://doi.org/10.1364/OL.390425

Light with orbital angular momentum (OAM) is defined by a
helical transverse phase structure [1] described by the azimuthal
phase term of e ilφ , such that the light has l~ of OAM per pho-
ton, andφ is the azimuthal coordinate. One consequence of this
is the rotational Doppler effect (RDE) [2,3]: light scattered from
an object rotating about the beam’s axis experiences a frequency
shift, 1 f =1l�/2π , proportional to the object’s angular
frequency� and the light’s change in angular momentum1l .

The RDE has been proposed as a mechanism for OAM spec-
trum analysis [4] and for measuring vibration [5], vorticity in
fluid flows [6,7], and rotation of remote objects [8] or astro-
nomical sources [9]. The RDE has been observed from optical
elements that scatter the incident beam into a particular output
OAM state, such as a dove prism [10], spiral phase hologram
[11], or Q plate [12], as well as from objects that scatter the
incident beam into many different OAM states, such as one
or more rotating particles [6,7,13] or a random scattering sur-
face [14]. Regardless of the rotating object, these experiments
generally use one of two established techniques to measure the
RDE: heterodyne, in which a single OAM mode (donut beam)
illuminates the target and interferes with a reference mode;
or the fringe method, in which the target is illuminated with
two OAM modes of opposite charge, forming a petal beam of
azimuthal fringes [Fig. (1)]. Most experiments appear to choose
arbitrarily between the detection approaches, as the differences

between the approaches and their influence on the experimental
outcome are not well-understood.

In this Letter, we identify a key distinction between the
heterodyne and fringe methods’ signal-to-noise ratio (SNR). We
derive and experimentally verify that the heterodyne method
is phase sensitive, whereas the fringe method is sensitive only
to amplitude modulation. For randomly distributed scattering
particles rotating in the beam, we find the fringe method’s SNR
is strongest when a single particle is present, and it decreases
monotonically to zero as the number of particles in the beam
increases. In contrast, the heterodyne method’s SNR increases
linearly as the number of particles in the beam increases. These
results are analogous to the findings in the field of laser Doppler
velocimetry [15], and provide a useful metric by which a detec-
tion method may be chosen based on the density of scatterers in
the target medium in order to measure the strongest signal.

We begin by calculating the theoretical photocurrent for
an RDE measurement, first for the heterodyne method,
then explaining the differences for the fringe method. The
heterodyne illumination beam (or probe) is defined as a
Laguerre–Gauss (LG) mode with a single topological charge
(TC) l . To achieve optimal spatial overlap of these beams on the
photodetector, the reference mode is chosen as the −l mode.
(The difference in OAM modes, 1l , is thus 2l .) The form
of both beams is given by Eq. (1), where f (r ) represents the
modes’ radial profile and normalization factors as defined for
Laguerre–Gaussian beams,

E (r , φ, t)= A f (r )e i(ωt−lφ). (1)

The rotating object may be equivalently represented either
as a superposition of many TCs and radial modes, or as a distri-
bution of particles, each with a different depth (corresponding
to phase difference) and/or reflectivity. The effect of an object’s
TCs on the RDE signal has been studied elsewhere [11,16];
however, for sensing applications such as lidar and microscopy,
in which a rotating target may comprise one or more particles
in the beam, a more natural basis is to instead decompose such
targets as a distribution of particles. The RDE frequency shift
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Fig. 1. Rotational Doppler shift measurement techniques: (A) A
single OAM mode illuminates a spinning object and is heterodyned
with a reference of a different OAM value. (B) A petal beam illuminates
a spinning object, providing amplitude modulation. (C) Both methods
generate a beat frequency at1l�/2π .

depends only on the angular distribution of particles [11];
whereas the effect of the radial distribution primarily decreases
the measurement’s light collection efficiency. We therefore
model the particles as wedges of uniform angular width θp and
infinite radial extent. Additionally, we assume the particles have
a uniform reflectivity of R ; since R only scales the RDE signal,
we set R to 1 for simplicity. To consider the effect of multiple
particles in the beam, we represent the rotating object’s complex
reflectivity, P , as a sum of contributions from N nonover-
lapping particles rotating about the origin with an angular
frequency of �, each with an azimuthal position at time 0 of
θm , and a phase, ψm , corresponding to the axial position of the
particle,

P (φ, t)=
N∑

m=1

{
e iψm �t + θm <φ < θp +�t + θm
0 otherwise . (2)

The photocurrent is calculated by integrating the power inci-
dent on the detector. The illumination beam E i is multiplied by
the rotating target function, P , then imaged onto the reference
beam Er at the detector, which sums the total incident intensity,

i(t)= κ
∫ Rd

0

∫ 2π

0
(E i P + Er )(E i P + Er )

∗r dφdr . (3)

Subscripts i and r represent incident and reference beam quan-
tities, respectively, and κ is a constant dependent on the system
losses and detector sensitivity. When evaluating Eq. (3), we
assume that the beams underfill the detector of radius Rd .
Because the reference beam mode is chosen as lr =−li , the
radial integral simply evaluates to 1/2π (a different choice of
reference mode would decrease the signal due to decreasing
spatial overlap of the reference and probe; a particle of limited
radial extent would likewise decrease the signal). Calculating the
heterodyne photocurrent [Eq. (4)] reveals that each individual
rotating particle contributes a signal of the same frequency
1l�/2π but with a phase originating from the particle’s
position θm and its phaseψm ,

i(t)= κ
(
|Ar |

2
+

Nθp

2π
|Ai |

2
+ Ai A∗r

2

π1l
sin

(
1lθp

2

)

×

N∑
m

cos (1l(�t + θm)+ψm)

)
.

(4)

Calculating the photocurrent for the fringe method requires
a few changes. The fringe method’s probe consists of two OAM
modes of +l and −l (1l is again 2l ), forming a petal beam of
azimuthal fringes,

E (r , φ, t)= A f (r )
(
e i(ωt−lφ)

+ e i(ωt+lφ)). (5)

The fringe method does not use a reference beam, so Er is set
to zero. Evaluating Eq. (3) results in a photocurrent for the
fringe method [Eq. (6)], which is similar to that of the hetero-
dyne method, again summing a sinusoidal signal from each
individual particle.

i(t)=
κ|Ai |

2

π

[
Nθp +

2

1l
sin

(
1lθp

2

) N∑
m

cos(1l(�t + θm)

]
.

(6)

However, Eq. (6) is independent of particle phase ψm ; this
reveals the fringe method is sensitive only to the amplitude
modulation of the particle distribution, and not to the phase
modulation it provides. Both the fringe [Eq. (6)] and hetero-
dyne [Eq. (4)] methods measure a beat at 1l�/2π , usually
explained as arising from frequency shifts in scattered modes of
the probe beam, proportional to the mode’s change in OAM
[14]. An equivalent explanation for fringe method’s beat is
the amplitude modulation from a particle traversing the petal
beam’s angular fringes.

We designed an experiment to measure the RDE using both
heterodyne and fringe methods to highlight specific cases of how
phase sensitivity affects the measurements. As shown in Fig. 2, a
He–Ne laser is spatially filtered then prepared by a spatial light
modulator [17] (SLM, modified Epson EMP83 projector) as
either an l =−3 donut beam or l =±3 petal beam for hetero-
dyne and fringe methods, respectively. The beam then diffracts
from a second SLM (Cambridge Correlator SDE1024), which
emulates a rotating object by spinning a computer-generated
hologram (CGH) at angular frequency �. To implement this
CGH, the desired object’s complex reflectivity is multiplied by a
sine grating; the object term rotates as a video while the grating
remains static to maintain a constant direction of the diffracted
mode. Using an SLM rather than a physical scattering target
allows precise, dynamic control over the target and simplifies
axial alignment between the beam and the rotating object.

Following the holographically emulated rotating object
on the SLM, a beam splitter directs the reflected beam to the
photodetector (Thorlabs Det36A). For the heterodyne method,
a reference beam is reflected from the beam splitter following
the first SLM and has its parity reversed to l =+3 by an extra
reflection before recombining with the probe. The reference

Fig. 2. Layout of RDE experiment. A spatial light modulator
(SLM1) prepares the incident beam, either as a petal beam or a donut
beam for fringe or heterodyne methods, respectively. The probe beam
transmits through both beam splitters (BS), scatters from a rotating
object simulated on SLM2, then returns to BS2, where a telescope
images it to the photodetector. For the heterodyne method, the refer-
ence beam comes from the reflection of BS1, which is then path length
matched and has the OAM parity reversed before recombining at BS2.
This reference path is blocked for the fringe method. Telescopes with
spatial filters follow both SLMs to select the proper diffracted mode.
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and probe beams must be precisely collinearly aligned to mode
match, as misalignment results in a broadened OAM spectrum
[18]. Due to the tight tolerances for this alignment [18], a cam-
era and a wavefront sensor were used to match the reference and
probe beams’ centroids and wavefront tilts. The power spectral
density (PSD) of the resulting photocurrent is calculated using
Welch’s method with a Hann window for smoothing, with the
expected beat frequency at 1l�/2π , where 1l is 6 for both
techniques.

Three rotating holograms were implemented [Fig. 3 insets].
Two of these holograms produce the same amplitude modu-
lation of six equally spaced, wedge-shaped particles of angular
width π/6, but with different phase conditions on consecutive
particles. Hologram 1 [Fig. 3A inset] has a uniform phase on
all the particles, and hologram 2 [Fig. 3B inset] has alternating
0 and π phases on consecutive particles. The third hologram
[Fig. 3C inset] emulates 12 particles with alternating 0 and π
phases, filling the beam. These holograms were all rotated at a
frequency of 0.11 Hz, limited by the refresh rate of the SLM.

The measured PSD from each hologram is shown in Fig. 3.
Because the fringe method measures only amplitude modula-
tion, it produces the same signal for both six-particle holograms
despite their different phase conditions, but no signal is mea-
sured in the 12 particle case, as this hologram has no amplitude
variation. In contrast, the heterodyne detection yields a strong
signal for both the 12-particle hologram and the uniform-phase
six-particle hologram [Fig. 3C, 3A]. However, the heterodyne
method does not produce a signal from the second six-particle
hologram [Fig. 3B] because it is phase sensitive and each pair of
particles in this hologram produces equal and opposite signals
that destructively interfere. Clearly, the amplitude and phase
sensitivity of the fringe and heterodyne techniques are impor-
tant factors to consider when designing an RDE measurement
system.

Another important consideration is the effect of misalign-
ment. In either method, misalignment of the illumination beam
from the rotation axis will broaden the beam’s effective OAM
spectrum [18], yielding multiple1l values between the optical
modes. This then generates many discrete frequency shifts of
1ln�/2π , rather than a single pure frequency shift [18,19].
The heterodyne method additionally requires precise alignment

Fig. 3. Power spectral densities of measured time series for fringe
and heterodyne methods for three different rotating holograms
(insets). Hologram color depicts emulated particles’ phase; white indi-
cates absence of particle (zero reflectivity). The holograms’ sinusoidal
modulation is not shown. At the expected frequency of f = 0.67 Hz
(dashed), the fringe method produces a signal for (A), (B) both six-
particle rotating objects, despite the differing phase conditions, but
produces no signal for (C) the 12-particle hologram, as the target
displays no amplitude modulation. The phase sensitivity of the
heterodyne method gives rise to a strong signal for case C but does not
generate a signal for case B due to destructive interference.

of the reference beam with the scattered probe in order to mode
match to again prevent broadening of the effective OAM spec-
trum. Because the fringe method generates both modes of the
petal beam simultaneously from the same hologram, it does
not require this additional alignment, so the fringe method is
significantly easier to align.

In most applications, rotating particles are likely to be ran-
domly spaced in the beam, with their random axial positions
corresponding to random phases. Using the same model and
assumptions as above, we now show that the difference in phase
sensitivity results in a change in behavior in the expectation
values of the SNRs for the two methods when measuring ran-
domly distributed particles. We first show that the heterodyne
method’s SNR increases linearly with the number of random
particles in the beam, N, and then show that the fringe method’s
SNR monotonically decreases to zero as the N increases. We will
assume each particle’s phase, ψm , is random and independent,
and its azimuthal position, θm , is random but constrained to
prevent particles from occupying the same space.

Consider the photocurrent generated in the heterodyne
method [Eq. (4)]. Each particle contributes a sinusoidal term
with its phase dependent on bothψm , and θm ; for each particle,
these two random phases can be summed to a single independ-
ent, random phase, ψ ′m , distributed uniformly modulo 2π .
With this definition of ψ ′m , the expected photocurrent for
N random, rotating particles is found [Eq. (7)] by applying
the expectation value of a sum of randomly phased sinusoids
[Eq. (8)], which yields an expected amplitude of

√
Nπ/4, but

maintains the same frequency content (a full derivation of this
expectation value is given in [20]),

E [i(t)] = κ

(
A2

r +
Nθp

2π
A2

i +

√
N Ai A∗r
√
π1l

sin

(
1lθp

2

)

× cos(1l�t)

)
, (7)

E

[
N∑

m=1

cos(ωt +ψ
′

m)

]
=

√
N
π

4
cos(ωt). (8)

To predict the expected SNR, we assume the measurement
is signal shot-noise limited. Due to both the phase sensitivity
and the heterodyne gain, the SNR is directly proportional to the
number of random particles in the beam [Eq. (9)],

SNRhet =

(
ACsignal√
DCsignal

)2

=

κN|Ai |
2
|Ar |

2 1
π(1l)2 sin2

(
(1lθp )

2

)
|Ar |

2 +
Nθp

2π |Ai |
2

.

(9)
This SNR is plotted in Fig. 4 as a function of fill factor Nθp/2π ,
a dimensionless measure of the total area the particles occupy.

We next consider the fringe technique, returning to the pho-
tocurrent calculated in Eq. (6). As previously discussed, this
measurement is not sensitive to the particles’ random phases;
thus, while each particle still produces a randomly phased signal
of frequency 1l�/2π , the random phases of these photocur-
rent terms depend only on each particle’s angular position θm .
While these positions are random, two particles cannot be in
the same place, so the random positions, and therefore the ran-
dom phases of the photocurrent terms, are not independently
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Fig. 4. Theoretically calculated SNR of rotational Doppler effect
signal for N randomly distributed, wedge-shaped particles with ran-
dom phases rotating about the origin, for both techniques [Eqs. (9)
and (12)]. Results are normalized to the peak value of the heterodyne
curve. The particle angular width is fixed at θp = 0.01, 1l = 6, and
Ar = 5Ai for heterodyne. Fill factor is defined as the percent of the
angular area of the beam covered by the particles. The fringe SNR is
best for few particles in the beam, but the heterodyne SNR increases
with N.

random. Thus, the expectation value of Eq. (8) is not valid.
Because the overlap constraint becomes more significant as the
particles fill the beam, the expectation value should converge
to Eq. (8) when the fill factor Nθp/2π is small, but as the fill
factor increases, the amplitude should eventually decrease to
0. A simple correction factor proportional to the fill factor was
postulated and verified by fitting to simulated random trials
of summing sine waves with random phases; the simulated
trials were fit as Eq. (10) with an R2 of 0.9975 for small angles
(θp < 0.1) and for N > 1,

E [A] =

√
π

4
N
(

1− N
θp

2π

)
. (10)

Using these results, the expected photocurrent using the
fringe method to measure N random particles is given as

E [i(t)] =
κ|Ai |

2

π

[
Nθp +

√
Nπ
1l

(
1− N

θp

2π

)

× sin

(
1lθp

2

)
cos(1l�t)

]
. (11)

Using the same assumption that the measurement is shot noise
limited, the SNR is given by

SNRfringe =
κ|Ai |

2

θp(1l)2

(
1−

Nθp

2π

)2

sin2

(
1lθp

2

)
. (12)

As shown in Fig. 4, the fringe method produces a strong signal
when few random particles are present, but its SNR decreases
as O(N2), whereas the heterodyne method’s SNR increases
linearly with N (assuming the reference beam has much more
power than the probe beam). When the beam is fully filled with
particles, the fringe method’s SNR is zero, while the heterodyne
method measures a strong signal due to its phase sensitivity. The
difference in techniques is even more pronounced if a minor
amount of background noise is considered in the calculations,
due to the effect of heterodyne gain.

A careful analysis of the two RDE measurement techniques
shows that only the heterodyne method is phase sensitive, which

makes it better suited to large numbers of randomly distributed
rotating particles. While both methods generate signals at the
same frequency, they are most sensitive in opposite conditions:
the fringe method is best with a single particle whereas the
heterodyne SNR increases with the number of particles. The
density of scatterers in the rotating target is thus an essential
parameter to consider when designing a system to measure rota-
tion with the RDE. When considered along with the differences
in alignment requirements, these physical and practical consid-
erations enable an RDE measurement to be better understood
and optimized, for applications in fluid dynamics, astronomy,
and remote sensing.
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