
The Little Regular Expressionist

Vilja Hulden

August 2016
v0.1b

CC-BY-SA 4.0

This little pamphlet, which is inspired by The Little Schemer by Daniel Friedman and Matthias
Felleisen, aims to serve as a gentle introduction to regular expressions.

You may want to cover the right half of the page, and only move the cover down answer by answer;
that way you give yourself time to digest the question and maybe even come up with the answer
(sometimes you will have enough information to at least take a guess, though not always).

This pamphlet is by no means exhaustive; there is much more to regular expressions. It’s a good idea
to test and play; http://regexr.com/ has both a tester and reference resources, and a good com-
prehensive cheat sheet can be found at https://www.cheatography.com/davechild/cheat-sheets/
regular-expressions/.

1 Basics

Is a a regular expression? Yes, it matches string a.

Is ba*c a regular expression? Yes.

Does ba*c match bac? Yes.

Does ba*c match baaaac? Yes.

Does ba*c match bc? Yes.

1

http://regexr.com/
https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/
https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/

Hmm. So do you mean that ba*c can
be read as “b followed by zero or more
a’s and then a c?”

I do indeed.

So Mo*re would match both More and
Moore?

Yes, but it would of course also match
Mre.

Oh. What if I don’t want it to match
Mre?

Use the plus (+) instead of the star (*).

Aha! So ba+c matches bac but not
bc?

Exactly.

OK, so does ba+c match baaaac? Yes, because + means “one or more.”

And it also matches baac and baaaaac

and baaaaaaaac and . . .
Yes, you’ve got the idea.

So ba+c can be read as “b followed by
one or more a’s and then a c?”

Quite so.

OK, let me check a few more. Does
b*a match ba?

Yes.

Does b*a match a?
Yes, because the star means you don’t
have to have a b.

Does b+a+ match aaaa?
No, because the plus means that you
have to have at least one b.

Does b+a match bbbba?
Yes, because you can have as many bs
as you like, as long as you have at least
one.

Does b*a match bbbb?
No. The a is not followed by a star, so
it has to be there.

2

Does ba*c match BAC?
No, because the matches are case-
sensitive.

Does b*a match bbBBa?
No, because the matches are case-
sensitive! A lowercase b only matches
a lowercase b, not an uppercase B.

Oh, OK. What if I want to match
both?

We’ll get to that, don’t worry.

Fine. What if I want to match any
character?

Use . (the period).

Like this: b.c to match bac? Yes.

Or the same thing, b.c, to match bxc? Yes.

Does b.c match baaaac too? No.

Does it match bxxxxc?
No. The period only matches a single
character.

Oh. So does b.*c match baaaac? Yes!

Does b.*c match bbbbbaaaac? Yes, because b is also a character.

Does b.*k match bark?
Yes, because both a and r are charac-
ters.

Does B.*K match bark?
No, because the matches are case-
sensitive. B only matches an upper-
case B, not a lowercase b.

OK. But does c.*p match co-op?
Yes, because - (the hyphen) is a char-
acter too.

3

So c.*p would match c&?$#e$p? Yes, those are all characters.

Does a.*p match b635%#p? No, because there’s no a.

Does a.*p match a&4>p ? Yes.

What if I have a word that looks like
this:
ab

cd

Will a.*d match it?

No, the one character that . does not
match is the line break.

Oh, so it will only match a string if
the string is all on one line?

Yes.

So let’s say I have a line like this:
Cats beat dogs

I want to match the Cats in that line.
I write C.*s to do that, right?

Actually, no.

What?? C.*s will match the whole line.

Why??
Because regular expressions are
greedy. They take everything they
can.

Oh, so C.*s will actually match the
whole string Cats beat dogs because
that string ends with s too?

Exactly.

So, let me make sure I’ve got all this
right.

Please do.

What’s the minimum number of a’s a
string has to have for the expression
ba*c to match?

Zero.

4

And what’s the minimum number of
a’s a string has to have for the expres-
sion ba+ to match?

One.

Is there an upper limit to how many
consecutive a’s there can be in a string
for the expressions ba* or ba+ to
match?

No.

What does . match? Any character except line breaks.

And, a regular expression is
greedy.

Yes!!

Can I make it “ungreedy?” Can I
match the Cats in Cats beat dogs

somehow?

Yes, you can add ? to the quantifier
(the star or plus).

Like this: C.*?s? Exactly.

Cheat sheet

. any character

* zero or more

+ one or more

*? zero or more, ungreedy

+? one or more, ungreedy

5

2 Alternatives

Does a|b match a? Yes.

Does a|b match b? Yes.

Does a|b match c?
No, there’s nothing in the expression that
could match c.

Does a|b match ab? No.

So a|b means “a or b”? Yes!

Does a|b+ match abbbb?
No, it only matches one or the other side
of the |, not both at the same time.

OK. So does a|b+ match bbbb? Yes.

And does a|b+ match a? Yes.

Does a|b+ match aaa?
No, because there’s only one a in the ex-
pression.

Does a+|b+ match aaabbb?
No, it still only matches one or the other
side of the pipe!

Oh, right. So does a+|b+ match aaa? Yes.

Does a+|b+ match bbb? Yes.

So dog|cat matches dog? Yes.

But does dog|cat match dogs? No, there’s no s in the expression.

6

Oh yeah, that’s true. But does dog|cat

match the dog in dogs?
Yes!

Does dog|cat match docat?
No, because the whole expression on one
side of the | (the pipe) has to match.

Ah, right. So does dog|cat match the
cat in docat?

Yes!

What if I want to match both dogat and
docat?

Group the g|c with parentheses.

Like this: do(g|c)at?
Yes. That matches dogat as well as
docat.

Does dog|cats match dogs?
No, you can’t combine the two sides of
the pipe.

Does dog|cats match cats?
Yes, because cats is all on one side of the
pipe.

Does (dog|cat)s match dogs?
Yes, because now you’ve grouped the al-
ternatives.

Does (dog|cat)s match cats?
Yes, because you’ve grouped the alterna-
tives.

Does (dog|cat)s match cat? No, because the s has to be there.

Does (dog|cat)s* match cat?
Yes, because now you’ve made the s op-
tional.

7

3 Character classes

Does [abc] match a? Yes, because a is included in the class.

Does [abc] match b? Yes, because b is included in the class.

Does [abc] match d? No, because d is not included in the class.

Does [abc] match ab?
No, because the class only represents one
of its members at a time.

Does [abc][abc] match ab?
Yes, because now there are two classes in
a row.

Does [abc][abc] match cb?
Yes, because the class can represent any
one of its members.

Does [abc]+ match ab? Yes! Very good.

Does [abc]+ match ba? Yes.

Does b[abc]* match ba? Yes.

Does [abc]+ match bacab? Yes.

So if a class is followed by * or +, any
number of the members of that class can
be strung together in any order?

Yes (well, to be precise, zero or more for
* and one or more for +).

If a class contains all letters between a
and h, do I have to list them all, like this:
[abcdefgh]?

No, you can define the range like this:
[a-h].

So, [a-z] matches a? Yes.

8

And [a-z] matches g? Yes.

And [a-z] match k? Yes. We could go on.

Let’s not. But does [a-z] match A? No, the class is case sensitive.

Does [a-z] match aa?
No, because the class only represents one
of its members at a time.

Does [a-z]+ match abc? Yes, of course.

Does [a-z]+ match bye? Yes, of course.

Does [a-z] match a-z?
No, the expression defines a class, not a
string.

Does [a-k] match k? Yes.

Does [a-k] match x? No, x is not included in the range a-k.

Does [a-z] match 2?
No, no digits are included in the range
a-z.

Does [a-z] match &?
No, no punctuation marks are included
in the range a-z.

Does [0-5] match 2? Yes.

Does [0-5] match 7? No, 7 is not included in the range 0-5.

Does [0-5] match b?
No, no letters are included in the range
0-5.

9

Does [a-z0-9] match b? Yes.

Does [a-z0-9] match 5? Yes.

Does [a-z0-9] match b5?
No, because the class only represents one
of its members at a time.

Does [a-z0-9]+ match b5?
Yes, because both b and 5 are members
of the class and + means one or more.

Does [a-z0-9]+ match good4you? Yes.

Does [a-z0-9]+ match good4you! ?
No, because the exclamation mark is not
a member of the class.

Does [a-z0-9!]+ match good4you! ?
Yes, because now you’ve added the excla-
mation mark to the class.

So if I put any characters inside square
brackets, those characters become mem-
bers of a class?

Yes.

Hey, couldn’t I use this to match both
uppercase and lowercase letters, like I
wanted to do earlier (on page 1)?

Yes!

Like this: [Bb]ob to match both “bob”
and “Bob”?

Yes!

Or different spellings, like gr[ae]y to
match both grey and gray?

Absolutely!

OK, so by saying [0-9] I can match any-
thing that’s a number.

That’s right.

10

But what if I want to match anything ex-
cept a number? Do I have to make a class
that lists everything that’s not a number?

No, silly, of course not.

So how do I match anything except a
number?

You negate the number class with ^

(a caret).

Oh, like this: [^0-9]? Exactly.

Cheat sheet

a|b a or b
[abc] a or b or c
[a-z] any lowercase letter in the range a-z
[A-Z] any uppercase letter in the range a-z
[Bb] uppercase or lowercase b
[0-9] any number in the range 0-9
[0-4] any number in the range 0-4
[^246] not 2, 4, or 6
[^0-9] not a number

11

4 Special characters and shorthands

So if a period is short for “any character,”
then how do I match a period and nothing
else?

Good question! You have to “escape” it
with a backslash, like this: \.

So \.org would only match .org, not,
say, borg?

That’s right.

Is it the same for * and +?

Yes. The period, star, and plus are all
special characters with a special meaning.
You have to escape them to make them
represent the literal character.

So writing *borg\.org\+ would only
match *borg.org+ and nothing else?

That’s right.

Hey, could I also match .org by saying
[.]org?

Yes! Inside a character class, only - (the
hyphen) and ^ the caret are special char-
acters.

What if I want to include the hyphen in
a character class?

You put it first, since then it can’t define
a range.

So [-a-z]+ would match bye-bye? Yes.

And the caret?
You put it anywhere but first, since it
only negates if it’s the first character.

So [a-z^]+ would match o^o? Yep.

What about if I want to match all white-
space? Do I make a character class?

You could, or you can just say \s to cover
spaces, tabs, and the various flavors of
newlines.

So kitty\s*cat would match both
kittycat and kitty cat?

Exactly.

12

Are there more shorthands like that? You bet. Too many to list here.

Is there a shorthand for “all digits”? Yes! It’s \d.

So \d matches the same thing as [0-9] Exactly.

Is there another way to say [^0-9], too? Yes, \D.

Oh! So is \S then “any character except
whitespace”?

It is!

Speaking of special characters, does the
caret mean anything outside a character
class?

Yes, it means “beginning of line.”

So ^dog would find all lines beginning
with dog?

Exactly.

Is there a character for “end of line,” too? Yes, $.

5 Grouping and substitution

Say I want to match kittykittykitty as
well as kittykitty. Can I do that with
a plus, like I can match aa and aaa with
a+?

Yes! You can make kitty a single group
by putting it in parentheses.

Like this: (kitty)+? Exactly.

So if I replace (kitty)+ with doggie, do
I get doggiedoggiedoggie?

No, you get doggie, because (kitty)+

matches the whole string, no matter how
many times kitty it has.

13

Oh. So actually to re-
place kittykittykitty with
doggiedoggiedoggie, I should just
replace kitty with doggie?

Yes.

Can I also say (kitty|doggie)+ and
match either kittykittykitty and
doggiedoggiedoggie?

Yes, of course you can. And that
will of course also match kitty and
doggiedoggie and so on.

Right. So what if I wanted to replace
kittykitty with here-kittykitty

and doggiedoggiedoggie with
here-doggiedoggiedoggie? Can I
do that with one expression?

Yes; you can use a backreference. Any
grouped expression is saved and num-
bered and can be accessed by $1, $2, and
so on.

So replacing That’s a cute (kitty)

with I like that $1 would produce
I like that kitty?

Absolutely.

So then can I say replace
(kitty|doggie)+ with here-$1 to
get here-doggiedoggie and so on?

No, because now the grouped part only
has kitty or doggie once.

Oh, so I’ll always get here-kitty

or here-doggie and never
here-doggiedoggie.

Yes; you have to include the plus in a
group.

Would this work: ((kitty|doggie|)+)? It would.

Cheat sheet

\ escape character

\. period (literal)

\s any whitespace character (space, tab, newline)

\d any digit

\S any non-whitespace character

\D any non-digit character

(ab)* ab zero or more times

$1 cat in kitty(cat)

$2 s in kitty(cat)(s)

$1 kittycat in (kitty(cat))

$2 cat in (kitty(cat))

14

	Basics
	Alternatives
	Character classes
	Special characters and shorthands
	Grouping and substitution

