The Little Regular Expressionist

Vilja Hulden

August 2016 v0.1b CC-BY-SA 4.0

This little pamphlet, which is inspired by *The Little Schemer* by Daniel Friedman and Matthias Felleisen, aims to serve as a gentle introduction to regular expressions.

You may want to cover the right half of the page, and only move the cover down answer by answer; that way you give yourself time to digest the question and maybe even come up with the answer (sometimes you will have enough information to at least take a guess, though not always).

This pamphlet is by no means exhaustive; there is much more to regular expressions. It's a good idea to test and play; http://regexr.com/ has both a tester and reference resources, and a good comprehensive cheat sheet can be found at https://www.cheatography.com/davechild/cheat-sheets/regular-expressions/.

1 Basics

Is a a regular expression?	Yes, it matches string a .	
Is ba*c a regular expression?	Yes.	
Does ba*c match bac?	Yes.	
Does ba*c match baaaac?	Yes.	
Does ba*c match bc?	Yes.	

Hmm. So do you mean that ba*c can be read as "b followed by zero or more a's and then a c?"	I do indeed.
So Mo*re would match both More and Moore?	Yes, but it would of course also match Mre.
Oh. What if I don't want it to match Mre?	Use the plus $(+)$ instead of the star $(*)$.
Aha! So ba+c matches bac but not bc?	Exactly.
OK, so does ba+c match baaaac?	Yes, because + means "one or more."
And it also matches baac and baaaaac and baaaaaaac and	Yes, you've got the idea.
So ba+c can be read as "b followed by one or more a's and then a c?"	Quite so.
OK, let me check a few more. Does b*a match ba?	Yes.
Does b*a match a?	Yes, because the star means you don't have to have a b .
Does b+a+ match aaaa?	No, because the plus means that you have to have at least one b.
Does b+a match bbbba?	Yes, because you can have as many bs as you like, as long as you have at least one.
Does b*a match bbbb?	No. The a is not followed by a star, so it has to be there.

Does ba*c match BAC?	No, because the matches are case- sensitive.
Does b*a match bbBBa?	No, because the matches are case- sensitive! A lowercase b only matches a lowercase b , not an uppercase B .
Oh, OK. What if I want to match both?	We'll get to that, don't worry.
Fine. What if I want to match any character?	Use . (the period).
Like this: b.c to match bac?	Yes.
Or the same thing, b.c , to match bxc ?	Yes.
Does b.c match baaaac too?	No.
Does it match bxxxxc?	No. The period only matches a single character.
Oh. So does b.*c match baaaac?	Yes!
Does b.*c match bbbbbaaaac?	Yes, because b is also a character.
Does b.*k match bark?	Yes, because both a and r are characters.
Does B.*K match bark?	No, because the matches are case- sensitive. B only matches an upper- case B, not a lowercase b.
OK. But does c.*p match co-op?	Yes, because – (the hyphen) is a char- acter too.

So c.*p would match c&?\$#e\$p?	Yes, those are all characters.
Does a.*p match b635%#p?	No, because there's no a .
Does a.*p match a&4>p ?	Yes.
What if I have a word that looks like this: ab cd Will a.*d match it?	No, the one character that . does not match is the line break.
Oh, so it will only match a string if the string is all on one line?	Yes.
So let's say I have a line like this: Cats beat dogs I want to match the Cats in that line. I write C.*s to do that, right?	Actually, no.
What??	C.*s will match the whole line.
Why??	Because regular expressions are greedy. They take everything they can.
Oh, so C.*s will actually match the whole string Cats beat dogs because that string ends with s too?	Exactly.
So, let me make sure I've got all this right.	Please do.
What's the minimum number of a's a string has to have for the expression ba*c to match?	Zero.

And what's the minimum number of a 's a string has to have for the expression ba+ to match?	One.
Is there an upper limit to how many consecutive a's there can be in a string for the expressions ba* or ba+ to match?	No.
What does . match?	Any character except line breaks.
And, a regular expression is greedy.	Yes!!
Can I make it "ungreedy?" Can I match the Cats in Cats beat dogs somehow?	Yes, you can add ? to the quantifier (the star or plus).
Like this: C.*?s?	Exactly.

Cheat sheet		
•	any character	
*	zero or more	
+	one or more	
*?	zero or more, ungreedy	
+?	one or more, ungreedy	

2 Alternatives

Does a b match a?	Yes.
Does alb match b?	Yes.
Does alb match c?	No, there's nothing in the expression that could match c .
Does alb match ab?	No.
So a b means "a or b"?	Yes!
Does a b+ match abbbb?	No, it only matches one or the other side of the 1, not both at the same time.
OK. So does a b+ match bbbb?	Yes.
And does a b+ match a?	Yes.
Does a b+ match aaa?	No, because there's only one a in the expression.
Does a+ b+ match aaabbb?	No, it still only matches one or the other side of the pipe!
Oh, right. So does a+ b+ match aaa?	Yes.
Does a+ b+ match bbb?	Yes.
So dog cat matches dog?	Yes.
But does dog cat match dogs?	No, there's no ${\bf s}$ in the expression.

Oh yeah, that's true. But does dog cat match the dog in dogs?	Yes!
Does dog cat match docat?	No, because the whole expression on one side of the (the pipe) has to match.
Ah, right. So does dog cat match the cat in docat?	Yes!
What if I want to match both dogat and docat?	Group the $g c$ with parentheses.
Like this: do(g c)at?	Yes. That matches dogat as well as docat.
Does dog cats match dogs?	No, you can't combine the two sides of the pipe.
Does dog cats match cats?	Yes, because cats is all on one side of the pipe.
Does (dog cat)s match dogs?	Yes, because now you've grouped the al- ternatives.
Does (dog cat)s match cats?	Yes, because you've grouped the alterna- tives.
Does (dog cat)s match cat?	No, because the ${\bf s}$ has to be there.
Does (dog cat)s* match cat?	Yes, because now you've made the s optional.

3 Character classes

Does [abc] match a?	Yes, because a is included in the class.
Does [abc] match b?	Yes, because b is included in the class.
Does [abc] match d?	No, because d is not included in the class.
Does [abc] match ab?	No, because the class only represents one of its members at a time.
Does [abc] [abc] match ab?	Yes, because now there are two classes in a row.
Does [abc] [abc] match cb?	Yes, because the class can represent any one of its members.
Does [abc] + match ab?	Yes! Very good.
Does [abc]+ match ba?	Yes.
Does b[abc] * match ba?	Yes.
Does [abc] + match bacab?	Yes.
So if a class is followed by * or +, any number of the members of that class can be strung together in any order?	Yes (well, to be precise, zero or more for * and one or more for +).
If a class contains all letters between a and h, do I have to list them all, like this: [abcdefgh]?	No, you can define the range like this: [a-h].
So, [a-z] matches a?	Yes.

And [a-z] matches g?	Yes.
And [a-z] match k?	Yes. We could go on.
Let's not. But does [a-z] match A?	No, the class is case sensitive.
Does [a-z] match aa?	No, because the class only represents one of its members at a time.
Does [a-z]+ match abc?	Yes, of course.
Does [a-z] + match bye?	Yes, of course.
Does [a-z] match a-z?	No, the expression defines a class, not a string.
Does [a-k] match k?	Yes.
Does [a-k] match x?	No, x is not included in the range a-k .
Does [a-z] match 2?	No, no digits are included in the range a-z .
Does [a-z] match &?	No, no punctuation marks are included in the range $a-z$.
Does [0-5] match 2?	Yes.
Does [0-5] match 7?	No, 7 is not included in the range 0-5.
Does [0-5] match b?	No, no letters are included in the range 0-5.

Does [a-z0-9] match b?	Yes.
Does [a-z0-9] match 5?	Yes.
Does [a-z0-9] match b5?	No, because the class only represents one of its members at a time.
Does [a-z0-9]+ match b5?	Yes, because both b and 5 are members of the class and + means one or more.
Does [a-z0-9]+ match good4you?	Yes.
Does [a-z0-9]+ match good4you! ?	No, because the exclamation mark is not a member of the class.
Does [a-z0-9!]+ match good4you! ?	Yes, because now you've added the excla- mation mark to the class.
So if I put any characters inside square brackets, those characters become mem- bers of a class?	Yes.
Hey, couldn't I use this to match both uppercase and lowercase letters, like I wanted to do earlier (on page 1)?	Yes!
Like this: [Bb] ob to match both "bob" and "Bob"?	Yes!
Or different spellings, like gr[ae]y to match both grey and gray?	Absolutely!
OK, so by saying [0-9] I can match any- thing that's a number.	That's right.

 But what if I want to match anything except a number? Do I have to make a class that lists everything that's not a number?
 No, silly, of course not.

 So how do I match anything except a number?
 You negate the number class with ^ (a caret).

 Oh, like this: [^0-9]?
 Exactly.

Cheat sheet a or b a|b a or b or c [abc] any lowercase letter in the range a-z [a-z] [A-Z]any uppercase letter in the range a-z [Bb] uppercase or lowercase b [0-9] any number in the range 0-9 [0-4] any number in the range 0-4 [^246] not 2, 4, or 6[^0-9] not a number

4 Special characters and shorthands

So if a period is short for "any character," then how do I match a period and nothing else?	Good question! You have to "escape" it with a backslash, like this: $\$.
So \.org would only match .org, not, say, borg?	That's right.
Is it the same for * and + ?	Yes. The period, star, and plus are all special characters with a special meaning. You have to escape them to make them represent the literal character.
So writing *borg\.org\+ would only match *borg.org+ and nothing else?	That's right.
Hey, could I also match .org by saying [.]org?	Yes! Inside a character class, only – (the hyphen) and ^ the caret are special characters.
What if I want to include the hyphen in a character class?	You put it first, since then it can't define a range.
So [-a-z]+ would match bye-bye?	Yes.
And the caret?	You put it anywhere but first, since it only negates if it's the first character.
So [a-z^]+ would match o^o?	Yep.
What about if I want to match all white- space? Do I make a character class?	You could, or you can just say \s to cover spaces, tabs, and the various flavors of newlines.
So kitty\s*cat would match both kittycat and kitty cat?	Exactly.

Are there more shorthands like that?	You bet. Too many to list here.
Is there a shorthand for "all digits"?	Yes! It's \d.
So d matches the same thing as $[0-9]$	Exactly.
Is there another way to say $[^0-9]$, too?	Yes, \D.
Oh! So is \S then "any character except whitespace"?	It is!
Speaking of special characters, does the caret mean anything outside a character class?	Yes, it means "beginning of line."
So `dog would find all lines beginning with dog ?	Exactly.
Is there a character for "end of line," too?	Yes, \$.

5 Grouping and substitution

Say I want to match kittykittykitty as well as kittykitty. Can I do that with a plus, like I can match aa and aaa with a+?	Yes! You can make kitty a single group by putting it in parentheses.
Like this: (kitty)+?	Exactly.
So if I replace (kitty)+ with doggie, do I get doggiedoggiedoggie?	No, you get doggie, because (kitty)+ matches the whole string, no matter how many times kitty it has.

Oh. So actually to re- place kittykittykitty with doggiedoggiedoggie, I should just replace kitty with doggie?	Yes.
Can I also say (kitty doggie)+ and match <i>either</i> kittykittykitty and doggiedoggiedoggie?	Yes, of course you can. And that will of course also match kitty and doggiedoggie and so on.
Right. So what if I wanted to replace kittykitty with here-kittykitty and doggiedoggiedoggie with here-doggiedoggiedoggie? Can I do that with one expression?	Yes; you can use a backreference. Any grouped expression is saved and numbered and can be accessed by \$1, \$2, and so on.
So replacing That's a cute (kitty) with I like that \$1 would produce I like that kitty?	Absolutely.
So then can I say replace (kitty doggie)+ with here-\$1 to get here-doggiedoggie and so on?	No, because now the grouped part only has kitty or doggie once.
Oh, so I'll always get here-kitty or here-doggie and never here-doggiedoggie.	Yes; you have to include the plus in a group.
Would this work: ((kitty doggie)+)?	It would.

Cheat sheet	
\	escape character
\.	period (literal)
\s	any whitespace character (space, tab, newline)
\d	any digit
\S	any non-whitespace character
\D	any non-digit character
(ab)*	ab zero or more times
\$1	cat in kitty(cat)
\$2	s in kitty(cat)(s)
\$1	kittycat in (kitty(cat))
\$2	<pre>cat in (kitty(cat))</pre>