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Abstract: Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate scientists,
and run as computer simulations, to predict climate. There is currently high variance among the predictions of 20 global climate
models, from various laboratories around the world, that inform the Intergovernmental Panel on Climate Change (IPCC). Given
temperature predictions from 20 IPCC global climate models, and over 100 years of historical temperature data, we track the
changing sequence of which model predicts best at any given time. We use an algorithm due to Monteleoni and Jaakkola that
models the sequence of observations using a hierarchical learner, based on a set of generalized Hidden Markov Models, where
the identity of the current best climate model is the hidden variable. The transition probabilities between climate models are
learned online, simultaneous to tracking the temperature predictions.

On historical global mean temperature data, our online learning algorithm’s average prediction loss nearly matches that of the
best performing climate model in hindsight. Moreover, its performance surpasses that of the average model prediction, which
is the default practice in climate science, the median prediction, and least squares linear regression. We also experimented on
climate model predictions through the year 2098. Simulating labels with the predictions of any one climate model, we found
significantly improved performance using our online learning algorithm with respect to the other climate models and techniques.
To complement our global results, we also ran experiments on IPCC global climate model temperature predictions for the
specific geographic regions of Africa, Europe, and North America. On historical data, at both annual and monthly time-scales,
and in future simulations, our algorithm typically outperformed both the best climate model per region and linear regression.
Notably, our algorithm consistently outperformed the average prediction over models, the current benchmark.  2011 Wiley
Periodicals, Inc. Statistical Analysis and Data Mining 4: 372–392, 2011
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1. INTRODUCTION

The threat of climate change is one of the greatest chal-
lenges currently facing society. Improving our understand-
ing of the climate system has become an international prior-
ity. This system is characterized by complex and structured
phenomena that are imperfectly observed and even more
imperfectly simulated. A fundamental tool used in under-
standing and predicting climate is the use of climate models,
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large-scale mathematical models run as computer simu-
lations. Geophysical experts, including climate scientists
and meteorologists, encode their knowledge of a myriad of
processes into highly complex mathematical models. One
climate model will include the modeling of such processes
as sea-ice melting, cloud formation, ocean circulation, and
river flow. These are just a few of the processes modeled
in one model; each climate model is a highly complex
system.

In recent years, the magnitude of data and climate
model output is beginning to dwarf the relatively simplistic
tools and ideas that have been developed to analyze
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them. In this work, we demonstrate the advantage of a
machine learning approach, over the state-of-the-art in
climate science, for combining the predictions of multiple
climate models. In addition to our specific contributions,
we encourage the broader study of climate informatics,
collaborations between climate scientists, and machine
learning researchers in order to bridge this gap between
data and understanding.

The global effort on climate modeling started in the
1970s, and the models have evolved over time, becoming
ever more complex. There are currently about 20 labo-
ratories across the world whose climate models inform
the Intergovernmental Panel on Climate Change (IPCC),
a panel established by the United Nations in 1988, that was
recognized for its work on climate change with the 2007
Nobel Peace Prize (shared with former US Vice President
Al Gore). Work done to improve the utilization of global
climate model predictions would be very significant to the
next IPCC report, due in 2013.

Currently there is very high variance among the predic-
tions of these 20 models, even for identical future scenarios.
This may stem from a variety of reasons. Each was designed
from first principles by a different team of scientists, and
thus the models differ in many discretization assumptions,
as well as in some of the science informing each process
modeled. While the variance is high however, the aver-
age prediction over all the models is a more consistent
predictor (over multiple quantities, such as global mean
temperature, performance metrics, and time periods), than
any one model [1,2].

Our contribution is an application of a machine learning
algorithm that produces predictions that match or surpass
that of the best climate model for the entire sequence. We
use online learning algorithms with the eventual goal of
making both real-time and future predictions. Moreover,
our experimental evaluations suggest that, given the non-
stationary nature of the observations, and the relatively
short history of model prediction data, a batch approach
has performance disadvantages. Our algorithm achieves
lower mean prediction loss than that of several other
methods, including predicting with the average over model
predictions. This is an impactful result because to date, the
average of all models’ predictions was believed to be the
best single predictor of the whole sequence [1,2].

1.1. Related Work in Machine Learning and Data
Mining

There are a few other applications of machine learning
and data mining to climate science. Data mining has been
applied to such problems as mining atmospheric aerosol
data sets [3,4], analyzing the impacts of climate change [5],
and calibrating a climate model [6]. Clustering techniques

have been developed to model climate data [7]. Machine
learning has been applied to predicting the El Niño climate
pattern [8], and modeling climate data [9]. In another work,
machine learning and data mining researchers proposed
the use of data-driven techniques for climate change
attribution [10]. There has also been work on integrating
neural networks into global climate models [11,12]. In
the field of weather prediction, which is concerned with
predicting at much shorter time-scales than those studied in
climate science, machine learning techniques have enjoyed
success in practice, e.g. [13].

We are not aware of applications, beyond our own, of
machine learning to the problem of tracking global climate
models. We apply the Learn-α algorithm of Monteleoni and
Jaakkola [14] to track a shifting sequence of temperature
values with respect to the predictions of “experts,” which
we instantiate in this case with climate models. That work
extends the literature on algorithms to track a sequence
of observations with respect to the predictions of a set of
experts, due to Herbster and Warmuth [15], and others.

2. THE PROBLEM OF TRACKING CLIMATE
MODELS

2.1. Climate Models

A fundamental tool used in predicting climate is the use
of large-scale physics-based models of the global atmo-
sphere/ocean/cryosphere system. As illustrated in Fig. 1,
these general circulation models (GCMs) simulate the basic
processes seen in observations, such as cloud formation,
rainfall, wind, ocean currents, radiative transfer through the
atmosphere, etc., and have emergent properties, such as the
sensitivity of climate to increasing greenhouse gases, that
are important to making any climate forecasts [17]. It is
important to note that unlike the use of the term model in
machine learning, here it denotes systems of mathematical
models, that are not data-driven. These complex systems
are composed of individual mathematical models of each
of the processes mentioned, as well as many other pro-
cesses. The models are based on scientific first principles
from the fields of meteorology, oceanography, and geo-
physics, among others.

There are a number of challenges in using these models.
First, the simulated climate in each model has biases when
compared to real-world observations. Second, the internal
variability seen in these models (more colloquially, the
“weather”) is not synchronized to the weather in the real
world (these models are quite different from the models
used for numerical weather prediction on multi-day time
scales), and indeed can be shown to have a sensitive
dependence to initial conditions (i.e. it is chaotic). Third,
each of the models has a different sensitivity to external
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Fig. 1 Global climate model (schematic due to [16]). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

drivers of climate (such as human-caused increases in
greenhouse gases and aerosols, large volcanic eruptions,
solar activity, etc.), which is wide enough to significantly
affect future projections.1 Fourth, while robust responses
of the modeled climate can be derived from imposing these
external drivers of climate, knowledge of those drivers can
be uncertain, in both the past and the future. Thus evaluating
the quality of multi-decadal climate projections is fraught
with uncertainty.

Any simulation of these models is made up of two ele-
ments, the externally forced “climate” signal and the “inter-
nal climate variability”. The former can be estimated quite
effectively by generating multiple simulations from one
individual model, where each simulation has an indepen-
dent and uncorrelated realization of the internal variability.
The real world can be considered as a single realization
of its internal variability along with an (uncertain) signal
caused by external climate drivers mentioned above. Thus,
detection of a climate change and its attribution to any par-
ticular cause needs to incorporate the uncertainties in both
the expected signal and the internal variability [18].

1 In climate science terminology, a climate model projection
denotes a simulation for the future given a particular scenario for
how the external drivers of climate will behave. It differs from
a prediction in that (a) the scenario might not be realized, and
(b) only the component of the climate that is caused by these
external drivers can be predicted while the internal variability
cannot be. Thus projections are not statements about what will
happen, but about what might happen. However, we will also use
the term prediction interchangeably.

For projections of future climate, there are three separate
components to the uncertainty [19]. First is the scenario
uncertainty: the fact that we do not have future knowledge
of technological, sociological, or economic trends that will
control greenhouse gas and other emissions in the future.
Given the inertia of the economic system, this uncertainty
is small for the next couple of decades, but grows larger
through time. The second component of the uncertainty is
associated with internal variations of the climate system
that are not related to any direct impact of greenhouse
gases, etc. Such variability is difficult to coordinate between
the models and the real world, and the degree to which it
is predictable is as yet unclear. This component is large
for short time periods but becomes less important as the
externally driven signal increases.

The third component, and the one that this paper
focuses on, is the uncertainty associated with the models
themselves. The relative importance of this is at its
maximum between roughly 20 and 50 years into the future
(long enough ahead so that the expected signal is stronger
than the internal variability, but before the uncertainty in
the scenarios becomes dominant). The source of model
uncertainties might be incorrect or incomplete physics in the
models, or systematic issues that arise in the discretization
of the model grids.

There are currently around 20 groups around the
world that develop such models and which contribute
to the standardized archives that have been developed
and made available to outside researchers. The World
Climate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model
data set archive was initially developed to support the
IPCC 4th Assessment Report (published in 2007) [20], but
has subsequently been used in over 500 publications and
continues to be a rich source of climate simulation output.

2.2. Related Work in Climate Science

The model projections for many aspects of climate
change are robust for some quantities (regional temperature
trends for instance), but vary significantly across different
models for other equally important metrics (such as
regional precipitation). Given those uncertainties, climate
researchers have looked for simple ways to judge model
skill so that projections can be restricted (or weighted
toward) models with more skill [18,21,22]. Any attempt
at model ranking or weighting must include justification
that the choices are meaningful for the specific context.
One approach is to make a “perfect model” assumption
(i.e. that one model is the “truth”) and then track whether a
methodology trained on the “true” model over a calibration
interval can continue to skillfully track that simulation
in the forecast period. Work on this problem and related
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discussions was recently the subject of an IPCC Expert
Meeting on Assessing and Combining Multi-Model Climate
Projections, at which a preliminary version of this work
appeared [23].

A number of studies have looked at how the multi-
model ensemble can be used to enhance information over
and above the information available from just one model.
For instance, the simple average of the models’ output
gives a better estimate of the real world than any single
model [1,2]. This is surprising because the models are not
independent in a statistical sense. That is, they are not
a random sample from the space of all possible climate
models, but rather an interdependent ensemble. Therefore
the law of large numbers need not apply (i.e. increasing
the number of models in an average need not approach
the “truth”). Indeed, the reduction in root mean square
errors plateaus after about ten models are included in the
average and does not follow the 1/

√
n path one would

expect for truly random errors. Although one cannot assume
that the models are all clustered around “truth”, recent
approaches in climate science consider individual models
and the “truth” as being drawn from the same distribution
(e.g. [24,25]). There are also other lines of work on how to
quantify the confidence on climate model projections, and
ensembles thereof, e.g. [22,26,27].

Finally, there has been recent work on developing and
applying more sophisticated ensemble methods [28–35].
For example, Smith et al. [34] propose uni- and multivari-
ate Bayesian approaches to combine the predictions over
a variety of locations of a multi-model ensemble, in the
batch setting. In the case of regional climate models, Sain
and Furrer [35] propose ensemble methods involving mul-
tivariate Markov random fields.

2.3. Tracking Climate Models

Given that the multi-model mean is the current best
estimate of climatology, it has often been implicitly
assumed that the multi-model ensemble mean is also the
best projection for the future. While this has not been
demonstrated in either practice or theory, it has nonetheless
become the default strategy adopted by IPCC and other
authors. Other approaches have been tried (using skill
measures to create weights among the models, creating
emulators from the model output that map observables to
projections), but rigorous support for these approaches, or
even a demonstration that they make much difference, has
so far been patchy.

In this work, we use machine learning on hindcasts
from the CMIP3 archive and over 100 years of observed
temperature data, to demonstrate an algorithm that tracks
the changing sequence of which model currently predicts
best. A hindcast is a model simulation of a past period

for which we have a relatively good idea how the
external drivers changed; it is not a replication of the
specific weather that occurred. In a variety of experimental
scenarios, at both global and regional scales, our algorithm
attains lower mean prediction loss than predicting with the
average over model predictions. This is an impactful result
because to date, the average of all models’ predictions
was believed to be the best single predictor of the
whole sequence [1,2]. We also demonstrate the utility
of the algorithm when trained on future climate model
projections, using any one model’s predictions to simulate
the observations.

3. ALGORITHMS

We apply the Learn-α algorithm of Monteleoni and
Jaakkola [14] to track a shifting sequence of tempera-
ture values with respect to the predictions of “experts”,
instantiated as climate models. This is an online learn-
ing algorithm, which is useful in this setting because the
eventual goal is to make both real-time and future predic-
tions. A large class of online learning algorithms have been
designed for the framework in which no statistical assump-
tions are made about the sequence of observations, and
algorithms are evaluated based on regret : relative predic-
tion loss with respect to the hindsight-optimal algorithm
in a comparator class (e.g. [15,36]; there is a large lit-
erature, see [37] for a thorough treatment). Many such
algorithms, designed for predicting in non-stationary envi-
ronments, descend from variants of an algorithm due to
Herbster and Warmuth [15], which is a form of multiplica-
tive update algorithm. Their Fixed-Share algorithm tracks
a sequence of observations with respect to a set of n

experts’ predictions, by updating a probability distribution
pt (i) over experts, i, based on their current performance,
and making predictions as a function of the experts’ pre-
dictions, subject to this distribution. The authors proved
performance guarantees for this algorithm with respect to
the best k-segmentation of a finite sequence of observations
into k variable-length segments, and assignment of the best
expert per segment.

As illustrated in the work of Monteleoni and
Jaakkola [14], this class of algorithms can be derived
as Bayesian updates of an appropriately defined Hidden
Markov Model (HMM), where the current best expert is
the hidden variable. (Despite the Bayesian re-derivation, the
regret analyses require no assumptions on the observations.)
As shown in panel (a) of Fig. 2, equating the prediction
loss function (for the given problem) to the negative log-
likelihood of the observation given the expert, yields a (gen-
eralized) HMM, for which Bayesian updates correspond to
the weight updates in the Fixed-Share algorithm, when the
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(a)

(b)

Fig. 2 (a) The generalized Hidden Markov Model corresponding
to the algorithms of Herbster and Warmuth [15]. (b) The Learn-α
algorithm of Monteleoni and Jaakkola [14]. The α-experts are
Fixed-Share(α) algorithms from Herbster and Warmuth [15].
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

transition matrix is simply (1 − α) for self-transitions, and
α/(n − 1) for transitions to any of the other (n − 1) experts.
The parameter α ∈ [0, 1] models how likely switches are to
occur between best experts.

In previous work [14,38] it was shown theoretically and
empirically that the wrong setting of α for the sequence
in question can lead to poor performance. The authors
derived upper and lower regret bounds (with respect to
Fixed-Share using the hindsight-optimal α) for this class
of online learning algorithms. They provided an algorithm,
Learn-α, that learns this parameter online, simultaneous
to performing the original learning task, and showed that
it avoids the lower bound and yields better performance
guarantees: regret is logarithmic, as opposed to linear, in the
number of predictions. Learn-α uses a hierarchical model
shown in panel (b) of Fig. 2, with a set of meta-experts:
sub-algorithms that are instances of Fixed-Share. Each sub-
algorithm of Learn-α runs Fixed-Share(αj ), where αj , j ∈
{1, · · · , m}, forms a discretization of the α parameter. At
the top of the hierarchy, the algorithm learns the parameter
α, by tracking the meta-experts. In order to learn the best
fixed value of α, a similar model is used, with self-transition
probabilities of 1.

Figure 3 shows our application of the algorithm Learn-α
to the problem of tracking climate models. The experts are
instantiated as the climate models; each model produces
one prediction per unit of time, and we denote the true
observation at time t , by yt . The algorithm is modular with

respect to loss function; we chose squared loss since it is a
simple loss, useful in regression problems.

3.1. Regret-Optimal Parameter Discretization

We use a discretization procedure for the parameter α

given in [14] which optimizes the regret bound. The input
to the procedure is T , the desired number of iterations of
online learning. Since the regret-optimal discretization is a
function of T , we use a different set of α values for past
data than for model prediction data that starts in the past and
continues into the future (as well as different discretizations
for the monthly data experiments). Recent work has further
studied the issues of discretizing an analogous parameter
for similar algorithms [39].

4. GLOBAL EXPERIMENTS

Here we describe the data and experiments at the global
scale. In Section 5 we describe our experiments on several
geographical regions.

4.1. Global Data

We ran experiments with our application of the Learn-α
algorithm on historical temperature data from 1900 through
2008 as well as the corresponding predictions of 20 dif-
ferent climate models, per year. It is important to empha-
size that climate models are not data-driven models but
rather complex mathematical models based on geophysi-
cal and meteorological principles. In particular they are not
“trained” on data as is done with machine learning models.
Therefore, it is valid to run them predictively on past data.

Both the climate model predictions and the true obser-
vations are in the form of global mean temperature
anomalies. (The model predictions are from the CMIP3
archive [40], and the temperature anomalies are available
from NASA [41].) A temperature anomaly is defined as
the difference between the observed temperature and the
temperature at the same location at a fixed, benchmark
time. Anomalies are therefore measurements of changes in
temperature. When studying global mean temperature, it is
useful to use anomalies, because, while temperatures vary
widely over geographical location, temperature anomalies
typically vary less. For example, at a particular time it
might be 80◦F in New York, and 70◦F in San Diego, but
the anomaly from the benchmark time might be 1◦F in
both places. Thus there is lower variance when tempera-
tures anomalies are averaged over many geographic loca-
tions, than when using temperatures. The data we use has
been averaged over many geographical locations, and many
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Fig. 3 Algorithm Learn-α, due to Monteleoni and Jaakkola [14], applied to tracking climate models.

times in a year, yielding one value for global mean tem-
perature anomaly per year. (In this case the benchmark is
averaged over 1951–1980; one can convert between bench-
mark eras by subtracting a constant.) Figure 4 shows the
model predictions, where the thick red line is the mean
prediction over all models, in both plots. The thick blue
line indicates the true observations.

We also ran experiments using climate model projections
into the 21st century, as we had model predictions through
2098. In this case, we used any one model’s predictions
as the quantity to learn, based only on the predictions of
the remaining 19 models. The motivation for the future
simulation experiments are as follows. Future climates
are of interest, yet there is no observation data in the
future, with which to evaluate machine learning algorithms.
Furthermore, given the significant fan-out that occurs
among model predictions starting after 2009 and increasing
into the future (see panel (a) of Fig. 4), it may no longer
make sense to predict with the mean prediction; that
is, the average prediction diverges over time from most
individual model predictions. However, we do want to be
able to harness the predictions of the climate models in
forming our future predictions. Given these reasons, and the
climate science community’s interest in the “perfect model”
assumption, we evaluated algorithms on predicting the
labels generated by one climate model, using the remaining
models as input.

4.2. Further Data Details

While some models produced predictions slightly earlier
than 1900, this was not the case with all models. The earliest

year at which we had predictions from all 20 models was
1900. Some climate models have only one simulation run
available, while others have up to seven different simulation
runs (also known as ensemble members). We arbitrarily
picked one run per model, for each of the 20 models, as
input to all the algorithms. We did so because using all
the runs per model would have overemphasized certain
models that had substantially more simulation runs. We
also obtained similar results to those we report below
by training on the average over runs of each model,
however, climate scientists do not view that scenario as an
actual simulation. The present setting addresses structural
uncertainty (among different climate models), rather than
initial condition uncertainty (among different simulation
runs of one climate model), although the latter topic would
be interesting to explore in future work.

The climate models contributing to the CMIP3 archive
include those from the following laboratories: Bjerknes
Center for Climate Research (Norway), Canadian Centre
for Climate Modelling and Analysis, Centre National de
Recherches Météorologiques (France), Commonwealth Sci-
entific and Industrial Research Organisation (Australia),
Geophysical Fluid Dynamics Laboratory (Princeton Uni-
versity), Goddard Institute for Spaces Studies (NASA),
Hadley Centre for Climate Change (United Kingdom Mete-
orology Office), Institute of Atmospheric Physics (Chinese
Academy of Sciences), Istituto Nazionale di Geofisica e
Vulcanologia (Italy), Institute of Numerical Mathematics
Climate Model (Russian Academy of Sciences), Model
for Interdisciplinary Research on Climate (Japan), Mete-
orological Institute at the University of Bonn (Germany),
Max Planck Institute (Germany), Meteorological Research
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Fig. 4 (a) Model predictions through 2098, with observations through 2008. The black vertical line separates past (hindcasts) from future
predictions. (b) Zooming in on observations and model predictions through 2008. The legends refer to both figures. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Institute (Japan), and National Center for Atmospheric
Research (Colorado), among others.

4.3. Experiments and Results on Global Data

In addition to Learn-α, we also experimented with the
following algorithms: simply predicting with the mean
prediction over the experts, doing so with the median
prediction, and performing batch linear regression (least
squares) on all the data seen so far. The regression problem
is framed by considering the vector of expert predictions at
a given year as the example, and the true observation for
that year as the label. Batch linear regression has access to
the entire past history of examples and labels.

The four future simulations reported use labels from
(1) giss model e r run4, (2) mri cgcm2 3 2a
run5, (3) ncar ccsm3 0 run9, (4) cnrm cm3 run1.
The labeling runs for the future simulations were chosen
(over all runs of all models) to represent the range in the
past performance with respect to average prediction loss.
(1) is the best performing model, (4) is the worst, (3) attains
the median, and (2) performs between (1) and (3), at the
median of that range. For each simulation, the remaining
19 climate models’ predictions are used as input.

In Table 1, we compare mean loss on real-time predic-
tions, i.e. predictions per year, of the algorithms. This is
a standard evaluation technique for online learning algo-
rithms. Several of the algorithms are online, including
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Table 1. Mean and variance of annual losses.

Algorithm Historical Future Sim. 1 Future Sim. 2 Future Sim. 3 Future Sim. 4

Learn-α algorithm 0.0119 0.0085 0.0125 0.0252 0.0401
σ 2 = 0.0002 σ 2 = 0.0001 σ 2 = 0.0004 σ 2 = 0.0010 σ 2 = 0.0024

Linear regressiona 0.0158 0.0051 0.0144 0.0264 0.0498
σ 2 = 0.0005 σ 2 = 0.0001 σ 2 = 0.0004 σ 2 = 0.0125 σ 2 = 0.0054

Best climate model 0.0112 0.0115 0.0286 0.0301 0.0559
(for the observations) σ 2 = 0.0002 σ 2 = 0.0002 σ 2 = 0.0014 σ 2 = 0.0018 σ 2 = 0.0053
Average Prediction 0.0132 0.0700 0.0306 0.0623 0.0497
(over climate models) σ 2 = 0.0003 σ 2 = 0.0110 σ 2 = 0.0016 σ 2 = 0.0055 σ 2 = 0.0036
Median Prediction 0.0136 0.0689 0.0308 0.0677 0.0527
(over climate models) σ 2 = 0.0003 σ 2 = 0.0111 σ 2 = 0.0017 σ 2 = 0.0070 σ 2 = 0.0038
Worst climate model 0.0726 1.0153 0.8109 0.3958 0.5004
(for the observations) σ 2 = 0.0068 σ 2 = 2.3587 σ 2 = 1.4109 σ 2 = 0.5612 σ 2 = 0.5988

Notes: The best score per experiment is given in bold. The Average Prediction over climate models is the benchmark technique.
aLinear Regression cannot form predictions for the first 20 years (19 in the future simulations), so its mean is over fewer years than all
the other algorithms, starting from the 21st (20th in future simulations) year.

Learn-α and the techniques of simply forming predictions
as either the mean or the median of the climate models’ pre-
dictions. (For the future simulations, the annual mean and
median predictions are computed over the 19 climate mod-
els used as input.) Least squares linear regression operates
in a batch setting, and cannot even compute a prediction
unless the number of examples it trains on is at least the
dimensionality, which in this case is the number of experts.
We also compare to the loss of the best and worst cli-
mate model for each experiment. Computing the identity of
“best” and “worst”, with respect to their prediction losses
on the sequence, can only be done in hindsight, and thus
also requires batch access to the data. (For the future sim-
ulations, the identity of the best and worst at predicting
the labels generated by one climate model is determined
from the remaining 19 climate models.) We test batch lin-
ear regression using this method as well, computing its
error in predicting just the current example, based on all
past data. Note that although all examples are used for
training, they also contribute to error, before the label is
viewed, so this online learning evaluation measure is com-
parable to a form of test error (in the batch setting). In
particular, this “progressive validation” error was analyzed
in [42], which provided formal bounds relating it, as well
as k-fold cross-validation error, to standard batch holdout
error, in certain settings. Thus it is formally related to meth-
ods designed to reduce overfitting bias in the evaluation.
We also ran sanity-check experiments to verify that Learn-
α significantly outperforms the Fixed-Share(α) algorithm,
for every value of α in our discretization.

Learn-α’s performance, with respect to the average
over all model predictions, is very significant, as that
is the standard benchmark in climate science. As shown
in Table 1, in every experiment, Learn-α suffers lower
mean annual loss than predicting using the average over

all model predictions. Furthermore, Learn-α surpasses the
performance of the best expert in all but one experiment
(Historical), in which its performance nearly matches it.
Similarly, Learn-α surpasses the performance of least
squares linear regression in all but one experiment (Future
Simulation 1), in which its performance is still close.
Learn-α’s outperformance of batch linear regression on
almost all experiments suggests that weighting all historical
data equally (as does linear regression) produces worse
predictions of the present observation, than using a
weighting that focuses more on the recent past (as Learn-
α does implicitly). This helps lend validity to the use of
online learning algorithms in the climate change prediction
domain. We also notice a general trend that many of the
methods do better at predicting in simulations in which
the model generating labels performed better historically.
In the case of Learn-α, this suggests that the historically
poorer models may be relative “outliers”, and thus harder
to predict using convex combinations of the remaining
models’ predictions.

Remark. An interesting result is that on global historical
data, the best climate model outperforms the average
prediction over climate models. While we did not find
this to be the case on most of our regional results (and
this effect disappears entirely on monthly regional data),
the global result appears to contradict the related work in
climate science [1,2]. Reichler and Kim [1] were concerned
with performance dominance across multiple metrics, as
opposed to just prediction loss on global mean temperature
anomalies, and thus there is no contradiction. Reifen and
Toumi [2] consider model prediction runs from the same
archive as we do; however, their experimental set-up
differs. Predictions from 17 models are evaluated through
1999, with respect to a different set of observation data.
Regardless of the finding that in our setting there is a
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model that performs better than the average, the “best”
expert cannot be used as a prediction technique in practice,
since knowledge of which model performs best requires
observation of the entire data set, a scenario that is
impossible in a future prediction problem.

4.4. Batch Comparison of the Learning Algorithms

Since least squares linear regression is a batch algorithm,
here we provide a batch-like comparison of the two machine
learning algorithms. Because this data set is measured over
time, there is importance in its ordering, and thus it is not
appropriate to use standard cross-validation with multiple
folds. Instead we use the first part of the data as the
training data, and the remaining data for testing, for various
values of the split location, from 20 to 100. We chose this
range for the possible splits because least squares linear
regression needs at least the number of training points as
the dimensionality (20 in this case, the number of climate
models), in order to compute a classifier, and there are only
109 years of historical data.

Figure 5 shows that for most values of the split between
training data and test data, Learn-α suffers lower mean test
error. The one split on which this does not hold (100),
contains only 9 points in the test set, so both measurements
have high variance; indeed the difference in mean test error
at T = 100 is less than one standard deviation of Learn-
α’s test error (σ 2 = 0.0185). These results suggest that the
non-stationary nature of the data, coupled with the limited
amount of historical data, poses challenges to a naı̈ve batch
algorithm. Just as the results shown in Table 1 suggest
that weighting all historical data equally produces worse
predictions of the present observation than a weighting that
focuses more on the recent past, in this batch-like evaluation
setting, Fig. 5 shows that a similar conclusion also holds for

predictions into the future. That is, as far as annual global
mean temperature anomalies are concerned, the present (or
recent past) appears to be a better predictor of the future
than the past.

5. EXPERIMENTS AT HIGHER SPATIAL
AND TEMPORAL GRANULARITY

5.1. Regional Data

We also ran experiments at higher spatial and temporal
granularity. The global annual data set is generated by
averaging the climate models’ predictions over the whole
globe; here we drilled down on several smaller geographical
regions. We used hindcasts of the IPCC global climate
models, and the analogous true observations, over specific
geographical regions corresponding to several continents,
at monthly and annual time-scales. The quantity to predict
was still a temperature anomaly; however, the averaging
is over a smaller geographical region than the whole
globe; in particular, we ran experiments for Africa, Europe,
and North America. While the annual experiments have
anomaly values averaged over a whole year, we also
ran experiments using monthly averages in each of the
regions.

The experimental set-up was similar to the global experi-
ments, other than further details explained here. The regions
were “boxes” in latitude and longitude corresponding to
Europe (0 to 30 E, 40 to 70 N), Africa (−15 to 55 E,
−40 to 40 N), and North America (−60 to −180 E, 15 to
70 N). The global climate model projection data (restricted
to these regions) was obtained from the KNMI Climate
Explorer [43]. The temperature observation data for these
regions was attained from NASA [41]. For these queries,
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we only received climate model data for 19 models, and
thus the ensemble size is 19. This data set contains mul-
tiple runs per model; we used one run per model, deter-
mined randomly. Both model data and observation data
are from year 1900 through 2009 (110 years), for the
annual experiments and from January 1900 through Octo-
ber 2010 (1330 months) for the historical monthly exper-
iments. We also used monthly regional model predictions
through the year 2098, to run future simulations on 2376
months (starting in 1900). For our annual experiments,
the preprocessing technique, to ensure that model predic-
tions and observations are both anomalies with respect
to the same benchmark period, is analogous to that used
in the global experiments, with a benchmark period of
1951–1980. It is important to note that regional data gen-
erally has higher variance than the corresponding global
data, as each measurement (both predicted and observed) is
averaged over fewer geographical regions. For the monthly
data, the observations from [41] had already been smoothed
to account for seasonality. To match this in the climate
model predictions, we preprocessed them using standard
techniques of computing anomalies per calendar month.
That is, for each monthly measurement, we subtracted
the mean over only that particular calendar month (e.g.
April), over the benchmark period, 1951–1980. Even after
this preprocessing to remove seasonality, the monthly data
sets (both predicted and observed) generally has higher
variance than annual data for the same region, as each
annual measurement is averaged over 12 monthly measure-
ments.

Figure 6 shows the annual temperature anomaly data
for each region. The predictions of 19 climate models
of the annual mean temperature anomaly over the region
in question, are plotted in thin lines, with their average
prediction in thick red, and the observed anomalies plotted
in thick blue. Figure 7 shows the monthly temperature
anomaly data for each region, including into the future,
through year 2098. The predictions of 19 climate models are
plotted in thin lines, with their average prediction in thick
black. Notably, both at annual and monthly time-scales,
there are significant differences among the regions.

5.2. Results on Regional Data

In Table 2, we compare mean loss on real-time predic-
tions, i.e. predictions per year, of the algorithms, using
the same progressive validation technique as in Table 1.
In contrast to the global experiments, there is a general
trend for all methods to perform slightly worse and for the
variances to increase; indeed as explained in Section 5.1,
the data itself generally has higher variance at the regional
level than at the global level. The Learn-α algorithm out-
performs the Average Prediction of the climate models,

which was the state-of-the-art benchmark, as well as linear
regression. It also outperforms the best climate model per
experiment, except for Africa, in which the performance
is close. Notably, the identity of the right climate model
for future observations cannot be known in advance. In the
annual historical experiments, we found the best climate
model per region to be distinct: giss model e r for
Africa, miroc3 2 hires for Europe, and giss aom
for North America.

In Table 3, we compare mean loss on real-time predic-
tions, predictions per month in this case, of the algorithms,
using the same progressive validation technique as shown
in Table 1. In contrast to the regional annual experiments,
there is a general trend for all methods to perform slightly
worse and for the variances to increase; as explained in
Section 5.1, monthly data generally has higher variance
than the corresponding annual data. The Learn-α algorithm
is the best performer, notably outperforming both Linear
Regression and the Average Prediction over climate mod-
els on all experiments, as well as the best climate model
per experiment, and the other methods. This result suggests
that our average results are robust to scaling up the data set
size by more than an order of magnitude; however, the vari-
ances increase, as discussed above. In the monthly historical
experiments, we found the best climate model per region to
be distinct: miroc3 2 medres for Africa, cnrm cm3
for Europe, and giss model e h for North America.

We also performed two future simulations per region,
using the “perfect model” assumption described in the
global experiments. Per region, the simulations took labels
from (1) the best model for that historical monthly
experiment and (2) the worst model for that historical
monthly experiment. The best model identities for the
monthly historical experiments are listed above. The second
simulation per region used labels from mcsiro mk3 5
for Africa, gfdl cm2 0 for Europe, and giss aom for
North America. The finding that giss aom is the worst
climate model for the monthly North American experiment,
the region for which it was the best climate model for the
annual data, is not contradictory; the squared loss is convex,
and thus for any climate model, the average loss over a
year’s worth of its monthly predictions can exceed the loss
on its annual prediction, where the annual prediction is
averaged over monthly predictions.

In Table 4, we compare mean loss on real-time pre-
dictions, predictions per month in this case, of the algo-
rithms, using the same progressive validation technique as
in Table 1, for the six future simulations, two per region.
The Learn-α algorithm’s comparative success in average
predictions scales to these experiments which have 20× as
much data as the annual historical experiments, although
the variances again increase, and in one simulation, Lin-
ear Regression’s performance is better. We also notice
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a general trend that most methods do better in the first
simulation per region, in which the labels are generated
by the best historical climate model, than the second, in
which the labels are generated by the worst historical cli-
mate model. As in the global, annual future simulations,

this suggests that the worst predicting climate model, per
monthly regional experiment, may vary significantly from
the rest of the models, thus making its predictions harder
to predict by using convex combinations of the remaining
climate models, as Learn-α does.
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6. LEARNING CURVES

Here we provide various learning curves. For the global
experiments, we plot the losses of Learn-α against those
of the best and worst experts in hindsight, and the average

over expert predictions, which was the previous benchmark.
These experiments generated the statistics summarized in
Table 1. Figure 8 shows the plot of the squared error
between predicted and observed annual mean temperature,
by year from 1900 to 2008. Learn-α suffers less loss than
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Table 2. Regional results on annual historical data. Mean and variance of annual losses.

Algorithm Africa Europe North America

Learn-α algorithm 0.0283 0.1794 0.0407
σ 2 = 0.0020 σ 2 = 0.0520 σ 2 = 0.0036

Linear regressiona 0.0391 38.9724b 0.0704
σ 2 = 0.0039 σ 2 = 134700.0 σ 2 = 0.0156

Best climate model 0.0254 0.2752 0.0450
(for the observations) σ 2 = 0.0015 σ 2 = 0.1207 σ 2 = 0.0035
Average Prediction 0.0331 0.2383 0.0493
(over climate models) σ 2 = 0.0025 σ 2 = 0.0868 σ 2 = 0.0058
Median Prediction 0.0291 0.2391 0.0502
(over climate models) σ 2 = 0.0021 σ 2 = 0.0964 σ 2 = 0.0066
Worst climate model 0.1430 1.0180 0.1593
(for the observations) σ 2 = 0.0368 σ 2 = 2.4702 σ 2 = 0.0372

Notes: The best score per experiment is given in bold. The Average Prediction over climate models is the benchmark technique.
aLinear Regression cannot form predictions for the first 19 years, so its mean is over fewer years than all the other algorithms, starting
from the 20th year.
bObserving that for Europe, Linear Regression’s loss was particularly high on the 20th year, we also computed the mean starting from
the 21st year, 0.4989 (σ 2 = 0.4787). Using this evaluation for Linear Regression, the mean for Africa was 0.0363 (σ 2 = 0.0032), and
the mean for North America was 0.0706 (σ 2 = 0.0158).

Table 3. Regional results on monthly historical data. Mean and variance of monthly losses.

Algorithm Africa Europe North America

Learn-α algorithm 0.0598 0.3048 0.0959
σ 2 = 0.0085 σ 2 = 0.3006 σ 2 = 0.0311

Linear regressiona 0.0741 1.7442 0.1119
σ 2 = 0.0301 σ 2 = 43.9616 σ 2 = 0.0432

Best expert 0.1144 2.2498 0.1629
(for the observations) σ 2 = 0.0285 σ 2 = 15.4041 σ 2 = 0.0935
Average Prediction 0.0752 1.4781 0.1101
(over climate models) σ 2 = 0.0106 σ 2 = 7.5964 σ 2 = 0.0417
Median Prediction 0.0777 1.5001 0.1116

σ 2 = 0.0117 σ 2 = 8.1498 σ 2 = 0.0456
Worst expert 0.2333 4.2104 1.1698
(for the observations) σ 2 = 0.1020 σ 2 = 71.2737 σ 2 = 6.3192

Notes: The best score per experiment is given in bold. The Average Prediction over climate models is the benchmark technique.
aLinear regression cannot form predictions for the first 19 months, so its mean is over fewer months than all the other algorithms, starting
from the 20th month.

the mean over model predictions on over 75% of the years
(82/109).

The learning curves for the global future simulation
experiments (Figs 9 and 10) demonstrate that Learn-α is
very successful at predicting one model’s predictions for
future predictions up to the year 2098. This is notable,
as the future projections vary widely among the climate
models. In each of the four future simulations, the (blue)
curve indicating the worst model (with respect to predicting
the model in question) varies increasingly into the future,
whereas our algorithm (black) tracks, and in fact surpasses,
the performance of the best model (green). Including these
simulations, in 10 global future simulations that we ran,
each with a different climate model providing the labels,
Learn-α suffers less loss than the mean over the remaining
model predictions on 75%–90% of the years.

We also provide learning curves for the regional future
simulations which generated the statistics summarized
in Table 4. These simulations also started at 1900, but
since the data is at a monthly time-scale, the figures
zoom in on the period from 2009 to 2098. Figure 11
compares the monthly losses of the Learn-α algorithm
(black), to those of the average prediction over the
climate models (red), for the first simulation per region,
in which the best historical climate model provides
the labels. Figure 12 does so for the second simulation
per region, in which the worst historical climate model
provides the labels. In keeping with the results shown in
Table 4, it is apparent that the online learning algorithm
suffers less prediction loss in each experiment than the
benchmark method, the average prediction over climate
models.
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Table 4. Regional results on two future simulations per region. Mean and variance of monthly losses.

Algorithm Africa 1 Africa 2 Europe 1 Europe 2 N. Amer. 1 N. Amer. 2

Learn-α algorithm 0.0890 0.1053 0.2812 0.6624 0.0968 0.6061
σ 2 = 0.0167 σ 2 = 0.0249 σ 2 = 0.4134 σ 2 = 3.6678 σ 2 = 0.0272 σ 2 = 1.6429

Linear regressiona 0.0985 0.1384 1.1487 3.0836 0.0923 1.0458
σ 2 = 0.2680 σ 2 = 0.0455 σ 2 = 4.2672 σ 2 = 44.1931 σ 2 = 0.0365 σ 2 = 4.4447

Best expert 0.1912 0.1967 2.1210 3.7893 0.1713 1.0478
(for the observations) σ 2 = 0.0757 σ 2 = 0.0754 σ 2 = 12.6767 σ 2 = 39.2087 σ 2 = 0.0903 σ 2 = 3.9090
Average Prediction 0.1388 0.1806 1.1106 2.9353 0.1432 1.0745
(over climate models) σ 2 = 0.0410 σ 2 = 0.0716 σ 2 = 4.4023 σ 2 = 29.9128 σ 2 = 0.0478 σ 2 = 4.1346
Median Prediction 0.1266 0.1711 1.1385 2.9093 0.1835 1.1075

σ 2 = 0.0352 σ 2 = 0.0637 σ 2 = 4.5734 σ 2 = 30.3332 σ 2 = 0.0827 σ 2 = 4.2544
Worst expert 0.5236 0.5625 3.8266 5.0029 1.2311 2.2641
(for the observations) σ 2 = 0.5782 σ 2 = 0.7018 σ 2 = 47.7359 σ 2 = 76.7785 σ 2 = 3.3160 σ 2 = 12.0301

Notes: The best score per experiment is given in bold. The Average Prediction over climate models is the benchmark technique.
aLinear Regression cannot form predictions for the first 18 months, so its mean is over fewer months than all the other algorithms, starting
from the 19th month.
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6.1. Weight Evolution

We also provide plots of the evolution of the weights
on climate models, and internal sub-algorithms, as they
were learned by Learn-α in the global historical data
experiment.

Panel (a) of Fig. 13 illustrates how the Learn-α algorithm
updates weights over the sub-algorithms, instances of the
Fixed-Share(α) algorithm running with different values of
α. The Learn-α algorithm tracks the best fixed value of
the α parameter, so as the plot shows, one α consistently
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receives an increasing fraction of the weight. The α
value that received the highest weight at the end was the
smallest, which was 0.0046 for the annual historical data
experiments.

Panel (b) of Fig. 13 illustrates how a Fixed-Share
sub-algorithm (in this case α = 0.0046) updates weights
over the climate models. The algorithm predicts with
a linear combination of the climate model predictions.
As opposed to tracking the best fixed climate model,
or linear combination, the linear combination of cli-
mate models changes dynamically based on the currently
observed performance of the different climate models.
The climate model which received the highest weight
at the end was giss model e r run4, which is
also the best performing expert on the global historical
data set.

7. DISCUSSION AND FUTURE WORK

These encouraging results will hopefully lead to a fuller
exploration of whether there is enough information in com-
parison of model hindcasts to observations to assess pro-
jection credibility. Climate model projections have inherent
uncertainties related to internal chaotic variability, struc-
tural uncertainty related to our incomplete understanding
of the climate system, and scenario uncertainty related to
the impossibility of knowing exactly how economies, tech-
nologies, and regulatory frameworks that impact emissions
will change in the future [19]. Comparisons of past cli-
mate to model hindcasts predominantly provide information
related to structural uncertainties, though some predictabil-
ity related to the internal variability may also be derivable;
this is an interesting direction for future work.
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Fig. 11 Future Regional Monthly Simulations (1). The simulations start at 1900, but the plots start at 2009 to zoom in on the future.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

An important next challenge, is how to track climate
models when predicting future climates. Existing tracking
methods rely on receiving true observations, with which
to evaluate the models’ predictions. One goal for future
work in the design of machine learning and data mining
algorithms, would be to track models in unsupervised, or
semi-supervised settings. The analysis poses challenges;
however, providing (standard) regret bounds for the fully
unsupervised setting is likely impossible, and we are not
aware of any related work. We can also consider a semi-
supervised learning setting [44]. There is some literature
on regret analyses of semi-supervised online learning;
Cesa-Bianchi et al. [45,46] consider the special case of

active learning. Another related setting is that of imperfect
monitoring, in which the learner has access to partial
feedback, but not the true observations, e.g. [47]. One
approach that we have shown to be feasible in practice
(in our future simulations) is to view expert predictions
themselves as partial feedback, in order to design semi-
supervised algorithms. We can also turn to the batch setting,
in which future predictions are needed, given all past data,
and exploit other areas of the machine learning and data
mining literature.

In summary, our results advance the state-of-the-art in
the climate science community, with respect to combining
climate model predictions. Our approach in this work
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has significant qualitative differences from most current
practices in climate science; the ensemble weights are
updated adaptively, and the frequency of switches among
which climate model predicts best at any given time, is also
learned simultaneously. We have shown the applicability
of our techniques both at global and regional time-scales,
and for annual and monthly predictions. Our methods are
applicable to any quantity predicted by a set of climate
models, and we plan to use them for predicting other
important climate benchmarks, such as concentrations of
carbon dioxide and other greenhouse gases. In future
work, it would also be interesting to look at smaller
time-scales, using different aggregation techniques, as

well as to consider other geographical regions. There
remains a rich source of unexplored information in the
paleo-climate record and in multiple other data sets over
the instrumental period that could be used to track
climate model performance and provide more informative
projections. The work of assessing which metrics, or
combinations thereof, provide the most information on
model predictions has barely begun, and this is an
interesting area for future research. In addition to our
specific contributions, we hope to inspire future applications
of machine learning and data mining to improve climate
predictions and to help answer pressing questions in climate
science.
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