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Abstract—We approach the problem of adaptively com-
bining the predictions of an ensemble of seasonal climate
models as a Multi-task Learning (MTL) problem. Unlike
the traditional MTL setting, we only have a single func-
tional task (combining the predictions ensemble members),
where we consider multiple forecast periods from the same
suite of models as our multiple learning tasks. Even though
the same models generate the predictions in our “multiple
tasks,” we demonstrate that knowledge transfer between
these forecast periods can improve ensemble predictions
of the sea surface temperature in the Nifio 3.4 region.

I. BACKGROUND

The problem of combining climate model predictions
can be treated as an expert tracking problem in the online
setting as in [1], where an algorithm maintains a set
of weights over the experts (here the climate models
are the experts). The Hedge Algorithm [2] (also called
Static Expert [3] when dealing with expert advice) is
a common machine learning method for maintaining a
set of weights over experts in the online setting via
multiplicative weight updates. There has been recent
work in applying Hedge and several variations to climate
model ensembles [1], [4].

The goal of Multi-task Learning (MTL) is to learn
multiple related tasks simultaneously, where knowledge
can be transferred between tasks to improve the learning
process [5]. The relatedness between tasks is frequently
captured using a Similarity Matrix [6]. In this work we
treat the problems of combining climate model predic-
tions at different forecast periods as our multiple tasks
in the MTL context.

II. APPROACH

We consider predictions from 9 different forecast
periods as our multiple tasks and use the following 9-
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Each element S(i, j) represents the level of “similarity”
between tasks ¢ and j. In this simplified similarity matrix,
we assume that only immediately neighboring tasks (i.e.
forecast periods that differ by 1 month) are related, and
the similarity is governed by the s parameter. Each row
of the matrix is normalized to one so that we preserve the
Hedge learning rate for a fair comparison. We modify the
MTL framework proposed in [6] to handle multiplicative
updates to obtain the following MTL update rule for
Hedge:
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Where j is the index of the task we are learning, k is
an index over all tasks, S is the task similarity matrix,
L x(4) is the loss suffered by expert ¢ at the previous
time iteration, and Z; 1 ; is a normalization factor that
ensures w; ; sums to 1. We use the squared loss for
all loss calculations. Note that at time ¢, we can only
evaluate losses for forecasts initiated at an appropriate
amount of time into the past. For example, at time ¢ we
calculate the losses of 5.5 month forecasts initiated 5.5
months ago.
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III. EXPERIMENTAL RESULTS AND DISCUSSION

We obtained monthly Sea Surface Temperature (SST)
climate prediction and observation data, averaged over
the Nifio 3.4 region (5S to 5N, 120W to 170W), from the
IRI/LDEO Climate Data Library [7]. We drew data from
6 North American Multi-Model Ensemble (NMME)
groups, averaging together all available runs from each
group. We ran our experiments over a hindcast from
1982 to 2010 with temperature anomalies calculated in
two separate blocks: pre-October 1998 and post-October
1998, as per common practice in climate science.
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TABLE I: Summary of MTL improvements.

Forecast Hedge | Max MTL | s°°° s
Period Loss Improve-
ment

0.5 Months | 0.0233 | 0.83% 0.625 | 2.125
1.5 Months | 0.0871 6.35% 5.375 | >50
2.5 Months | 0.1465 | 4.01% >50 | >50
3.5 Months | 0.2075 10.77% 3.875 | >50
4.5 Months | 0.2558 | 6.88% 1.750 | >50
5.5 Months | 0.3022 | 4.87% >50 | >50
6.5 Months | 0.3315 | 5.17% >50 | >50
7.5 Months | 0.3520 | 3.84% >50 | >50
8.5 Months | 0.4111 8.39% >50 | >50
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Fig. 1: The difference in mean squared error between Hedge
and Hedge with MTL for 0.5 and 7.5 month forecast periods.
Lower values indicate better relative performance by MTL,
and values below zero indicate the MTL is outperforming
Hedge.

We compared the results of Hedge and Hedge with
MTL over different values for the s parameter (for task
similarity) between 0 and 50. Table I summarizes the
results from our experiment. s°’* is the s value that
produced the greatest performance improvement with
MTL (>50 indicates that we were continuing to see
additional improvement as s increased past 50). With
all forecast periods we observed improvements as we
increased s from 0; s™%" was the smallest value of s
where we observed MTL performing worse than Hedge
(note that this only happened with the 0.5 month period).

Figure 1 shows the difference in mean squared loss
versus s values for two forecast periods.

We offer the following observations about our results:

« In all forecast periods performance improved as we
increased s from 0. For all forecast periods other
than 0.5 months, we did not find any s values (up
to 50) that resulted in worse performance for MTL.

o While the 0.5 month period saw the smallest im-
provement, this is still notable since in this case all
other forecasts were initiated prior to the 0.5 month
forecast. Our results indicate that there was useful
information from these longer forecast periods, de-
spite their predictions being more “stale.”

o For all forecast periods other than 0.5 months, we
observed s°P! values greater than one. This indicates
that we can achieve better performance by giving

more weight to the losses from other forecast peri-
ods. One possible explanation for this result is that
for these longer forecast periods, the losses from
shorter forecast periods were more useful since they
used “fresher” predictions.

IV. FUTURE DIRECTIONS

In this work we demonstrated how MTL with different
forecast periods can improve the performance of a basic
online learning algorithm. There are several possible
extensions improve upon this technique:

1) Learning the optimal s parameter from the data.

2) Other structures for the similarity matrix could be
explored, or the entire matrix could be learned
from the data (as in [6], [8]).

3) Integrating our MTL technique into algorithms that
are designed to handle scenarios where the “best
expert” can change over time, such as [1], [3], [4].

4) Integrating other climate model outputs, such as
predictions in nearby regions [4] and predictions
about other climate variables (e.g. precipitation),
as additional tasks.

5) Applying the idea of MTL from different forecast
periods to other domains.
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