
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-057 September 1, 2006

Learning with Online Constraints: Shifting
Concepts and Active Learning
Claire E. Monteleoni

Learning with Online Constraints:

Shifting Concepts and Active Learning

by

Claire E. Monteleoni

A.B. Harvard University, 1998

S.M. Massachusetts Institute of Technology, 2003

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 25, 2006

Certified by. .
Tommi S. Jaakkola

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Department Committee on Graduate Students

Learning with Online Constraints:
Shifting Concepts and Active Learning

by
Claire E. Monteleoni

Submitted to the Department of Electrical Engineering and Computer Science
on August 25, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Many practical problems such as forecasting, real-time decision making, streaming
data applications, and resource-constrained learning, can be modeled as learning with
online constraints. This thesis is concerned with analyzing and designing algorithms
for learning under the following online constraints:

i) The algorithm has only sequential, or one-at-time, access to data.
ii) The time and space complexity of the algorithm must not scale with the num-

ber of observations.
We analyze learning with online constraints in a variety of settings, including active
learning. The active learning model is applicable to any domain in which unlabeled
data is easy to come by and there exists a (potentially difficult or expensive) mecha-
nism by which to attain labels.

First, we analyze a supervised learning framework in which no statistical assump-
tions are made about the sequence of observations, and algorithms are evaluated based
on their regret, i.e. their relative prediction loss with respect to the hindsight-optimal
algorithm in a comparator class. We derive a lower bound on regret for a class of
online learning algorithms designed to track shifting concepts in this framework. We
apply an algorithm we provided in previous work, that avoids this lower bound, to an
energy-management problem in wireless networks, and demonstrate this application
in a network simulation. Second, we analyze a supervised learning framework in which
the observations are assumed to be iid, and algorithms are compared by the number
of prediction mistakes made in reaching a target generalization error. We provide a
lower bound on mistakes for Perceptron, a standard online learning algorithm, for
this framework. We introduce a modification to Perceptron and show that it avoids
this lower bound, and in fact attains the optimal mistake-complexity for this setting.

Third, we motivate and analyze an online active learning framework. The ob-
servations are assumed to be iid, and algorithms are judged by the number of label
queries to reach a target generalization error. Our lower bound applies to the active
learning setting as well, as a lower bound on labels for Perceptron paired with any
active learning rule. We provide a new online active learning algorithm that avoids
the lower bound, and we upper bound its label-complexity. The upper bound is opti-
mal and also bounds the algorithm’s total errors (labeled and unlabeled). We analyze
the algorithm further, yielding a label-complexity bound under relaxed assumptions.

Using optical character recognition data, we empirically compare the new algorithm
to an online active learning algorithm with data-dependent performance guarantees,
as well as to the combined variants of these two algorithms.

Thesis Supervisor: Tommi S. Jaakkola
Title: Associate Professor of Electrical Engineering and Computer Science

To Grandpa Bernie and Nonno Leo.

Acknowledgments

I am extraordinarily grateful to Tommi Jaakkola, my thesis supervisor, and my re-
search advisor throughout my MIT career. Thank you for generously sharing your
expertise and your lucid view of all the areas of mathematics and of machine learn-
ing that we have discussed over the years. I feel extremely lucky to have been your
student.

My thesis committee also deserves many thanks. I am very grateful that Piotr
Indyk, a pivotal contributor to the literature on streaming algorithms and computa-
tional geometry, agreed to join my thesis committee and share his expertise. Thank
you for stimulating research discussions, and course lectures. Sanjoy Dasgupta of UC
San Diego has been an invaluable influence on my recent and ongoing research on
active learning, and I would like to sincerely thank him for agreeing to serve on my
thesis committee, despite the physical distance.

Much of this thesis is the product of my collaborations with various talented
people. Again I thank Tommi Jaakkola, this time for productive and stimulating
collaborations. It was a wonderful experience, after taking Hari Balakrishnan’s course
on computer networks, to have the opportunity to collaborate with him, as well as
the talented Nick Feamster. I am extraordinarily grateful to Adam Tauman Kalai
for hosting me on a summer internship and sharing his rich expertise on randomized
and online algorithms, leading to an excellent and fun collaboration. Recently I have
greatly enjoyed and benefited from an ongoing collaboration with Matti Kääriäinen:
many thanks.

I feel particularly fortunate to have entered into a fascinating research conversation
with Sanjoy Dasgupta at the 2004 Conference on Learning Theory. This conversation
has led to a great collaboration and a stimulating visit to UCSD, and has in fact never
ceased. Thank you so much, and see you in La Jolla!

There are many other people who have affected my research career in graduate
school. These include helpful and influential professors, students who helped in var-
ious ways with my research, and in answering technical questions, and colleagues
who have given me career advice along the way. I would like to thank MIT profes-
sors Michael Collins, David Karger and Santosh Vempala. I am extremely grateful
for the help of the following current and former MIT graduate students and post-
docs: John Barnett, Adrian Corduneanu, Nick Harvey, Jessica Howe, Adam Kli-
vans, Ronny Krashinsky, April Rasala Lehman, Alantha Newman, Luis Ortiz, Alex
Park, Luis Perez-Breva, Alexander Rakhlin, Jason Rennie, Nati Srebro and Hiuzhen
(Janey) Yu. Outside of MIT, I would like to thank Ran Gilad-Bachrach and David
McCallester.

I am also very grateful to people who have influenced my career prior to graduate
school, people who have indirectly influenced my research and career choices during
graduate school, and people who have influenced me during graduate school in spheres
outside of my career. The first group includes several earlier mentors whose advice
and encouragement still echoes in my head and whose careers have shaped mine by
example. Thank you for believing in me; you know who you are. The second group
includes graduate student colleagues with whom I have interacted, such as problem

set collaborators and course TAs, as well as professors whom I have learned from in
courses and meetings, colleagues during my summer internship and those with whom
I have interacted at conferences. In particular, at MIT I would like to thank the
Theory and Machine Learning groups at CSAIL, and the CSAIL staff, as well as
several current and former members of the Center for Biological and Computational
Learning, and the Department of Mathematics. I would also like to thank the Toyota
Technological Institute at Chicago, and the summer research interns of 2004. I thank
the Sherman Cafe, in Somerville, for being my home away from lab where much of
my work was carried out, and the CSAIL Reading Room for providing a quiet place
to think, as well as endless chocolate.

I don’t know where to start in thanking the third group. Let me just say that
I send my heartfelt gratitude to all my dear friends, as well as a sincere apology
that I am not listing you all by name. I will just mention a few people who have
been extremely supportive during graduate school: Alantha, Alex, Anitha, Anna,
Chudi, Dan, Daria, Dean, Elodie, Flora, Funke, Ginger, Karen, Lamine, Laurie, Mary,
Naoka, Nick, Patty, Paula, Qasba, Robin, Sarah, Sasha, Steve, Steven and Tammy.
I would also like to thank countless other friends at MIT, in the Boston area, New
York, California, Italia, and throughout the world, who have been a steady source of
inspiration, entertainment and support for me. Thank you. Throughout my graduate
school career, Rambax MIT has served as my weekly source of laughter, polyrhythms,
and friendship, and provided me the opportunity of an unforgettable trip to Senegal
(neex na torop!). To all of you, I send a deeply grateful jerejef waay! Taking after a
famous computer science thesis [Kal01], in order to avoid any omissions, I would also
like to thank anyone who is taking the time to read these acknowledgements.

Finally, I profusely thank my family. I send gratitude to my wonderful and sup-
portive aunts, uncles and cousins (forza cugini!) spread across at least three conti-
nents. I would like to thank Grandma and Grandpa, who deeply value learning and
language. I thank Nonno, in memoriam, for his strong belief in education, and Nonna
who approved of my work in her own particular way: remarking with delight, upon
being presented with a copy of my Masters thesis, on the various nested subheadings
such as Section 1.2.3, etc.

My immediate family has been infinitely supportive: a constant source of love,
entertainment, and cheerleading! Thank you for sitting through an hour-long answer,
involving diagrams, every time you asked me about my current research. Thanks for
having the patience and interest to actually reach the point of understanding in these
discussions. It is with utmost warmth and gratitude that I thank my dear brother,
Paul. From the beginning, my parents have instilled in me a fascination with and a
propensity for both languages and visual art, surprisingly coming in handy for my
research. Thank you, thank you, thank you, dearest Dad and Mom.

And now I guess I can finally say it: Crepi il lupo.

Contents

1 Introduction 15
1.1 Learning with online constraints . 16

1.1.1 Online access to observations 16
1.1.2 Online constraint on time and space complexity 17

1.2 Supervised learning framework . 17
1.2.1 Non-stochastic setting and regret bounds 17
1.2.2 Iid assumption and mistake bounds 18

1.3 Active learning framework . 18
1.3.1 Active learning in the PAC-like selective sampling model . . . 18
1.3.2 Online active learning . 19
1.3.3 Practical motivations . 19

1.4 Outline of contributions . 20

2 Learning shifting concepts 21
2.1 Related work . 22
2.2 Regret framework and review of our previous work 22

2.2.1 Preliminaries . 22
2.2.2 Upper bound on regret for shifting algorithms 24
2.2.3 Algorithm Learn-α and upper bound on regret 26

2.3 Optimal discretization for learning α 28
2.4 A lower bound on regret for shifting algorithms 29
2.5 Application to wireless energy management 32

2.5.1 The 802.11 energy/performance tradeoff 33
2.5.2 Previous work related to application 34
2.5.3 Application of Algorithm Learn-α 35
2.5.4 Performance evaluation . 38
2.5.5 Discussion . 46

3 Learning with {mistake, label, error}-complexity guarantees 49
3.1 Introduction . 49
3.2 Related work . 52
3.3 Preliminaries . 53
3.4 A lower bound on {mistakes, labels} for the Perceptron update 55
3.5 A modified Perceptron update . 56

3.5.1 An upper bound on mistakes for the modified Perceptron . . . 57

9

3.6 An active modified Perceptron and {label, error} upper bounds . . . 59
3.7 Conclusions and open problems . 64

4 Online active learning: further analysis and application 67
4.1 Related work . 67
4.2 Preliminaries . 68
4.3 Version space analysis of DKM algorithm 69

4.3.1 DKM hypothesis can exit version space 69
4.3.2 Discussion . 73

4.4 Target region vs. version space approach 73
4.4.1 Target region approach . 74
4.4.2 Subset analysis of target region and version space 74

4.5 Relaxing distributional assumptions on DKM 75
4.5.1 Motivation: open problem in active learning 76
4.5.2 A label-complexity upper bound under λ-similar to uniform . 78

4.6 Comparison of online active learning algorithms in application to OCR 84
4.6.1 Algorithms . 84
4.6.2 Evaluation . 86
4.6.3 Discussion and conclusions . 91

5 Conclusion 93

A Proof of Claim 1 95

B Proof of Lemma 2 97

10

List of Figures

2-1 The algorithm maintains a distribution over the experts, in order to
inform its own predictions. 23

2-2 A generalized Hidden Markov Model (HMM) of probability of the next
observation, given past observations, and the current best expert. . . 24

2-3 The hierarchy of experts and “α-experts,” Fixed-share algorithms
running with different settings of α, maintained by the Learn-α algo-
rithm. 27

2-4 Conceptual view of Algorithm LPSM. 39

2-5 Evolution of sleep times with LPSM. a) 1/T b) 1/ logT 40

2-6 Average energy usage per page for various PSM algorithms. a) Results
from 100-page trial. b) Results from 4 independent 500-page trials. . 41

2-7 Average slowdown over 802.11 without power-saving for various PSM
algorithms. a) Results from 100-page trial. b) Results from 4 indepen-
dent 500-page trials. 41

2-8 Average slowdown vs. time to download that page without power-
saving. Average slowdown for the entire experiment is shown with a
horizontal line. LPSM (1/T) imposes only a slight increase in slowdown
over static PSM. Using a loss function with the energy term 1/ log T
saves more energy at the cost of increased slowdown; however, it never
increases slowdown over static PSM by more than a factor of 2 for a
given page. 43

2-9 These figures show the loss of each expert as a function of time. The
circled path is the loss of the algorithm. The right figure zooms in on
the earlier iterations. 44

2-10 These figures show the weights that the algorithm maintains on each
expert, per training iteration. The right figure zooms in on the earlier
iterations. 45

2-11 Competitive Analysis. Loss of the algorithm (circled) versus time.
Solid is loss of the best fixed expert (left), and loss of the current best
expert per training epoch (right). 46

3-1 The projection of the error region ξt onto the plane defined by u and vt. 54

3-2 The modified Perceptron algorithm. The standard Perceptron update,
vt+1 = vt + ytxt, is in the same direction (note yt = −SGN(vt · xt)) but
different magnitude (scaled by a factor of 2|vt · xt|). 57

11

3-3 The active learning rule is to query for labels on points x in L which
is defined by the threshold st on |vt · x|. 60

3-4 An active version of the modified Perceptron algorithm. 61

4-1 Target separator indicated by its normal vector, u. Hypothesis v is
initialized with x0, and updated with x1, yielding v2. Next update on
x2 yields v3. One of the training examples, x0, is now misclassified. . 70

4-2 The indicated area is the positive “seen” region. It overlaps with the
error region: the wedge between the separators indicated by u and v3. 70

4-3 The DKM algorithm applied to the non-uniform case, parameterized
by R, the waiting time before halving the active learning threshold. . 85

4-4 The CBGZ algorithm, parameterized by b > 0, and learning rate η > 0. 85
4-5 Statistical efficiency. Mean minimum labels to attain test accuracy

(i.e. 1 − test error) above each threshold is over 5 folds 10 runs if all
folds/runs reached that test accuracy. a). MNIST 4v7. b) MNIST
0v1. c) USPS 0vAll. d) MNIST 0vAll. 90

4-6 Learning curves. a) An extremely separable problem, MNIST 0v1. b)
An unseparable problem, MNIST 147vAll. c) USPS 0vAll. d) MNIST
0vAll. 91

12

List of Tables

3.1 The contributions of Chapter 3 in context. 65

4.1 Mean and standard deviation (over 5 runs of 10 fold cross-validation)
of the minimum number of labels to reach the test error threshold (in
parentheses) for the problem. 88

13

14

Chapter 1

Introduction

Machine learning, a dynamic subfield of artificial intelligence (AI), produces tools and
techniques currently in effective use and high demand in a broad range of research
and applications. In the past few decades, machine learning and statistical pattern
recognition algorithms have impacted not only computer science, but also a range
of fields from economics to the health sciences, and have potential in many more.
Within computer science, machine learning algorithms have been applied to caching,
bug detection, and recent problems in computer networks. Designers of Web search-
engines currently rely on machine learning expertise for intelligent search techniques,
mining data from Web pages and automatically indexing the Web. Machine learning
has been used in economic and financial applications such as portfolio management
strategies that adapt to the current market climate. Moreover, machine learning and
statistical pattern recognition tools have been revolutionizing discovery in the natural
sciences, as evidenced by the recent emergence of the fields of bioinformatics, and its
efficacy for analyzing the genome, and computational chemistry, and its successes in
the discovery of new medications.

It is currently the state of the art, however, that machine learning practitioners
face a myriad of choices when applying a technique or tool. These choices begin with
very basic ones, such as which algorithm to use, or which model class to consider for
hypotheses. Even beyond basic decisions however, there remains a series of complex
choices, such as how to set the parameters of an algorithm, and how many data
points ought to be used for training and testing. Often, there are no formal methods
available by which to make these decisions. Yet the decisions required in applying a
machine learning technique do in fact depend on some fundamental quantities and
complexity tradeoffs inherent to the problem of learning. For example, there is a
basic tradeoff between the number of training examples used and the level of error
obtained by the learned classifier. Similarly, there is a tradeoff between the complexity
(in parameter space) of the model, and its ability to generalize to examples that were
not present in the training set. Formalizing the tradeoffs that define the complexity
of machine learning, and designing algorithms that exploit them, are the goals of a
research field at the intersection of theoretical computer science and machine learning,
best described by the terms theoretical machine learning and computational learning
theory.

15

The individual contribution of this dissertation to the fields of theoretical machine
learning, and computational learning theory, is focused on several constraints to the
learning problem that we have chosen because they are well motivated by fundamental
questions of AI, they are relevant to practical applications, and they address open
problems in the literature. All the work that follows addresses learning with two online
constraints: data is received in a sequential fashion, and the learner is constrained
against computation and memory that scales with the amount of seen data. The
subproblems addressed include learning when there are no statistical assumptions on
the observations, and learning in the active setting in which the data is unlabeled
and the learner can choose to pay for labels. In the rest of this introduction we will
introduce the various frameworks studied, and then outline our contributions.

1.1 Learning with online constraints

This thesis is concerned with applying online constraints to the problem of machine
learning. In particular, there are two types of online constraints defining all the
results we report. The first concerns the algorithm’s access to data observations.
We are concerned with models in which the observations are received in a sequential
fashion, i.e. one at a time. Once an observation has been seen, it might not ever be
observed again. The second constraint concerns allowable algorithmic solutions to the
learning problem we define. The learner has constraints on computation and memory
entailing that it cannot solve the problem via batch learning: it is constrained against
increasing its memory usage and computation time with the number of seen examples.

1.1.1 Online access to observations

The first constraint, that the observations be received sequentially, defines the se-
quential or online learning framework: training examples are received one at a time,
and the learner must make a prediction at each time-step. This requirement is well
motivated from an AI perspective, in emulating human cognition. Humans are not
usually granted the luxury of learning a concept from a batch of labeled examples.
Instead we receive observations in a sequential fashion, and must update our beliefs
online. The sequential framework effectively models many practical problems. Two
categories of applications that are well served by the sequential model are problems
of temporal forecasting, such as predicting the stock market, weather, or usage pat-
terns and burstiness of the internet, and streaming data applications. In forecasting
problems, the online model is useful because not only are observations received in a
sequence, but also it is often the case that predictions are needed almost immedi-
ately after each data observation, and the data may vary with time. In streaming
applications, the data is received in a sequential fashion and is often of extremely
high-dimension, in which case online access to the data may be the only practical
model.

16

1.1.2 Online constraint on time and space complexity

The second constraint, which limits time and memory usage from scaling with the
number of observations, is motivated in part by the real-world limits on time and
memory faced by any computational learner, and in part by an effort to best match
the solution to the problem: to reflect the sequential nature of the problem in the
design of algorithms that solve it. In other words, the sequential framework raises
interesting computational issues: tradeoffs in complexity and resources for computa-
tional learners. We require that the learner cannot store all previously seen examples
and then apply a batch learning algorithm to them, but must instead intelligently
summarize its observations. Without this constraint, the problem would be reduced
to that of batch learning, which already has an abundant literature. Practical mo-
tivations include computation on small devices for which the memory limit is easily
reached, as well as learning under non-stationarity where memory of the distant past
is less useful for current predictions. Additionally, the time complexity of the belief
update step should be constrained against scaling with the number of past examples,
in order for the algorithm to be effective in the online setting. This constraint has
practical motivation in any system that must predict in real-time.

1.2 Supervised learning framework

Online learning can be studied in the supervised learning framework, meaning all the
examples are labeled. The previous section outlined some of the practical motivations
for supervised online learning, which is typically just called online learning. We will
study two such frameworks which model two different scenarios with two different
measures for judging an algorithm’s performance, involving different assumptions
and analysis techniques.

1.2.1 Non-stochastic setting and regret bounds

First we study a universal prediction setting in which no statistical assumptions are
made on the observation sequence. By non-stochastic, we denote the lack of statistical
assumptions. The observations could even be generated online by an adaptive adver-
sary. Since no sampling assumptions can be made about the sequence to be predicted,
algorithms can only be judged by relative performance measures. The analysis of
algorithms is therefore focused on establishing bounds on the regret, or the difference
between the cumulative loss of the algorithm and the loss of the best method in an
appropriately defined comparator class, with respect to hindsight knowledge of the
observed sequence. In this framework we study shifting algorithms: a general class of
algorithms that model the observations as being non-stationary, but generated from
a shifting sequence of stationary distributions.

17

1.2.2 Iid assumption and mistake bounds

Motivated by a desire to bound a quantity that is intuitively more absolute and
definitive than the notion of regret, we then study a supervised online learning anal-
ysis setting that permits us to bound the final error of the hypothesis attained. In
order to do so, we add a statistical assumption on the generation of the sequence
of observations. We assume the sequence of observations is iid, the abbreviation for
“independently, identically distributed,” meaning that it results from independent
random draws from a fixed probability distribution over the input space. Algorithms
for the sequential iid framework can be compared by their mistake-complexity: the
number of prediction mistakes they make before converging on an accurate model.
This convergence can be analyzed with respect to the error rate of the hypothesis
on the full input distribution. If the concept class over which learning is performed
contains a perfect classifier for the problem, then this error rate is actually the gen-
eralization error of the hypothesis.

1.3 Active learning framework

Online learning can also be studied in an active learning framework. In many ma-
chine learning applications, such as speech recognition, medical diagnosis and Web
page classification, access to labeled data is much more limited or expensive than
access to unlabeled samples from the same data-generating distribution. It is often
realistic to model this scenario as active learning. Since active learning allows for
intelligent choices of which examples to label, often the label-complexity, the number
of labeled examples required to learn a concept via active learning, is significantly
lower than the PAC sample complexity. PAC refers to the “Probably Approximately
Correct” learning theoretic analysis framework, originally proposed by [Val84], and
well explained in [KV94]. The PAC sample complexity of a concept is an upper bound
on the number of labeled examples, sampled iid from a fixed input distribution, such
that with high probability with respect to the sampling, the function generating the
labels of the examples can be approximated to within a fixed error rate on the input
distribution. Here we describe the specific online active learning framework studied.

1.3.1 Active learning in the PAC-like selective sampling model

The active learning model is applicable in any domain in which unlabeled data is
easy to come by and there exists a (potentially difficult or expensive) mechanism by
which to obtain their labels. While the query learning model has been well studied
theoretically (see e.g. [Ang01]), it is often unrealistic in practice, as it requires access
to labels for the entire input space. It has been shown in domains such as text and
OCR that the synthetic examples on which the learner has the most uncertainty
may be difficult even for a human to label [LG94]. In selective sampling (originally
introduced by [CAL94]) the learner receives unlabeled data, sampled iid from a fixed
input distribution, and may request certain labels to be revealed, at a constant cost
per label.

18

1.3.2 Online active learning

Selective sampling can be modeled in an online or sequential setting, in which un-
labeled examples are received one at a time and the learner must make a one-time
choice whether to pay for the current label. We will use the terms “sequential selective
sampling” and “online active learning” interchangeably. We motivate a framework
involving both online constraints: an algorithm must perform sequential selective
sampling, thus respecting the first constraint, and obey the second constraint in that
neither the time nor space complexity scales with the number of seen labeled exam-
ples, or mistakes. Algorithms for sequential selective sampling that also respect the
online constraints on time and memory we consider to be strongly online active learn-
ers, though with a slight overload of terminology we will also refer to them simply as
online active learners.

In an iid framework that is both active and sequential, interesting issues arise.
Beyond just minimizing the number of mistakes needed to learn a concept to a fixed
error rate on the full input distribution, in active learning the goal is to minimize
the number of labels that the algorithm needs to check, in doing so, i.e. the label-
complexity in this setting. A distinction now exists between mistakes and errors:
mistakes are a subset of total errors on which the algorithm requests labels, and thus
receives feedback on its erroneous predictions. Thus error-complexity can be analyzed
as a separate quantity from mistake-complexity for active sequential algorithms.

1.3.3 Practical motivations

Sequential active learning with online constraints has well motivated real-world ap-
plications such as OCR on small devices. As of 2004, a quarter of US physicians were
using handheld computers.1 In the 2004 US presidential election, several major polit-
ical organizations equipped canvassers going door-to-door with handheld computers
to collect neighborhood voting data. Limited computing power may constrain the
OCR training of these handhelds to be online. In the selective sampling setting, the
device may occasionally ask the user to provide a label for a written character, for
example by entering it through the keypad. Human usage would favor algorithms
that minimize the number of such correction events during the learning process.

Document filtering is a problem that has been modeled using active learning: the
filtering mechanism implements the choice of whether to query a label, which amounts
to forwarding the document to the human user and thus receiving feedback from the
user as to the document’s relevance. Email filtering is an increasingly important
problem, as electronic information flow, both relevant and irrelevant (such as spam)
continues to increase. With many users receiving email on handheld devices that may
have memory and computation constraints, online email filtering is poised to become
an increasingly necessary application of online active learning.

1McAlearney A. S., Schweikhart S. B., Medow M. A., Doctors’ experience with handheld com-
puters in clinical practice: qualitative study. British Medical Journal. 328(7449):1162. 2004.

19

1.4 Outline of contributions

The organization of our contributions is as follows. The first part of this thesis con-
cerns supervised online learning. In Chapter 2, we consider a scenario in which there
are no assumptions on the observation sequence, and algorithms are judged in terms
of their regret: their relative loss with respect to the hindsight optimal algorithm in a
comparator class. In this chapter we provide a lower bound on regret for a broad class
of online learning algorithms for this setting, and apply an algorithm we introduced
in previous work, that avoids this lower bound, to a problem in wireless networks, in
simulation. We continue considering supervised online learning in Chapter 3, through
Section 3.5, focusing instead on a scenario in which the observations are assumed to
be iid and algorithms are judged by the number of mistakes to reached a fixed error
rate on the input distribution. In these sections we provide a lower bound on mistakes
for standard Perceptron, and introduce a Perceptron variant for which we provide a
new upper bound on mistakes.

In the remainder of the thesis we consider an active setting, retaining the iid
assumption, in which algorithms are judged by the number of labels to reached a
fixed error rate on the input distribution. The lower bound of Section 3.4 holds for
labels as well, and in the remainder of Chapter 3 we give an online active learning
algorithm with upper bounds on label queries and total errors. In Chapter 4 we
analyze the algorithm from Chapter 3 in various additional ways, and then apply it
to optical character recognition, along with an online active learning algorithm from
the literature and several variants combining the two algorithms, as well as random
sampling.

20

Chapter 2

Learning shifting concepts

This chapter is based on joint work with Tommi Jaakkola. Sections 2.2–2.4 are based
on work that originally appeared in [MJ03]. Section 2.5 is based on work that is also
joint with Hari Balakrishnan and Nick Feamster [MBFJ04].

In this chapter we study a supervised online learning framework involving no sta-
tistical assumptions. This framework can be used to model, regression, estimation,
or classification. As in the typical online learning setting, the learner receives ex-
amples, (xt, yt), one at a time. We study a setting in which the learner has access
to a set of “experts,”1 and their predictions on each observation, but possesses no
other a priori information relating to the observation sequence. In this chapter we
are concerned with cumulative prediction loss, i.e. loss on every example counts, as
opposed to Chapters 3 and 4, in which we are only concerned with the final error
attained. The objective in this setting is to design algorithms whose prediction loss
can be upper bounded with respect to the best (in an appropriately chosen compar-
ison class) algorithm that has hindsight access to the observation sequence, over a
finite, known, time horizon T . All algorithms in this chapter respect the two online
constraints as defined in the introduction.

The motivation of our previous work in [Mon03], which we summarize in Sec-
tion 2.2, was to improve online learning in the non-stochastic case, by removing prior
assumptions. Previous algorithms for this setting, designed to track shifting con-
cepts, are parameterized by the switching-rate, or rate of concept shift, requiring a
prior assumption as to the level of non-stationarity of the observation sequence. We
designed an algorithm to learn this parameter online, simultaneous to the original
learning task, and showed that its regret is upper bounded by O(logT). Our analysis
also yielded a regret upper bound for an existing class of algorithms, including the
shifting algorithms, discussed above.

In Section 2.3 we derive the optimal learning discretization for our algorithm. In
Section 2.4 we provide a lower bound on regret for the class of shifting algorithms
discussed above, which can be Ω(T), depending on the observation sequence. The
lower bound illustrates the asymptotic advances made by our algorithm.

1The term “expert” is arbitrary: the “experts” need not have any true expertise.

21

In Section 2.5 we apply our algorithm to energy management for mobile wireless
devices of the 802.11 standard, in a network simulation. In our ns-2 simulations,
our application saved 7%-20% more energy than 802.11 in power-saving mode, with
an associated increase in average latency by a factor of 1.02, and not more than 1.2.

2.1 Related work

This chapter relates to the literature on shifting algorithms. The ability to shift
emphasis from one “expert” to another, in response to changes in the observations, is
valuable in many applications. When given access to a set of experts whose prediction
mechanisms are unknown to the learner, the learner may choose to quickly identify a
single best expert to rely on, thus modeling a static concept, as in an algorithm due to
Littlestone and Warmuth [LW89], or switch from one expert to another in response to
perceived changes in the observation sequence, thus modeling shifting concepts, as in
an algorithm due to Herbster and Warmuth [HW98]. Both of these algorithms make
modeling assumptions about the switching dynamics of the observation sequence.

Many algorithms developed for universal prediction on the basis of a set of experts
have clear performance guarantees (e.g., [LW89; HKW98; HW98; Vov99]). The per-
formance bounds characterize the regret relative to the best expert, or best sequence
of experts, chosen in hindsight. Algorithms with such relative loss guarantees have
also been developed for adaptive game playing [FS99], online portfolio management
[HSSW96], paging [BBK99] and the k-armed bandit problem [ACBFS02]. The form
of these algorithms involves multiplicative weight updates, reminiscent of Winnow, a
canonical online learning algorithm due to [Lit88]. Other relative performance mea-
sures for universal prediction involve comparing across systematic variations in the
sequence [FV99].

Our goal of removing the switching-rate as a parameter to the class of algorithms
considered in [HW98] is similar to Vovk’s in [Vov99], though the approach and the
comparison class for the bounds differ.

2.2 Regret framework and review of our previous

work

In this section we explain the regret framework and summarize our previous work
that appeared in [Mon03].

2.2.1 Preliminaries

The learner has access to n experts, a1, . . . , an. Each expert makes a prediction at
each time-step over a finite (known) time period t = 1, . . . , T , and each expert’s
prediction is observed by the learner. We denote the ith expert at time t as ai,t

since the algorithm may not have any information as to how the experts arrive at
their predictions and what information is available to facilitate the predictions. The

22

Figure 2-1: The algorithm maintains a distribution over the experts, in order to
inform its own predictions.

prediction mechanisms of the experts are unknown; they may vary from one expert
to another and may change over time. In this framework, xt is simply the vector of
the experts’ predictions at time t.2 However we will operate only upon the prediction
losses, as explained below. We denote the non-negative prediction loss of expert i at
time t as L(i, t), where the loss, a function of t, naturally depends on the observation
yt ∈ Y at time t. We consider here algorithms that provide a distribution pt(i),
i = 1, . . . , n, over the experts at each time point. The prediction loss of such an
algorithm is denoted by L(pt, t). Figure 2-1 is a schematic of these dependencies.

For the purpose of deriving learning algorithms such as Static-expert and
Fixed-share described in [HW98], we associate the loss of each expert with a pre-
dictive probability so that − log p(yt|yt−1, . . . , y1, i) = L(i, t). We define the loss of
any probabilistic prediction to be the log-loss:

L(pt, t) = − log
n

∑

i=1

pt(i) p(yt|i, y1, . . . , yt−1) = − log
n

∑

i=1

pt(i)e
−L(i,t) (2.1)

Many other definitions of the loss corresponding to pt(·) can be bounded by a scaled
log-loss [HKW98; HW98]. We omit such modifications here as they do not change
the essential nature of the algorithms nor their analysis.

The algorithms combining expert predictions can be now derived as simple Bayesian
estimation methods calculating the distribution pt(i) = P (i|y1, . . . , yt−1) over the ex-
perts on the basis of the observations seen so far. p1(i) = 1/n for any such method
as any other initial bias could be detrimental in terms of relative performance guar-
antees. The Bayesian algorithm updating pt(·) is defined as follows:

pt(i; α) =
1

Zt

n
∑

j=1

pt−1(j; α)e−L(j,t−1)p(i|j; α) (2.2)

where Zt normalizes the distribution. This is analogous to forward propagation in a

2In contrast, in the k-armed bandit problem (e.g. [ACBFS02]), the learner only views the loss of
one of the experts per time-step: the arm (expert) chosen.

23

i

y
t+1

y
t

p (i) = P(i|y ,...,y)
t+1 1 t

p(i |i)tt+1

p(y |i,y ,...,y) = e
1t+1

−L(i,t+1)

t

def

t+1it

Figure 2-2: A generalized Hidden Markov Model (HMM) of probability of the next
observation, given past observations, and the current best expert.

generalized HMM (allowing observation dependence on past), such as the one shown
in Figure 2-2, in which we model the identity of the best expert for predicting the
current observation as a hidden state variable. Updating pt(·) involves assumptions
about how the optimal choice of expert can change with time, p(i|j; α). For simplicity,
we consider here only a Markov dynamics where α parameterizes the one-step tran-
sition probabilities, and could be an arbitrary transition matrix. To derive previous
algorithms, we can use a scalar 0 ≤ α ≤ 1 to model the switching-rate between which
expert is currently best at prediction. We define

P (i|j; α) =

{

(1− α) i = j
α

n−1
i 6= j

(2.3)

which corresponds to the Fixed-share algorithm, and yields the Static-expert

algorithm when α = 0.

While we have made various probabilistic assumptions (e.g., conditional indepen-
dence of expert predictions) in deriving the algorithm, the algorithms can be used in
a context where no such statistical assumptions about the observation sequence or
the experts are warranted. The performance guarantees in this chapter do not require
these assumptions.

2.2.2 Upper bound on regret for shifting algorithms

The existing upper bound on the relative loss of the Fixed-share algorithm [HW98]

is expressed in terms of the loss of the algorithm relative to the loss of the best
k-partition of the observation sequence, where the best expert is assigned to each
segment. Here is a guarantee which is similar in spirit, but which characterizes the
regret relative to the best Fixed-share algorithm, parameterized by α∗, where α∗ is
chosen in hindsight after having seen the observation sequence. The proof technique
is different from [HW98] and gives rise to simple guarantees for a wider class of
prediction methods, along with a lower bound on this regret.

24

Lemma 1 (Mon03) Let LT (α) =
∑T

t=1 L(pt;α, t), α ∈ [0, 1], be the cumulative loss
of the Fixed-share algorithm on an arbitrary sequence of observations. Then for
any α, α∗:

LT (α)− LT (α∗) = − log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

(2.4)

Proof: The cumulative log-loss of the Bayesian algorithm can be expressed in terms
of negative log-probability of all the observations:

LT (α) = − log[
∑

~s

φ(~s)p(~s; α)] (2.5)

where ~s = {i1, . . . , iT}, φ(~s) =
∏T

t=1 e−L(it,t), and p(~s; α) = p1(i1)
∏T

t=2 p(it|it−1; α).
Consequently, LT (α)− LT (α∗)

= − log

∑

~s φ(~s)p(~s; α)
∑

~r φ(~r)p(~r; α∗)
= − log

[

∑

~s

(

φ(~s)p(~s; α∗)
∑

~r φ(~r)p(~r; α∗)

)

p(~s; α)

p(~s; α∗)

]

= − log

[

∑

~s

Q(~s; α∗)
p(~s; α)

p(~s; α∗)

]

= − log

[

∑

~s

Q(~s; α∗)elog
p(~s;α)

p(~s;α∗)

]

= − log

[

∑

~s

Q(~s; α∗)e(T−1)(α̂(~s) log α
α∗

+(1−α̂(~s)) log 1−α
1−α∗)

]

where Q(~s; α∗) is the posterior probability over the choices of experts along the se-
quence, induced by the hindsight-optimal switching-rate α∗, and α̂(~s) is the empirical
fraction of non-self-transitions in the selection sequence ~s. This can be rewritten as
the expected value of α̂ under distribution Q. 2

Upper and lower bounds on regret are obtained by optimizing Q in Q, the set of
all distributions over α̂ ∈ [0, 1], of the expression for regret.

The upper bound follows from solving: maxQ∈Q
{

− log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to the constraint that α∗ has to be the hindsight-optimal switching-rate, i.e.
that: (C1) d

dα
(LT (α)− LT (α∗))|α=α∗ = 0

Theorem 1 (Mon03) Let LT (α∗) = minα LT (α) be the loss of the best Fixed-share
algorithm chosen in hindsight. Then for any α ∈ [0, 1], LT (α) − LT (α∗) ≤ (T −
1) D(α∗‖α), where D(α∗‖α) is the relative entropy between Bernoulli distributions
defined by α∗ and α.

The bound vanishes when α = α∗ and, unlike previous work, it does not depend
directly on the number of experts. The dependence on n may appear indirectly
through α∗, however. While the regret for Fixed-share algorithms is proportional
to T , this dependence vanishes for a learning algorithm that is guaranteed to find α
such that D(α∗‖α) ≤ O(1/T), as we will show in Section 2.2.3.

25

Theorem 1 follows, as a special case, from an analogous result (Mon03) for al-
gorithms based on arbitrary first-order Markov transition dynamics. In the general
case, the regret bound is: (T − 1) maxi D(P (j|i, α∗) ‖P (j|i, α)), where α, α∗ are now
transition matrices, and D(·‖·) is the relative entropy between discrete distributions.
Here is the essence of the proof for the scalar case of Theorem 1.3

Proof: Constraint (C1) can be expressed simply as d
dα

LT (α)|α=α∗ = 0, which is
equivalent to Eα̂∼Q{α̂} = α∗. Taking the expectation outside the logarithm, in Equa-
tion 2.4, results in the upper bound. 2

2.2.3 Algorithm Learn-α and upper bound on regret

In addition to facing the lower bound on regret which we will provide in Section 2.4,
the algorithms described above take α as a parameter. Setting α entails an assumption
as to the level of non-stationarity of the observation sequence. In contrast, Learn-α,
the algorithm from (Mon03) which we will describe here, learns the switching-rate,
α, simultaneously to updating the probability weighting over the experts.

As illustrated in Figure 2-3, Learn-α is a hierarchical algorithm that maintains
m “α-experts”. The α-experts are Fixed-share sub-algorithms each running with a
different switching-rate, α, that each maintain a distribution, pt,j(i) = pt;αj

(i), over
the original experts given in the problem. Learn-α tracks the best “α-expert” using
the Static-expert algorithm, i.e. it updates its distribution over the Fixed-share

sub-algorithms with a model which assumes no switching, as specified in Section 2.2.1.
Since the cumulative loss Lt(α) of each Fixed-share algorithm running with

switching parameter α can be interpreted as a negative log-probability, the posterior
distribution over the switching-rate becomes

pt(α) = P (α|yt−1, . . . , y1) ∝ e−Lt−1(α) (2.6)

assuming a uniform prior over α ∈ [0, 1]. As a predictive distribution pt(α) does not
include the observation at the same time point.

We will consider a finite resolution version of this algorithm, allowing only m
possible choices for the switching-rate, {α1, . . . , αm}. For a sufficiently large m and
appropriately chosen values {αj}, we expect to be able to always find αj ≈ α∗ and
suffer only a minimal additional loss due to not being able to represent the hindsight-
optimal value exactly.

Let pt,j(i) be the distribution over experts defined by the j th Fixed-share al-
gorithm corresponding to αj, and let ptop

t (j) be the top-level algorithm producing a
weighting over such Fixed-share experts. The top-level algorithm is given by

ptop
t (j) =

1

Zt

ptop
t−1(j)e

−L(pt−1,j ,t−1) (2.7)

3For more details and the full proof for general transition matrices, we refer to the reader to
[Mon03].

26

t;
p (i)

Algorithm Learn−α

α

p ()α
t

...

...

α−experts 1 . . . m

Experts i=1 . . . n

Figure 2-3: The hierarchy of experts and “α-experts,” Fixed-share algorithms run-
ning with different settings of α, maintained by the Learn-α algorithm.

where ptop
1 (j) = 1/m, and the loss per time-step becomes

Ltop(ptop
t , t) = − log

m
∑

j=1

ptop
t (j)e−L(pt,j ,t) = − log

m
∑

j=1

n
∑

i=1

ptop
t (j)pt,j(i)e

−L(i,t) (2.8)

as is appropriate for a hierarchical Bayesian method.

Upper bound on regret for Learn-α

Here is the extension to Theorem 1 providing an analogous guarantee for the Learn-α
algorithm.

Corollary 1 (Mon03) Let Ltop
T be the cumulative loss of the hierarchical Learn-α

algorithm using {α1, . . . , αm}. Then

Ltop
T − LT (α∗) ≤ log(m) + (T − 1) min

j=1,...,m
D(α∗‖αj) (2.9)

The hierarchical algorithm involves two competing goals that manifest themselves
in the regret: 1) the ability to identify the best Fixed-share expert, which de-
grades for larger m, and 2) the ability to find αj whose loss is close to the op-
timal α for that sequence, which improves for larger m. The additional regret
arising from having to consider a number of non-optimal values of the parame-
ter, in the search, comes from the relative loss bound for the Static-Expert al-
gorithm, i.e. the relative loss associated with tracking the best single expert [HW98;
LW89]. This regret is simply log(m) in our context. More precisely, the corollary
follows directly from successive application of that single expert relative loss bound,

27

and then our Fixed-share relative loss bound (Theorem 1):

Ltop
T − LT (α∗) ≤ log(m) + min

j=1,...,m
LT (αj) (2.10)

≤ log(m) + (T − 1) min
j=1,...,m

D(α∗‖αj) (2.11)

2.3 Optimal discretization for learning α

Here we show the derivation of the optimal choice of the discrete set {α1, . . . , αm},
based on optimizing the upper bound on Learn-α’s relative loss. We start by finding
the smallest discrete set of switching-rate parameters so that any additional regret
due to discretization does not exceed (T − 1)δ, for some threshold δ. In other words,
we find m = m(δ) values α1, . . . , αm(δ) such that

max
α∗∈[0,1]

min
j=1,...,m(δ)

D(α∗‖αj) = δ (2.12)

The resulting discretization, a function of δ, can be found algorithmically as follows.
First, we set α1 so that maxα∗∈[0,α1] D(α∗‖α1) = D(0‖α1) = δ implying that α1 =
1− e−δ. Each subsequent αj is found conditionally on αj−1 so that

max
α∗∈[αj−1,αj]

min{D(α∗‖αj−1), D(α∗‖αj)} = δ (2.13)

The maximizing α∗ can be solved explicitly by equating the two relative entropies
giving

α∗ = log(
1− αj−1

1− αj
)

(

log(
αj

αj−1

1− αj−1

1− αj
)

)−1

(2.14)

which lies within [αj−1, αj] and is an increasing function of the new point αj. Substi-
tuting this α∗ back into one of the relative entropies we can set αj so that D(α∗‖αj−1) =
δ. The relative entropy is an increasing function of αj (through α∗) and the solution is
obtained easily via, e.g., bisection search. The iterative procedure of generating new
values αj can be stopped after the new point exceeds 1/2; the remaining levels can
be filled-in by symmetry so long as we also include 1/2. The resulting discretization
is not uniform but denser towards the edges; the spacing around the edges is O(δ),
and O(

√
δ) around 1/2.

For small values of δ, the logarithm of the number of resulting discretization levels,
or log m(δ), closely approximates −1/2 log δ. We can then optimize the regret bound
(2.9): −1/2 log δ + (T − 1)δ, yielding δ∗ = 1/(2T), and m(δ∗) =

√
2T . Thus we will

need O(
√

T) settings of α.

Optimized regret bound for Learn-α

The optimized regret bound for Learn-α(δ∗) is thus (approximately) 1
2
log T +c, which

is comparable to analysis of universal coding for word-length T [KT81]. The optimal

28

discretization for learning the parameter is not affected by n, the number of original
experts. Unlike regret bounds for Fixed-share, the value of the bound does not
depend on the observation sequence. And notably, in comparison to the lower bound
on Fixed-share’s performance, which we will prove in the next section, Learn-α’s
regret is at most logarithmic in T .

2.4 A lower bound on regret for shifting algorithms

The relative losses obviously satisfy LT (α) − LT (α∗) ≥ 0 providing a trivial lower
bound. Any non-trivial lower bound on the regret cannot be expressed only in terms
of α and α∗, but needs to incorporate some additional information about the losses
along the observation sequence. We express the lower bound on the regret as a
function of the relative quality β∗ of the minimum α∗:

β∗ =
α∗(1− α∗)

T − 1

d2

dα2
LT (α)|α=α∗ (2.15)

where the normalization guarantees that β∗ ≤ 1. β∗ ≥ 0 for any α∗ that minimizes
LT (α).

The lower bound is found by solving: minQ∈Q
{

− log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to both constraint (C1) and (C2) d2

dα2 (LT (α))|α=α∗ = β∗(T−1)
α∗(1−α∗)

Theorem 2 Let β∗ and α∗ be defined as above based on an arbitrary observation
sequence, and q1 = [1 + T−1

1−β∗
1−α∗

α∗
]−1 and q0 = [1 + T−1

1−β∗
α∗

1−α∗
]−1. Then

LT (α)− LT (α∗) ≥ − log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

(2.16)

where Q(1) = q1 and Q((α∗− q1)/(1− q1)) = 1− q1 whenever α ≥ α∗; Q(0) = q0 and
Q(α∗/(1− q0)) = 1− q0 otherwise.

The upper and lower bounds agree for all α, α∗ ∈ (0, 1) when β∗ → 1. In other
words, β∗ → 1 results in a guaranteed loss specified by the matching upper and lower
bounds. Thus there may exist observation sequences on which Fixed-share, using
α 6= α∗, must incur regret linear in T .

Proof: The proof is similar to the upper bound case except that we minimize the ex-
pression for LT (α)−LT (α∗) with respect to distributions Q subject to the constraints
imposed by α∗ and β∗. I.e. we minimize the regret, the expression from Lemma 1:

LT (α)− LT (α∗) = − log Eα̂∼Q

[

exp

{

T ′(α̂ log
α

α∗ + (1− α̂) log
1− α

1− α∗
)

}]

= − log Eα̂∼Q

[

f(α̂; α, α∗)
]

(2.17)

where f(α̂; α, α∗) = exp
{

T ′(α̂ log α
α∗

+ (1− α̂) log 1−α
1−α∗

)}

and T ′ = T − 1. The mini-

29

mization is carried out with respect to the distributions Q subject to

(1)
d

dα
LT (α)|α=α∗ = 0 (2.18)

(2)
d2

dα2
LT (α)|α=α∗ =

β∗(T − 1)

α∗(1− α∗)
(2.19)

These constraints can be expressed as expectation constraints involving Q. As in the
upper bound context, the first condition is equivalent to Eα̂∼Q{α̂} = α∗. To simplify
the second condition we rely on the following expression for the second derivative,
applying the first constraint, Eα̂∼Q{α̂} = α∗

Claim 1 The second derivative of the cumulative loss, LT (α), of the Fixed-share

algorithm, is of the following form, around α = α∗, where α∗ = minα LT (α).

d2

dα2
LT (α)|α=α∗ =

T ′2

α∗2(1− α∗)2

[

α∗(1− α∗)

T ′ − Eα̂∼Q [(α̂− α∗)2]

]

(2.20)

The proof is given in Appendix A.
The second constraint is therefore equivalent to

Eα̂∼Q [(α̂− α∗)2] =
(1− β∗)α∗(1− α∗)

T ′ ≡ β∗2 (2.21)

Let Q be the set of all distributions over [0, 1]. Using the fact that minimizing
− log(·) is the same as maximizing the argument, we write the optimization problem
for Q as follows

max
Q∈Q

Eα̂∼Q f(α̂; α, α∗) (2.22)

subject to Eα̂∼Q{α̂} = α∗ and Eα̂∼Q [(α̂ − α∗)2] = β∗2 . We find the maximizing Q
in closed form and substitute the result for the expression of the regret to yield the
lower bound. Note that we have relaxed the problem slightly by considering the set
of all distributions Q rather than those possibly induced by the observed sequence.
The resulting lower bound on the regret will nevertheless be valid but slightly weaker.

We first identify the form that the optimum Q must take by introducing Lagrange
multipliers for the two equality constraints. The Lagrange multipliers can take any
real values, since they encode equality constraints. We avoid introducing two ad-
ditional Lagrange multipliers, for the positivity constraint and the constraint that
Q must integrate to one, by performing the optimization of Q only over probability
distributions, as mentioned above.

J(Q,~λ) = Eα̂∼Q [f(α̂; α, α∗)]− λ1(Eα̂∼Q [α̂]− α∗)− λ2

(

Eα̂∼Q [(α̂− α∗)2]− β∗2

)

= Eα̂∼Q

[

f(α̂; α, α∗)− λ1(α̂− α∗)− λ2(α̂− α∗)2 + λ2β
∗
2

]

(2.23)

where the second step is by linearity of expectation. The original optimization can

30

thus be written as

max
Q

min
λ

J(Q,~λ) (2.24)

This expression can in turn be upper bounded as follows:

max
Q

min
λ

J(Q,~λ) ≤ min
λ

max
Q

J(Q,~λ) (2.25)

So by optimizing the right hand side, we will be upper bounding the argument to
− log(·) in the expression for regret (2.17), and thus lower bounding the regret. Thus
in order to obtain the bound, it is not necessary to invoke Strong Duality.

The optimizing Q will just place mass at the the α̂ values that maximize this
quantity. So we can define an objective

G(α̂, ~λ) = f(α̂; α, α∗)− λ1(α̂− α∗)− λ2(α̂− α∗)2 + λ2β
∗
2

∂

∂α̂
G(α̂, ~λ) = f ′(α̂; α, α∗)− λ1 − 2λ2α̂

∂2

∂α̂2
G(α̂, ~λ) = f ′′(α̂; α, α∗)− 2λ2 (2.26)

The maxima of G on the interval will either occur at the endpoints, or at values of α̂
in the interval where the first derivative of G vanishes and the second derivative is non-
positive. In order to characterize such points, we first consider the form of f ′′(α̂; α, α∗).
f(α̂; α, α∗) is of the form c1 exp{c2α̂} where c1 ≥ 0, and c2 ∈ R is determined by the
relation of α to α∗. So f ′′(α̂; α, α∗) = c1c

2
2 exp{c2α̂}, and is therefore convex in α̂,

strictly positive, and strictly monotonic (increasing for c2 > 0 and decreasing for

c2 < 0)4. If λ2 ≤ 0 then ∂2

∂α̂2 G(α̂, ~λ) will be convex in α̂, and still strictly positive,
so the condition for maxima will not hold. Thus solutions will be such that λ2 > 0.
Since the second derivative is strictly monotonic, there will be at most one value of
α̂ on the interval at which it is zero. I.e. for any fixed c1 ≥ 0, c2 ∈ R, and λ2 > 0,
there will exist one value of α̂ that solves:

0 =
∂2

∂α̂2
G(α̂, ~λ) = c1c

2
2 exp{c2α̂} − 2λ2 (2.27)

If this value of α̂ is in [0, 1] then there can exist a second maximum of G along
the interval, aside from a maximizing endpoint (if any). This is because when the
second derivative of G is zero, G changes from convex to concave, or vice-versa. The
strict monotonicity of the second derivative also entails that any maximum of G on
the interval will be attained at a point; not along a subinterval. This provides an
upper bound of two on the number of maximizing α̂ values along the interval. The
trivial cases in which both points are at endpoints of the interval, or there is only one

4c2 = 0⇒ α = α∗, in which case there is no regret.

31

maximizing point, violate the variance constraint, thus yielding trivial bounds, and
will be covered implicitly.

Depending on the relation of α to α∗ we need to consider just the two points 0
and a ∈ [0, 1], or 1 and a′ ∈ [0, 1]. Q and the corresponding points can now be solved
based on the constraints alone. When α < α∗, we place probability mass q0 on 0 and
1− q0 on a. Thus

0× q0 + a(1− q0) = α∗ (2.28)

q0(0− α∗)2 + (1− q0)(a− α∗)2 =
(1− β∗)α∗(1− α∗)

T ′ (2.29)

and solving for a and q0, gives

a =
α∗

1− q0
, q0 = 1

1+ T ′

1−β∗
α∗

1−α∗

(2.30)

or Q(0) = q0 and Q(a) = Q(α∗/(1 − q0)) = 1 − q0. Analogously, when α > α∗, we
place probability mass q1 on 1 and (1− q1) on a′:

a′ =
α∗ − q1

1− q1

, q1 = 1

1+ T ′

1−β∗
1−α∗

α∗

(2.31)

The bound follows by substitution. 2

2.5 Application to wireless energy management

In this section we discuss an application of Learn-α to the problem of managing the
tradeoff between energy consumption and performance in wireless devices implement-
ing the IEEE 802.11 standard [IEE99]. We performed a preliminary study for this
application in [Mon03]; here we strengthen and validate the application by applying
it in network simulation. To save energy, the 802.11 specification proposes a power-
saving mode (PSM), where a device can sleep to save energy, periodically waking
up to receive packets from a neighbor (e.g., an access point) that may have buffered
packets for the sleeping device. Previous work has shown that a fixed polling time
for waking up degrades the performance of Web transfers [KB02], because network
activity is bursty and time-varying. We apply algorithm Learn-α to this problem
and show, using ns-2 simulation and trace analysis, that it is able to adapt well to
network activity. Our learning power-saving algorithm, LPSM, guides the learning
using a loss function that combines the increased latency from potentially sleeping
too long and the wasted use of energy in waking up too soon. In our ns-2 simu-
lations, LPSM saved 7%-20% more energy than 802.11 in power-saving mode, with
an associated increase in average latency by a factor of 1.02, and not more than 1.2.
LPSM is straightforward to implement within the 802.11 PSM framework.

32

2.5.1 The 802.11 energy/performance tradeoff

Energy is an important resource in mobile computing systems. Because processing,
storage, display activity, and communication all consume energy, energy-saving tech-
niques targeted at improving these subsystems have received significant attention in
recent years. Impressive advances in hardware design and operating systems have
greatly reduced the energy consumed by the processing and storage subsystems, and
have led to the wireless network becoming a significant consumer of energy in many
mobile devices. This trend is especially true for handheld mobile devices and nodes
in wireless ad hoc and sensor networks.

Most wireless network interfaces consume energy not only while transmitting or
receiving data, but also when they are simply awake. Therefore, to save energy, most
modern wireless interfaces support a power saving mode (PSM). In abstract terms,
the PSM primitive allows an interface to be in one of two states, SLEEP or AWAKE.
SLEEP is a low-power state, but the interface cannot send or receive data in this state.
In contrast, AWAKE allows data flow, but is a higher-power state. Depending on the
actual device, these two states may differ in power consumption by between a factor
of 10 and 50. For instance, in some current 802.11 cards, the ratio is about a factor
of 20 (1 W v. 50 mW) [FN01; CJBM02].

With the PSM primitive, power-saving algorithms can save energy by keeping the
wireless interface in the SLEEP state for as long as possible. A SLEEPing device pe-
riodically wakes up and polls its neighbors (either an access point in “infrastructure”
mode, or a neighboring node in “ad hoc” mode) for packets.5 To avoid excessive
packet loss, the neighbor must therefore buffer packets for each SLEEPing receiver.
Then, the neighbor sends these buffered packets when it receives a poll from a waking
receiver.

Power-saving algorithms built on top of the PSM primitive introduce a tradeoff
between the amount of energy saved and the degree of performance degradation. If
a device awakens and finds no data buffered for it, then it could have slept for longer
and saved some more energy. On the other hand, if any packets are buffered when the
interface awakens, then the latency to obtain those packets would be larger than if the
network interface had been awake instead of asleep. This increased latency degrades
not just the latency of the on-going data transfers, but often the throughput as well.

This section addresses the problem of designing an algorithm by which a device
can decide when to SLEEP and when to be AWAKE. Our goal is to devise an algorithm
that manages the tradeoff between energy consumption and data transfer latency in a
principled, well-specified way, such that users or application designers can specify their
desired operating point. The goal of a managing the tradeoff in a principled manner is
motivated in part by Krashinsky and Balakrishnan’s work on the Bounded SlowDown
(BSD) algorithm [KB02], which demonstrates that the IEEE 802.11’s non-adaptive
polling time strategy [IEE99] degrades both the latency and the throughput of TCP
transfers. Consistent with that work, we focus our algorithm on Web-like workloads
because they are currently the dominant workloads for many mobile devices.

5This is an abstract model: some implementations first have the neighbor advertise information
before the polls occur.

33

Outline of contributions

We develop a PSM algorithm called LPSM (Learning PSM) by applying Learn-α
to determine a device’s sleep/awake schedule. In order to adapt the schedule in
response to observations of current network activity, we instantiate each expert as a
deterministic setting of the polling time. At each decision epoch, the polling time
chosen is the weighted sum of the experts’ times, where the weights are updated by
Learn-α. LPSM makes no assumptions on the distribution of packet arrivals and
network activity.

The first contribution of this section is to show how online machine learning can be
used to solve the wireless power-saving problem. The key to this solution is to define
a loss function that the Learn-α algorithm uses in determining how to update the
weights of the experts every time the mobile device awakens. If the device awakens
and there is no data present, then the weights of the experts are carefully adjusted
such that the next sleep time is longer. Conversely, if any packets were present, the
opposite adjustment is made.

The second contribution of this section is a performance evaluation of LPSM in
trace-driven network simulation and on traces of real-time Web activity. We compare
the performance of both the non-adaptive 802.11 PSM and the BSD algorithm to
LPSM. In our experiments using a Web-like request/response workload, LPSM saves
7%-20% more energy than 802.11 in power-saving mode, with an associated increase
in average slowdown of 2%, and not more than 20%. LPSM is straightforward to
implement within the 802.11 PSM framework.

The rest of this chapter is organized as follows. Section 2.5.3 gives the LPSM
algorithm. Section 2.5.4 presents several results from trace-driven ns-2 simulations
and trace-based analysis of LPSM, and Section 2.5.5 concludes with a discussion of
our results.

2.5.2 Previous work related to application

Using trace-driven simulations, i.e. simulations that sample from an empirical prob-
ability distribution computed from traces of real-time Web activity, Krashinsky and
Balakrishnan [KB02] show that the 802.11 PSM algorithm, which uses a fixed polling
interval (typically 100 ms) to wake up and check for data, causes response latency
for Web-like transfers to be as bad as 2.2× longer than in the absence of any power-
saving algorithm. To better manage the tradeoff in question, they propose BSD, an
algorithm that uses an adaptive control loop to change polling time based on network
conditions. The algorithm uses a parameter, p, and guarantees that the response
latency does not ever exceed (1+p) times the response latency without power-saving.
Within that constraint and assuming adversarial traffic arrivals, BSD guarantees that
the energy consumption is minimized. In contrast, LPSM does not attempt to guar-
antee bounded latency under adversarial traffic arrivals; instead, our approach is to
explicitly encode a tradeoff between energy and latency and give an online learning
algorithm that manages this tradeoff.

Simunic et al. formulate the wireless power-saving problem as policy learning

34

in a Markov Decision Process (MDP) [SBGM00]. Their algorithm is not an online
algorithm since the linear programming algorithm used to resolve the policy over any
given time period requires access to data over that entire period. They also assume
that network activity is stationary. In the MDP there is fixed distribution governing
the selection of next states, given the current state and action. For any fixed policy
such as the optimal policy in this framework, the network activity is modeled as a
Markov process. This model is not an ideal one for a mobile node, since the network
activity need not conform to a Markov process of any finite order k.

Simunic et al. refer to Chung et al. [CBM99] for the solution in non-stationary
environments. That work proposes “policy interpolation,” however it still assumes
that the underlying process is Markovian, even though it may initially appear non-
stationary due to a lack of observations. They then propose to learn the associated
MDP parameters sequentially [CBM99]. Another machine learning approach to this
problem was proposed by Steinbach, using Reinforcement Learning [Ste02]. This
approach also imposes the assumption that network activity has the Markov property
which, as discussed above, is unrealistic. These previous learning approaches differ
from ours in that LPSM does not make any Markovian or stationarity assumptions,
nor require any a priori knowledge of the phenomenon being learned. LPSM is also
simpler to implement in the 802.11 framework.

We focus on online learning algorithms of the type described in Section 2.2. The
related work has been discussed in Section 2.1. We consider algorithms that treat
network activity as non-stationary, although possibly composed of variable-length
periods that exhibit stationarity in some sense. These algorithms are parameterized
by the switching-rate of the non-stationary process. In the context of wireless net-
works, this value cannot be known by a mobile node a priori. Thus we will use
Learn-α to learn the switching-rate parameter online, simultaneous to learning the
target concept: the polling time in this context

2.5.3 Application of Algorithm Learn-α

The intuition behind our application of Learn-α is as follows. The IEEE 802.11 PSM
standard is a deterministic algorithm polling at fixed polling time, T = 100 ms, which
can be viewed as one “expert,” who always claims that 100 ms is the polling time
that should be used. Clearly the ability to consult a set of experts, in which each
expert is a deterministic algorithm using a different T value as its polling time, would
enable a more flexible algorithm compared to operating with just one polling time.
LPSM maintains a probability distribution over a set of such deterministic experts.
The algorithm computes its polling time as a function all the experts, subject to this
distribution. It adaptively updates its distribution over experts, based on current
network activity.

Not only is this approach more flexible than that of the 802.11 PSM standard,
but also it is a promising alternative to approaches like BSD that are based on an
adaptive control framework. While BSD adaptively updates its polling time, T , based
on network conditions, it evolves only one T value. In contrast, LPSM maintains and
updates a set of n T values simultaneously, instead of just one. Although the form

35

of the updates is different than that of BSD, the LPSM algorithm explores across a
range of T values in parallel, which should allow it to choose a better instantaneous
T value to manage the tradeoff. Since sequential exploration for the sake of learning
can incur loss, LPSM’s parallel exploration should allow it to better manage the
energy/latency tradeoff than previous approaches. Additionally, since Learn-α allows
rapid switching between experts, it is able to handle sudden changes in the observed
process, for example a sudden burst of network activity, in this context.

The protocol we propose for a node using LPSM is similar to that of 802.11 PSM
in mainly sleeping except for polls. The main difference in using LPSM is that the
sleep times would be of variable length. Additionally, after retrieving any packets
that may have arrived from the neighbor’s buffer, the node will only stay awake if
the link continues to be active.

The intuition behind how LPSM updates its distribution over experts is that
different experts should gain or lose favor based on current network activity. Upon
awakening, if many packets had been buffered, then the algorithm should adjust
and sleep for less time. On the other hand if only a few packets were received, the
algorithm can sleep for longer, in order to save energy. Below we will present an
objective function aimed at simultaneously minimizing energy and slowdown. After
each observation, LPSM updates the weight of each expert based on that expert’s
loss with respect to this objective, which is a measure of how well the polling time
that the expert proposes would manage the energy/latency tradeoff under the current
network conditions.

Instantiation of experts and prediction function

We apply the Learn-α algorithm exactly as in 2.2.3, unless otherwise stated. To
do so there are several quantities we must instantiate. The algorithms of the type
discussed in Section 2.2 have performance guarantees with respect to the best expert
in the expert set given. These guarantees make no assumptions on the set of experts,
as they are worst case guarantees computed as if the expert set is just a black box,
and could even contain algorithms that are adversarial. Thus when applying such
learning algorithms to a specific problem, we can achieve additional gains from the
performance guarantees, by choosing experts that are actually helpful for the problem
domain in question. In the wireless energy management problem, we use n experts,
each corresponding to a different but fixed polling times, Ti : i ∈ {1 . . . n}. The
experts form a discretization over the range of possible polling times.

Unlike many previous problems where online learning has been applied, our prob-
lem imposes the constraint that the learning algorithm can only receive observations,
and perform learning updates, when the mobile device is awake. Thus our subscript t
here signifies only wake times, not every time epoch during which bytes might arrive.

To apply this type of online learning algorithm to this problem, we instantiate the
prediction function using the weighted mean. Thus the algorithm’s polling time Tt,

36

i.e. its prediction of the current amount of time it ought to sleep for is:

Tt =

n
∑

i=1

pt(i)Ti (2.32)

where pt(i) is its current distribution over experts.

Objective function

The performance bounds on Learn-α hold regardless of the choice of loss function,
L(i, t). In this application to the wireless power-saving problem, we instantiate the
loss function as follows. The objective at each learning iteration is to choose the
polling time Tt that minimizes both the energy usage of the node, and the network
latency it introduces by sleeping. We define the loss function so as to reflect the
tradeoff inherent in these conflicting goals. Specifically, we will design a loss function
that is directly proportional to appropriate estimates of these two quantities. It is
important to note that the algorithm is modular with respect to this function, so
while we suggest several loss functions that are proportional to the energy versus
slowdown tradeoff, there are many possible functions. If one wishes to model the
tradeoff differently, one need only specify an objective function, Learn-α will learn
using that objective.

The BSD [KB02] approach to managing this tradeoff uses an objective of:

min E : L ≤ (1 + p)Lopt : p > 0 (2.33)

for a scalar threshold Lopt, where E is an energy term and L is a latency term. In
contrast, our approach is not to apply a threshold on either of these quantities, but
instead to propose a function that encodes the tradeoff between latency and energy.

The observation that the learning algorithm receives upon awakening is the num-
ber of bytes that arrived while it slept during the previous interval. We denote this
quantity as It, and the length of time that the node slept upon awakening at time t,
as Tt. One model for energy usage is proportional to 1

Tt
. This is based on the design

that the node wakes only after an interval Tt to poll for buffered bytes, and the fact
that it consumes less energy when asleep than awake. Additionally there is a constant
spike of energy needed to change from sleeping to the awake state, so the more often
a node polls during a given time horizon, the higher the energy consumption. An
alternative model for the energy consumption would be to use the term 1

log Tt
. This is

a larger penalty, in order to account for additional energy used, such as while staying
awake when the link is active, which is not reflected in how long the node chooses
to sleep for at each learning iteration. For clarity, we will just show the first energy
model in our equations below, but we will report on the evaluation of both models.

We model the latency introduced into the network due to sleeping for Tt ms as
proportional to It. In other words, there is increased latency for each byte that was
buffered during sleep, by the amount of its wait-time in the buffer. Since our learning
algorithm does not perform measurement or learning while asleep, and only observes

37

the aggregated number of bytes that arrived while it slept, we have to approximate
the amount of total latency its chosen sleep time introduced, based on the individual
buffer wait-times of each of the It bytes. To estimate the average latency that each of
the It buffered bytes would have experienced, without knowledge of the byte arrival
times, we can use the maximal entropy assumption. This models all the bytes as
arriving at a uniform rate during the sleep interval, Tt, in which case the average
wait-time per byte would be Tt

2
. Thus the total latency introduced by sleeping for Tt

is approximated by the number of bytes that arrived in that time, times the average
wait-time per byte, yielding Tt

2
It.

The form of our proposed loss function is thus

L(t) = γ
TtIt

2
+

1

Tt
: γ > 0 (2.34)

In our weight updates however, we apply this loss function to each expert i, approx-
imating the loss that would have resulted from the algorithm using Ti instead of Tt

as its polling time. So the equivalent loss per expert i is:

L(i, t) = γ
ItT

2
i

2Tt
+

1

Ti
(2.35)

where Ti

Tt
scales It to the number of bytes that would have arrived had the node slept

for time Ti instead of Tt. Note that the objective function is a sum of convex functions
and therefore admits a unique minimum.

The parameter γ > 0 allows for scaling between the units for measuring packet
arrivals and the polling time, as well as the ability to encode a preference for the ratio
between energy and latency that the particular node, protocol or host network favors.
This can also be viewed as follows. The two optimizations we are trying to perform are
the conflicting goals of minimizing energy usage, and minimizing additional latency
caused by buffering. The tradeoff can be formulated as an energy minimization
problem, subject to the constraint that latency be upper bounded by a threshold.
In this formulation, γ is the Lagrange multiplier enforcing the latency constraint. To
clarify the relation between using latency as a constraint and including it as a term
in the loss, note that increasing γ will monotonically increase the effect of latency on
the loss, which the algorithm seeks to minimize.

Note that this is one of many possible loss functions that are proportional to the
tradeoff that must be optimized for this application.

To summarize, the LPSM algorithm proceeds as shown in Figure 2-4.6

2.5.4 Performance evaluation

In this section we study the performance of LPSM with respect to the tradeoff be-
tween energy savings and performance degradation using trace-driven simulations.
We also compare the performance of LPSM to previously proposed power-saving algo-

6Implementation is optimized to be more compact.

38

Algorithm LPSM

Initialization:
∀j, p1(j)← 1

m

∀i, j, p1,j(i)← 1
n

Upon tth wakeup:
Tt ← number of ms just slept
It ← # bytes stored at neighbor
Retrieve buffered data
For each i ∈ {1 . . . n}:

Loss[i] ← γ
ItT 2

i

2Tt
+ 1

Ti

For each j ∈ {1 . . .m}:
AlphaLoss[j] ← − log

∑n
i=1 pt,j(i) e−Loss[i]

pt+1(j)← pt(j)e
−AlphaLoss[j]

For each i ∈ {1 . . . n}:
pt+1,j(i)←

∑n
k=1 pt,j(k) e−Loss[k] P (i|k; αj)

Normalize Pt+1,j

PollTime[j] ←
∑n

i=1 pt+1,j(i) Ti

Normalize Pt+1

Tt+1 ←
∑m

j=1 pt+1(j) PollTime[j]

Goto sleep for Tt+1 ms.

Figure 2-4: Conceptual view of Algorithm LPSM.

rithms [KB02]. Additionally, we use loss function units to further study the behavior
of LPSM on traces of real-time Web activity.

Network simulation evaluation framework

In this section, we study the performance of LPSM with respect to the energy/latency
tradeoff. After describing the setup of our ns-2 simulation, we compare the perfor-
mance of LPSM with 802.11 static PSM and BSD [KB02].

The simulation framework that we used to evaluate LPSM is the same as that
which has been used to evaluate previous 802.11 power-saving algorithms such as
BSD [KB02], [Kra02]. We briefly summarize that framework here. We use a simple
3-node topology: a mobile client accesses a Web server via an 802.11 access point.
The bandwidth between the mobile host and the base station is 5 Mbps and the
latency is 0.1 ms; the bandwidth between the base station and the Web server is 10
Mbps and the latency is 20 ms. As in previous work [KB02], we do not model the
details of the 802.11 MAC protocol. Rather, we model sleep times with some simple
modifications to ns-2 [Kra02]. A sleeping device does not forward any packets, but
buffers them until the device wakes up again. A device wakes up whenever it has
data to forward to the access point and sleeps for the interval determined by LPSM.
It remains awake after polling, only if the link remains active. Since the 802.11
PSM framework assumes that nodes wakeup and poll only on 100 ms boundaries,

39

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

S
le

ep
 T

im
e

(s
);

 Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
/1

0)

Time (seconds)

Sleep Time
Queue Size

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

S
le

ep
 T

im
e

(s
);

 Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
/1

0)

Time (seconds)

Sleep Time
Queue Size

Figure 2-5: Evolution of sleep times with LPSM. a) 1/T b) 1/ logT .

for the sake of synchronization issues between sleeping and awake nodes, we rounded
the sleep interval determined by LPSM to the nearest 100 ms. We modeled energy
consumption using previous estimates [KB02]: 750 mW when the interface is awake,
50 mW when the interface is asleep, and 1.5 mJ for each beacon.

We report results from an experiment that involved simulating 100 Web transfers
from the client to the Web server over approximately 1.5 hours of simulation time.
To verify the robustness of our results, we also ran 4 independent experiments of
500 Web transfers, each over approximately 8.5 hours of simulation time. As in
previous work [KB02], we modeled Web browsing behavior using the ns-2 HTTP-
based traffic generator, using FullTcp connections. In this model, a Web transfer
consists of several steps: (1) a client opens a TCP connection and sends a request;
(2) after some delay, the server sends a response and several embedded images; the
client may open up to 4 parallel TCP connections to retrieve these images; (3) the
client waits for some amount of “think time” before making the next request. Also
as in previous work [KB02], we randomly selected the parameters for each request
based on an empirical distribution [Ber96], and we limited client think time to 1000
seconds.

In these experiments, we configured LPSM with 12 experts spanning the range
from 100 ms to 1.2 seconds, at regularly spaced intervals of 100 ms. Thus, the lowest
expert, 100 ms, matched the polling time of the current 802.11 PSM standard, and
the highest expert was 1.2 seconds. Since a convex combination is upper bounded
by its maximum value and lower bounded by its minimum value, we were assured of
only using polling times within this range.

As discussed in Section 2.5.3, the learning function is modular with respect to the
loss function, as it will seek to minimize whichever loss function one uses to encode
the energy/slowdown tradeoff. We experimented with the effects of two different loss
functions: (1) the loss function shown in Figure 2-4, with the second term as 1/T ;
and (2) a loss function that uses 1/ log T as its second term, to penalize energy usage
more severely. For the first loss function, we used γ = 1/(1.2 · 105); for the latter, we
used γ = 1/(1.2 · 103).

40

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Static-PSM

BSD-10

BSD-100

LPSM
 (1/T)

LPSM
 (1/log T)

E
ne

rg
y

(J
)

Awake
Sleep
Listen

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Static-PSM

BSD-10

BSD-100

LPSM
 (1/log T)

E
ne

rg
y

(J
)

Awake
Sleep
Listen

Figure 2-6: Average energy usage per page for various PSM algorithms. a) Results
from 100-page trial. b) Results from 4 independent 500-page trials.

 0

 0.5

 1

 1.5

 2

Static-PSM

BSD-10

BSD-100

LPSM
 (1/T)

LPSM
 (1/log T)

S
lo

w
do

w
n

 0

 0.5

 1

 1.5

 2

Static-PSM

BSD-10

BSD-100

LPSM
 (1/log T)

S
lo

w
do

w
n

Figure 2-7: Average slowdown over 802.11 without power-saving for various PSM
algorithms. a) Results from 100-page trial. b) Results from 4 independent 500-page
trials.

Algorithm behavior

Figure 2-5 shows the evolution of sleep times over a portion of the simulation trace.
When LPSM discovers that packets are queued at the access point, it quickly reduces
the sleep interval to 100 ms. During periods of inactivity, LPSM continually increases
the sleep time each time the device wakes up and discovers that no packets are queued
for it. These two figures also illustrate how the choice of loss function affects the
behavior of the learning algorithm. When the learning algorithm has a loss function
that has 1/T as its energy term, it backs off much more slowly than when it uses
a loss function with 1/ log T as its energy term. This makes sense: the latter loss
function places relatively more importance on the energy term, the penalty incurred
for waking up when no packets are queued for the device.

Performance: energy vs. latency

Figures 2-6 a) and 2-7 a) characterize the energy savings and slowdown of LPSM
relative to static PSM, which we ran under the same simulation, using the imple-

41

mentation by [Kra02]. As in previous work, slowdown is defined as the ratio of the
latency incurred by the PSM algorithm to the latency incurred by using no PSM
whatsoever. Our first result is that LPSM consistently decreased per-page energy
consumption. For a slight increase, 2%, in slowdown over static PSM, LPSM, with
1/T as the energy model, reduces overall energy consumption by about 7% (from
3.62 J to 3.38 J), and energy due to beaconing by almost 30% (from 0.83 J to 0.59
J). On the other hand, LPSM with 1/ log T as its energy term, reduces overall energy
consumption by nearly 20% (from 3.62 J to 2.95 J) and energy consumption due to
beaconing by more than 80% (from 0.83 J to 0.16 J), while increasing slowdown over
static PSM by only a factor of 1.19.

To verify the robustness of our results, we also ran longer simulations for LPSM
with 1/ log T as the energy term. Figures 2-6 b) and 2-7 b) show results averaged
over 4 independent 500-page experiments, each one starting the traffic simulator with
a different random seed. We also ran static PSM in each of these four simulations,
and averaged its results, for a fair comparison. This experiment shows similar results:
energy savings of over 18% (from 4.12 J to 3.36 J) and an 82% reduction in energy
consumption due to beaconing (from 0.94 J to 0.17 J), while increasing slowdown
over static PSM by a factor of only 1.2.

Figures 2-6–2-7 also compare the performace of LPSM with BSD. We ran BSD
in the same simulation for both scenarios described above, using the original BSD
implementation [Kra02], including averaging over the four runs with the same set of
random seeds for traffic generation as used on LPSM. LPSM shows an energy re-
duction versus most settings of BSD, though higher slowdowns. Notably, the LPSM
using 1/ logT to model energy, had deeper energy savings than all the previous BSD
settings, though it increased slowdown more. It is important to note that LPSM
can work well even if the distribution generating the observations of network activity
changes with time. Since in simulation, traffic was generated using a stationary dis-
tribution, we would expect only better results against BSD in practice. Additionally,
in both settings, we ran with m, the number of α-experts in the Learn-α algorithm,
optimized for a timescale of 45 minutes. We could expect better results, especially in
the longer trials, had it been optimized for the length of the trial. Yet these results
lend validity to using LPSM even under resource limitations.

Moreover, LPSM offers several unique advantages over existing approaches. First,
because LPSM’s determination of appropriate sleep times is based on a loss function,
rather than a single parameter, LPSM provides designers sufficiently more flexibility
than BSD in exploring the energy/latency tradeoff. It should be possible to simul-
taneously reduce both energy and slowdown from that of previous approaches, by
appropriate choice and calibration of the loss function. Second, because LPSM uses
a learning algorithm designed to react well under non-stationarity, we would expect
LPSM to perform better than BSD when the distribution generating traffic changes
over time, a situation not modeled in this simulation, but which is realistic in prac-
tice. These hypotheses deserve further attention and present interesting possibilities
for future work.

Figure 2-8 shows the slowdown behavior of various power-saving algorithms for
individual Web page downloads. LPSM imposes only a moderate increase in slowdown

42

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

S
lo

w
do

w
n

Page retrieval time with PSM off (sec)

(a) Static PSM.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

S
lo

w
do

w
n

Page retrieval time with PSM off (sec)

(b) LPSM (1/T)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

S
lo

w
do

w
n

Page retrieval time with PSM off (sec)

(c) LPSM (1/ logT)

Figure 2-8: Average slowdown vs. time to download that page without power-saving.
Average slowdown for the entire experiment is shown with a horizontal line. LPSM
(1/T) imposes only a slight increase in slowdown over static PSM. Using a loss func-
tion with the energy term 1/ log T saves more energy at the cost of increased slow-
down; however, it never increases slowdown over static PSM by more than a factor
of 2 for a given page.

over static PSM for various Web pages: only a 2% increase on average, but never more
than 20%. Changing the loss function in LPSM to favor energy reduction more will
increase the slowdown, as shown in Figure 2-8(c), but even using this loss function
never incurs a slowdown of more than a factor of 2 for any given Web page. For
longer Web transfers, both LPSM algorithms introduce only negligible slowdown.
Some shorter Web transfers impose longer slowdown times than static PSM, but these
download times are short anyway, so the additional slowdown that LPSM imposes is
not drastic.

Trace-based evaluation framework

We also ran LPSM on traces of real network activity [Ber96]. This evaluation frame-
work differs from the trace-driven simulation in that the network simulation generates
traffic from a stationary distribution (created by averaging over the traces [Kra02]).
In contrast, running the LPSM algorithm on the traces themselves would allow it to
observe real network activity, which could potentially exhibit non-stationarity. Here
we present some qualitative results, in units of loss and the weights maintained over
experts, to further illustrate the behavior of Learn-α, with respect to individual
experts, the best expert and the best sequence of experts, in this problem domain.

We used publicly available traces of network activity from a UC Berkeley home
dial-up server that monitored users accessing HTTP files from home [Ber96]7. Because
the traces only provided the start and end times, and number of bytes transferred for
each connection, per connection we smoothed the total number of bytes uniformly over
10 ms intervals spanning its duration. In the network trace experiment results below,
we ran the algorithm with 10 experts spanning the range of 1000 ms at regularly

7These are also the traces we used to synthetically generate Web traffic for the ns-2 simulations

43

0 1 2 3 4 5 6 7 8 9

x 10
4

1

2

3

4

5

6

7

8

9

10

11
x 10

−3

time (ms)

lo
ss

 o
f e

ac
h

ex
pe

rt
. l

os
s

of
 a

lg
or

ith
m

 c
irc

le
d

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1

2

3

4

5

6

7

8

9

10

11
x 10

−3

time (ms)

lo
ss

 o
f e

ac
h

ex
pe

rt
. l

os
s

of
 a

lg
or

ith
m

 c
irc

le
d

Figure 2-9: These figures show the loss of each expert as a function of time. The
circled path is the loss of the algorithm. The right figure zooms in on the earlier
iterations.

spaced intervals of 100 ms, and γ = 1.0 × 10−7, calibrated to attain polling times
within the range of the existing protocol.

Behavior of online learning algorithms

Figure 2-9 shows the loss, on one trace, of each of the experts as a function of time,
measured at LPSM’s polling times. The circled path is the loss of LPSM. Since the
algorithm allows for switching between the experts, it is able to maintain loss close
to or better than the loss of the best current expert, even though our results show
that the identity of the best current expert changes with time. The graph on the
right, which zooms in on the early phases of the run, shows that it takes some time
before the algorithm is doing as well as the best current expert. Note however that
since the weights start as uniform, the initial polling time is actually the mean of
the polling times of each of the experts, so even in the early iterations the algorithm
already beats the worse half of the experts, and still tracks the average expert.

Figure 2-10 shows the evolution of the distribution that the algorithm maintains
over experts. As expected, the algorithm changes its weighting over the experts, based
on which experts would currently be performing best in the observed network activity.
Changes in the burstiness level of the arriving bytes are reflected in shifts in which
expert currently has the highest weight, starting even in the early learning iterations.
The figure on the right, which zooms in on the earlier phases of learning, shows that
the algorithm’s preference for a given expert can easily decrease and increase in light
of network activity. For example after several periods of being the worst expert, after
iteration 1600, an expert is able to regain weight as the best expert, as its weight
never went to zero.

These results also confirm that for real network traffic, no single deterministic
setting of the polling time works well all the time. The algorithm can do better than

44

0 1000 2000 3000 4000 5000 6000 7000 8000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

training iteration (on waking)

cu
rr

en
t w

ei
gh

t o
n

ea
ch

 e
xp

er
t (

de
te

rm
in

is
tic

 s
et

tin
g

of
 T

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

cu
rr

en
t w

ei
gh

t o
n

ea
ch

 e
xp

er
t (

de
te

rm
in

is
tic

 s
et

tin
g

of
 T

)

training iteration (on waking)

Figure 2-10: These figures show the weights that the algorithm maintains on each
expert, per training iteration. The right figure zooms in on the earlier iterations.

any single expert, as it is a convex combination of all the experts, and the updates of
the weighting allow the algorithm to track the expert that is currently best. Note that
these online adjustments of which expert the algorithm currently favors are closely
reflected in the evolution of sleep times graphed in Figure 2-5.

Competitive analysis

To perform competitive analysis of the learning algorithm, we compare it to the
hindsight best expert, as well as to the current best expert. Figure 2-11 illustrates
how the learning algorithm does in relation to the best fixed expert computed in
hindsight, and to the current best expert at each time epoch at which the algorithm
does a learning update. The algorithm learns to track and eventually do better than
the best fixed expert, in the first figure. The scenario in the second figure is an
approximation to the best k-partition, i.e. the best partition of the trace into k
parts and choice of the best expert for each part, where k is the actual number of
switches in the sequence between which expert is currently best at predicting the
observations. If the best expert actually switches at every time step, k can be as
large as the length of the full time horizon of the trace. Note that as k increases, the
optimal k-partition is harder to track. Here the algorithm does not beat the loss of the
sequence of best experts, but is at least able to “track” it, as per the bounds [LW89;
HW98]. We see that the algorithm’s performance is never too far away from that of
the current best expert.

In both comparisons, the performance appears to beat the associated performance
guarantees, as there is negligible regret (the instantaneous regret is sometimes even
negative). This is unsurprising as the performance guarantees are with respect to
an unknown, perhaps even adversarial set of experts. In applying the algorithm
however, we were able to choose the set of experts to best apply to this problem
domain. Additionally since the experts we chose are just a discretization over the
parameter to be learned (the polling time), and since we instantiate prediction as a

45

0 1 2 3 4 5 6

x 10
4

1.5

2

2.5

3

3.5

4
x 10

−3

time (ms)

lo
ss

 o
f b

es
t f

ix
ed

 e
xp

er
t,

bl
ue

.
lo

ss
 o

f a
lg

or
ith

m
 r

ed
 c

irc
le

d

0 1 2 3 4 5 6

x 10
4

1

1.5

2

2.5

3

3.5

4
x 10

−3

time (ms)

lo
ss

 o
f b

es
t c

ur
re

nt
 e

xp
er

t,
bl

ue
.

lo
ss

 o
f a

lg
or

ith
m

 r
ed

 c
irc

le
d

Figure 2-11: Competitive Analysis. Loss of the algorithm (circled) versus time. Solid
is loss of the best fixed expert (left), and loss of the current best expert per training
epoch (right).

convex combination of the experts, the algorithm can track the best continuous value
of this parameter, in the discretized range.

2.5.5 Discussion

We proposed the use of online learning to manage the well-known energy/performance
tradeoff in wireless networks, and applied Learn-α to the 802.11 wireless LAN PSM.
The idea behind LPSM is to set up n “experts,” each corresponding to a particular
deterministic value of the sleep cycle, with a device sleeping for a duration equal to a
weighted sum of these deterministic times. The weights of these n experts are updated
according to a loss function, which penalizes the energy consumed and the slowdown
introduced by sleeping for a certain amount of time, under the current network con-
ditions. The method of updating the weighting depends upon the algorithm’s model
of the level of non-stationarity of the observed process: current network activity, in
this case. Unlike previous online learning algorithms, Learn-α does not take this
quantity as a parameter that must be set beforehand. Instead it learns this quantity
online: the “switching-rate” of current network activity, simultaneous to learning the
best current polling time.

Our experimental results, based on trace-driven simulation and trace-based anal-
ysis of Web client traces, show that for a Web-like request/response workload, LPSM
(using the particular loss function we chose) can save 7%-20% more energy than
802.11 in power-saving mode, with an associated increase in average slowdown by a
factor of at most 1.2.

Since the LPSM implementation we suggest is the same as 802.11 PSM, other
than a polling time that changes adaptively, and remaining awake while the link is
active, integration into 802.11 PSM would be relatively straightforward. In order to
help synchronize between sleeping and awake nodes, LPSM chooses sleep durations

46

that are rounded to the nearest 100 ms multiple of the time computed by Learn-α.
The complexity of the algorithm, can be O(mn), or O(m+n) if parallel computa-

tion is supported, since the α-expert updates can be run in parallel. In comparison to
related work, this is slightly more complex, but note that n, the number of candidate
polling times, can be chosen as a small constant, without degrading performance, as
it just defines the level of discretization for a fixed range of possible sleep times. To
obtain tight performance guarantees, the optimal number of α-experts is computed
based on the timescale along which one would like to benchmark performance. How-
ever m can also be held constant, when computation is an issue, and our empirical
results verified that this did not significantly degrade performance.

We note that the loss function we use in LPSM may be improved in the future,
to obtain a different tradeoff between energy and latency. In our idealized model,
we assume that bytes arrive uniformly during the sleep interval. If the protocol for
delivering packets to a node were to maintain the times at which the packets originally
arrived, the loss function could be made more accurate. The fact that LPSM did
rather well despite this simplifying assumption, augurs well for its performance when
finer-grained information on arrivals is available. Another extension to LPSM would
be to estimate the energy that would be consumed in retrieving the buffered bytes,
and factor that into the loss function as well. Note that the algorithm is modular, in
that any objective function that is proportional to the energy/performance tradeoff
may be used. The implementation methods mentioned above, which would not add
too much complexity, should further improve the performance of LPSM over 802.11
PSM. We note that previous approaches to this problem did not save significant
energy compared to 802.11 PSM, yet even our initial application of this algorithm
was able to save substantial energy.

Finally, due to the nature of Learn-α’s performance guarantees for learning shift-
ing concepts, as discussed in Section 2.2.3, in the future we would be very interested to
observe Learn-α’s performance, as well as that of previous approaches, in simulations
that are non-stationary.

47

48

Chapter 3

Learning with {mistake, label,
error}-complexity guarantees

This chapter is based on joint work with Sanjoy Dasgupta and Adam Tauman Kalai,
that originally appeared in [DKM05].

This chapter studies learning with online constraints, under the iid assumption, first
in the supervised case and then in an active learning setting. We start by showing a
lower bound on mistakes of Ω(1

ε2
) for the Perceptron algorithm to learn linear sepa-

rators within generalization error ε, with respect to data distributed uniformly over
the unit sphere in R

d. We then present a modification of the Perceptron update and
provide an upper bound of Õ(d log 1

ε
) on its mistake-complexity for this case. Our

lower bound implies that in an active learning setting, using any active learning rule,
the Perceptron algorithm needs Ω(1

ε2
) labels to learn linear separators within gener-

alization error ε, with respect to this input distribution. We then present a simple
selective sampling algorithm for this problem, which combines the modified Percep-
tron update with an adaptive filtering rule for deciding which points to query. For
data distributed uniformly over the unit sphere in R

d, we show that our algorithm
reaches generalization error ε after asking for just Õ(d log 1

ε
) labels. It is non-trivial to

match a mistake bound with a label bound since a label is required for every mistake,
and random label choices may hit only a small fraction of mistakes. Additionally, we
attain a matching bound for the total errors (labeled and unlabeled) made by the
algorithm before reaching generalization error ε.

The exponential improvement in label-complexity that we provide over the usual
sample complexity of supervised learning has previously been demonstrated only for
algorithms that do not respect online constraints, for example the computationally
more complex query-by-committee algorithm.

3.1 Introduction

In many machine learning applications, unlabeled data is abundant but labeling is
expensive. This distinction is not captured in the standard PAC or online models

49

of supervised learning, and has motivated the field of active learning, in which the
labels of data points are initially hidden, and the learner must pay for each label it
wishes revealed. If query points are chosen randomly, the number of labels needed to
reach a target generalization error ε, at a target confidence level 1 − δ, is similar to
the sample complexity of supervised learning. The hope is that there are alternative
querying strategies which require significantly fewer labels.

To date, the single most dramatic demonstration of the potential of active learning
is perhaps Freund et al.’s analysis of the query-by-committee (QBC) learning algo-
rithm [FSST97]. In their selective sampling model, the learner observes a stream of
unlabeled data and makes spot decisions about whether or not to ask for a point’s la-
bel. They show that if the data is drawn uniformly from the surface of the unit sphere
in R

d, and the hidden labels correspond perfectly to a homogeneous (i.e., through the
origin) linear separator from this same distribution, then it is possible to achieve
generalization error ε after seeing Õ(d

ε
log 1

ε
) points and requesting just Õ(d log 1

ε
) la-

bels:1 an exponential improvement over the usual Θ̃(d
ε
) sample complexity of learning

linear separators in a supervised setting [Lon95; Lon03].2 This remarkable result is
tempered somewhat by the complexity of the QBC algorithm, which involves random
sampling from intermediate version spaces; the complexity of the update step scales
(polynomially) with the number of updates performed, so it does not respect the
online constraints on time and memory, of concern in this thesis.

In this chapter, we show how a simple modification of the Perceptron update can
be used to achieve the same sample complexity bounds (within Õ factors), under the
same streaming model and the same uniform input distribution. Unlike QBC, we do
not assume a distribution over target hypotheses, and our algorithm does not need
to store previously seen data points, only its current hypothesis.

Our algorithm has the following structure.

Set initial hypothesis v0 ∈ R
d

For t = 0, 1, 2, . . .
Receive unlabeled point xt

Make a prediction SGN(vt · xt)
Filtering step: Decide whether to ask for xt’s label

If label yt is requested:

Update step: Set vt+1 based on vt, xt, yt

Adjust filtering rule

else: vt+1 = vt

Update step.

It turns out that the regular Perceptron update, originally introduced by [Ros58],
that is,

if (xt, yt) is misclassified then vt+1 = vt + ytxt

1In this thesis, the Õ notation is used to suppress terms in log d, log log 1

ε
and log 1

δ
.

2This label-complexity can be seen to be optimal by counting the number of spherical caps of
radius ε that can be packed onto the surface of the unit sphere in R

d.

50

cannot yield an error rate better than Ω(1/
√

lt), where lt is the number of labels
queried up to time t, no matter what filtering scheme is used. In particular:

Theorem 3 Consider any sequence of data points x0, x1, x2, . . . which is perfectly
classified by some linear separator u ∈ R

d. If θt is the angle between u and vt, then
for any t ≥ 0, if θt+1 ≤ θt then sin θt ≥ 1/(5

√

lt + ‖v0‖2).

This holds regardless of how the data is produced. When the points are distributed
uniformly over the unit sphere, θt ≥ sin θt (for θt ≤ π

2
) is proportional to the error

rate of vt, yielding a lower bound of Ω(1
ε2

) on the number of labels to reach error ε.
So instead we use a slightly modified update rule:

if (xt, yt) is misclassified then vt+1 = vt − 2(vt · xt)xt

(where xt is assumed normalized to unit length). Note that the update can also be
written as vt+1 = vt +2yt|vt ·xt|xt, since updates are only made on mistakes, in which
case yt 6= SGN(vt · xt), by definition. Thus we are scaling the standard Perceptron’s
additive update by a factor of 2|vt · xt| to avoid oscillations caused by points close to
the hyperplane represented by the current hypothesis. The same rule, but without the
factor of two, has been used in previous work [BFKV96] on learning linear classifiers
from noisy data, in a batch setting. We are able to show that our formulation has
the following generalization performance in a supervised setting.

Theorem 4 When the modified Perceptron algorithm is applied in a sequential super-
vised setting, with data points xt drawn independently and uniformly at random from
the surface of the unit sphere in R

d, then with probability 1−δ, after O(d(log 1
ε
+log 1

δ
))

mistakes, its generalization error is at most ε.

This contrasts favorably with the Õ(d
ε2

) mistake bound of the Perceptron algorithm,
and a more recent variant, on the same distribution [Bau97; Ser99]. As a lower bound
for standard Perceptron, Theorem 3 also applies in the supervised case, as it holds
for all filtering rules, including viewing all the labels. The bound on labels, Ω(1

ε2
),

lower bounds mistakes as well, as we show in Section 3.4.
The PAC sample complexity of the problem under the uniform distribution is Θ̃(d

ε
)

(lower bound [Lon95], and upper bound [Lon03]). Yet since not all examples yield
mistakes, mistake bounds can be lower than sample bounds. A similar statement
holds in the active learning case: upper bounds on label-complexity can be lower
than sample bounds, since the algorithms are allowed to filter which samples to label.

Filtering step.

Given the limited information the algorithm keeps, a natural filtering rule is to query
points xt when |vt · xt| is less than some threshold st. The choice of st is crucial.
If it is too large, then only a miniscule fraction of the points queried will actually
be misclassified – almost all labels will be wasted. On the other hand, if st is too
small, then the waiting time for a query might be prohibitive, and when an update
is actually made, the magnitude of this update might be tiny.

51

Therefore, we set the threshold adaptively: we start s high, and keep dividing
it by two until we reach a level where there are enough misclassifications amongst
the points queried. This filtering strategy makes possible our main theorem, for the
active learning setting, again for data from the uniform distribution over the unit
sphere in R

d.

Theorem 5 With probability 1 − δ, if the active modified Perceptron algorithm is
given a stream of Õ(d

ε
log 1

ε
) unlabeled points, it will request Õ(d log 1

ε
) labels, make

Õ(d log 1
ε
) errors (on all points, labeled or not), and have final error ≤ ε.

3.2 Related work

Our approach relates to the literature on selective sampling, originally introduced by
[CAL94]. Several selective sampling algorithms for learning linear separators (or their
probabilistic analogues) have been proposed in the literature, and some have been
shown to work in practice, for example Lewis and Gale’s sequential algorithm for text
classification [LG94], which has batch access to the remaining unlabeled data points
at each iteration. Several of these are similar in spirit to our heuristic, in that they
query points with small margins, such as Tong and Koller’s [TK01] active learning
algorithms that use a support vector machine (SVM) as the underlying classifier and
work well in practice. These algorithms are not online, and to our knowledge they
lack formal guarantees.

Among the active learning algorithms that have been shown to obey theoretical
guarantees, several schemes with provable upper bounds on label-complexity are ac-
tually intractable. Dasgupta provided a general result in a non-Bayesian, realizable
setting [Das05] for a scheme that requires exponential storage and computation. In
a non-Bayesian, agnostic setting, a recent label-complexity upper bound for learning
linear separators under the uniform input distribution, relies on an scheme that is
not computationally efficient [BBL06].

Several formal guarantees have been shown for active learning algorithms that
can actually be implemented. Under Bayesian assumptions, Freund et al. [FSST97]

gave an upper bound on label-complexity for learning linear separators under the
uniform, using Query By Committee [SOS92], a computationally complex algorithm
that has recently been simplified to yield encouraging empirical results [GBNT05].
Cesa-Bianchi et al. provided regret bounds on a selective sampling algorithm for
learning linear thresholds [CBCG03] from a stream of iid examples corrupted by
random class noise whose rate scales with the examples’ margins. Recently an upper
bound on label-complexity of, Õ(d2 log 1

ε
), which is close to ours for small d, has been

shown by [BBL06] for an algorithm due to [CAL94], in the setting we consider. The
algorithms discussed above do not respect online constraints on time and memory
however.

In terms of algorithms for selective sampling that adhere to both of the online
constraints of concern in this thesis, and that have been analyzed formally, we are
primarily aware of work by Cesa-Bianchi, Gentile and Zaniboni (CBGZ) [CBGZ04].

52

Their algorithm conforms to roughly the same template as ours but differs in both the
update and filtering rule – it uses the regular Perceptron update and it queries points
xt according to a fixed, randomized rule which favors small |vt ·xt|. The authors make
no distributional assumptions on the input and they show that in terms of worst-case
hinge-loss bounds, their algorithm does about as well as one which queries all labels.
The actual fraction of points queried varies from data set to data set. In contrast, our
objective is to achieve a target generalization error with minimum label-complexity,
although we do also obtain a mistake bound and a bound on total errors (both labeled
and unlabeled) under our distributional assumption.

It is known that active learning does not always give a large improvement in the
sample complexity of learning linear separators. For instance, in our setting where
data is distributed uniformly over the unit sphere, recent work has shown that if the
target linear separator is allowed to be non-homogeneous, then the number of labels
required to reach error ε is Ω(1/ε), no matter what active learning scheme is used
[Das04]. This lower bound also applies to learning homogeneous linear separators
with respect to an arbitrary distribution. In the fully agnostic setting, Kääriäinen
provided a lower bound of Ω(η2

ε2
), where η is the error rate of the best hypothesis in

the concept class [Kää06].

Finally, there is a rich body of theory on a related model in which it is permissible
to create query points synthetically; a recent survey by Angluin [Ang01] summarizes
key results.

3.3 Preliminaries

In our model, all data xt lie on the surface of the unit ball in R
d, which we will denote

as S:
S =

{

x ∈ R
d

∣

∣ ‖x‖ = 1
}

.

Their labels yt are either −1 or +1, and the target function is a half-space u ·x ≥ 0
represented by a unit vector u ∈ R

d which classifies all points perfectly, that is,
yt(u · xt) > 0 for all t, with probability one. This is called the realizable setting: the
target classifier is in the concept class, i.e. there exists a half-space (u) which can
correctly classify all the data.

For any vector v ∈ R
d, we define v̂ = v

‖v‖ to be the corresponding unit vector.

Our lower bound (Theorem 3) holds regardless of how the data are generated;
thereafter we will assume that the data points xt are drawn independently from the
uniform distribution over S. Under the uniform input distribution, any hypothesis
v ∈ R

d has error

ε(v) = Px∈S[SGN(v · x) 6= SGN(u · x)] =
arccos(u · v̂)

π
.

We will refer to the error rate of a hypothesis v as its generalization error, since in
the realizable case the target itself has zero error.

For a hypothesis vt, we will denote the angle between u and vt by θt, and we

53

Figure 3-1: The projection of the error region ξt onto the plane defined by u and vt.

will define the error region of vt as ξt = {x ∈ S |SGN(vt · x) 6= SGN(u · x)}. Figure 3-1
provides a schematic of the projection of the error region onto the plane defined by
u and vt.

We will use the term margin, in the context of learning half-spaces, to denote
simply the distance from an example to the separator in question, as opposed to the
standard use of this term (as the minimum over examples of this distance with respect
to the target separator). For example, we will denote the margin of x with respect
to v as |x · v|.

We will use a few useful inequalities for θ on the interval (0, π
2
].

4

π2
≤ 1− cos θ

θ2
≤ 1

2
, (3.1)

2

π
θ ≤ sin θ ≤ θ (3.2)

Equation (3.1) can be verified by checking that for θ in this interval, 1−cos θ
θ2 is a

decreasing function, and evaluating it at the endpoints.

We will also make use of the following lemma.

Lemma 2 For any fixed unit vector a and any γ ≤ 1,

γ

4
≤ Px∈S

[

|a · x| ≤ γ√
d

]

≤ γ (3.3)

The proof is deferred to the appendix.

54

3.4 A lower bound on {mistakes, labels} for the

Perceptron update

Here we prove Theorem 3 simultaneously for the supervised setting, in which we
lower bound mistakes for Perceptron, and the active learning setting, in which we
lower bound labels for Perceptron paired with any active learning rule. We prove a
lower bound on updates, which implies a mistake bound for Perceptron since it only
performs updates on mistakes. This also serves as a lower bound on labels in the
active learning setting, since a label is required in order to identify a mistake, i.e. as
explained in Section 1.3.2, mistakes are errors that have been labeled.

Consider standard Perceptron, an algorithm of the following form:

Pick some v0 ∈ R
d

Repeat for t = 0, 1, 2, . . .:
Get some (x, y) for which y(vt · x) ≤ 0
vt+1 = vt + yx

On any update,
vt+1 · u = vt · u + y(x · u). (3.4)

Thus, if we assume for simplicity that v0 ·u ≥ 0 (we can always just start count when
this first occurs) then vt · u ≥ 0 always, and the angle between u and vt is always
acute. Since we denote this angle by θt, we can write,

‖vt‖ cos θt = vt · u.

The update rule also implies

‖vt+1‖2 = ‖vt‖2 + 1 + 2y(vt · x). (3.5)

Thus ‖vt‖2 ≤ t + ‖v0‖2 for all t. In particular, this means that Theorem 3 is an
immediate consequence of the following lemma.

Lemma 3 Assume v0 · u ≥ 0 (i.e., start count when this first occurs). Then

θt+1 ≤ θt ⇒ sin θt ≥ min

{

1

3
,

1

5‖vt‖

}

.

Proof: Figure 3-1 shows the unit circle in the plane defined by u and vt. The dot
product of any point x ∈ R

d with either u or vt depends only upon the projection
of x into this plane. The point is misclassified when its projection lies in the shaded
region, ξt. For such points, y(u · x) is at most sin θt (point (i)) and y(vt · x) is at least
−‖vt‖ sin θt (point (ii)).

Combining this with equations (3.4) and (3.5), we get

vt+1 · u ≤ vt · u + sin θt

‖vt+1‖2 ≥ ‖vt‖2 + 1− 2‖vt‖ sin θt

55

To establish the lemma, we first assume θt+1 ≤ θt and sin θt ≤ 1
5‖vt‖ , and then conclude

that sin θt ≥ 1
3
.

θt+1 ≤ θt implies

cos2 θt ≤ cos2 θt+1 =
(u · vt+1)

2

‖vt+1‖2
≤ (u · vt + sin θt)

2

‖vt‖2 + 1− 2‖vt‖ sin θt
.

The final denominator is positive since sin θt ≤ 1
5‖vt‖ . Rearranging,

(‖vt‖2 + 1− 2‖vt‖ sin θt) cos2 θt ≤ (u · vt)
2 + sin2 θt + 2(u · vt) sin θt

and using ‖vt‖ cos θt = (u · vt):

(1− 2‖vt‖ sin θt) cos2 θt ≤ sin2 θt + 2‖vt‖ sin θt cos θt

Again, since sin θt ≤ 1
5‖vt‖ , it follows that (1− 2‖vt‖ sin θt) ≥ 3

5
and that

2‖vt‖ sin θt cos θt ≤ 2
5
. Using cos2 = 1− sin2, we then get

3

5
(1− sin2 θt) ≤ sin2 θt +

2

5

which works out to sin2 θt ≥ 1
8
, implying sin θt > 1

3
. 2

The problem is that the Perceptron update can be too large. In R
2 (e.g. Figure

3-1), when θt is tiny, the update will cause vt+1 to overshoot the mark and swing
too far to the other side of u, unless ‖vt‖ is very large: to be precise, we need
‖vt‖ = Ω(1/ sin θt). But ‖vt‖ grows slowly, at best at a rate of

√
t. If sin θt is

proportional to the error of vt, as in the case of data distributed uniformly over the
unit sphere, this means that the Perceptron update cannot stably maintain an error
rate ≤ ε until t = Ω(1/ε2).

3.5 A modified Perceptron update

We now describe the modified Perceptron algorithm. Using a simple modification
to the standard Perceptron update yields the fast convergence we will prove subse-
quently. Unlike with standard Perceptron, this modification ensures that vt · u is
increasing, i.e., the error of vt is monotonically decreasing. Another difference from
the standard update (and other versions) is that the magnitude of ‖vt‖ = 1, which is
convenient for our analysis.

The modified Perceptron algorithm is shown in Figure 3-2. We now show that the
norm of vt stays at one. Note that ‖v1‖ = 1 and

‖vt+1‖2 = ‖vt‖2 + 4(vt · xt)
2‖xt‖2 − 4(vt · xt)

2 = 1

by induction. In contrast, for the standard Perceptron update, the magnitude of vt

56

Inputs: dimensionality d and desired number of updates

(mistakes) M.

Let v1 = x1y1 for the first example (x1, y1).
For t = 1 to M:

Let (xt, yt) be the next example with y(x · vt) < 0.
vt+1 = vt − 2(vt · xt)xt.

Figure 3-2: The modified Perceptron algorithm. The standard Perceptron update,
vt+1 = vt + ytxt, is in the same direction (note yt = −SGN(vt · xt)) but different
magnitude (scaled by a factor of 2|vt · xt|).

is important and normalized vectors cannot be used.

With the modified update, the error can only decrease, because vt·u only increases:

vt+1 · u = vt · u− 2(vt · xt)(xt · u) = vt · u + 2|vt · xt||xt · u|.

The second equality follows from the fact that vt misclassified xt. Thus vt · u is
increasing, and the increase can be bounded from below by showing that |vt ·xt||xt ·u|
is large. This is a different approach from previous analyses.

Blum et al. [BFKV96] used an update similar to ours, but without the factor of
two. In general, one can consider modified updates of the form vt+1 = vt−α(vt ·xt)xt.
When α 6= 2, the vectors vt no longer remain of fixed length; however, one can verify
that their corresponding unit vectors v̂t satisfy

v̂t+1 · u = (v̂t · u + α|v̂t · xt||xt · u|)/
√

1− α(2− α)(v̂t · xt)2,

and thus any choice of α ∈ [0, 2] guarantees non-increasing error. Blum et al. used
α = 1 to guarantee progress in the denominator (their analysis did not rely on progress
in the numerator) as long as v̂t · u and (v̂t · xt)

2 were bounded away from 0. Their
approach was used in a batch setting as one piece of a more complex algorithm for
noise-tolerant learning. In our sequential framework, we can bound |v̂t · xt||xt · u|
away from 0 in expectation, under the uniform distribution, and hence the choice of
α = 2 is most convenient, but α = 1 would work as well. Although we do not further
optimize our choice of the constant α, this choice itself may yield interesting future
work, perhaps by allowing it to be a function of the dimension. The identical update
to ours was previously proposed for learning Linear Theshold Units: hyperplanes over
discrete-valued vector inputs, in [HK99] which tests the algorithm empirically, and
discusses mistake bounds in a different analysis context.

3.5.1 An upper bound on mistakes for the modified Percep-
tron

How large do we expect |vt ·xt| and |u ·xt| to be for an error (xt, yt)? As we shall see,
in d dimensions, one expects each of these terms to be on the order of d−1/2 sin θt,

57

where sin θt =
√

1− (vt · u)2. Hence, we might expect their product to be about
(1− (vt · u)2)/d, which is how we prove the following lemma.

Note, we have made little effort to optimize constant factors.

Lemma 4 For any vt, with probability at least 1
3
,

1− vt+1 · u ≤ (1− vt · u)

(

1− 1

50d

)

.

There exists a constant c > 0, such that with probability at least 63
64

, for any vt,

1− vt+1 · u ≤ (1− vt · u)
(

1− c

d

)

.

Proof: We show only the first part of the lemma. The second part is quite similar.
We will argue that each of |vt · xt|,|u · xt| is “small” with probability at most 1/3.
This means, by the union bound, that with probability at least 1/3, they are both
sufficiently large.

As explained in Section 3.3, the error rate of vt is θt/π, where cos θt = vt · u, and
the error region is denoted as ξt = {x ∈ S |SGN(vt · x) 6= SGN(u · x)}. By Lemma 2,
for an x drawn uniformly from the sphere,

Px∈S

[

|vt · x| ≤
θt

3π
√

d

]

≤ θt

3π
.

Using P [A|B] ≤ P [A]/P [B], we have,

Px∈S

[

|vt · x| ≤
θt

3π
√

d

∣

∣

∣

∣

x ∈ ξt

]

≤
Px∈S[|vt · x| ≤ θt

3π
√

d
]

Px∈S[x ∈ ξt]
≤ θt/(3π)

θt/π
=

1

3

Similarly for |u · x|, and by the union bound the probability that x ∈ ξt is within
margin θ

3π
√

d
from either u or vt is at most 2

3
. Since the updates only occur if x is in

the error region, we now have a lower bound on the expected magnitude of |vt ·x||u·x|.

Px∈S

[

|vt · x||u · x| ≥
θ2

t

(3π
√

d)2

∣

∣

∣

∣

x ∈ ξt

]

≥ 1

3
.

Hence, we know that with probability at least 1/3, |vt · x||u · x| ≥ 1−(vt·u)2

100d
, since

θ2
t ≥ sin2 θt = 1− (vt · u)2 and (3π)2 < 100. In this case,

1− vt+1 · u ≤ 1− vt · u− 2|vt · xt||u · xt|

≤ 1− vt · u−
1− (vt · u)2

50d

≤ (1− vt · u)

(

1− 1 + vt · u
50d

)

2

58

Finally, we give a high-probability bound, i.e. Theorem 4, stated here with proof.

Theorem 4 With probability 1 − δ, after M = O(d(log 1
ε

+ log 1
δ
)) mistakes, the

generalization error of the modified Perceptron algorithm is at most ε.

Proof: By the above lemma, we can conclude that, for any vector vt,

Ext∈ξt[1− vt+1 · u] ≤ (1− vt · u)

(

1− 1

3(50d)

)

.

This is because with ≥ 1/3 probability it goes down by a factor of 1− 1
50d

and with
the remaining ≤ 2/3 probability it does not increase. Hence, after M mistakes,

E[1− vM · u] ≤ (1− v1 · u)

(

1− 1

150d

)M

≤
(

1− 1

150d

)M

,

since v1 · u ≥ 0. By Markov’s inequality,

P

[

1− vM · u ≥
(

1− 1

150d

)M

δ−1

]

≤ δ.

Finally, using (3.1) and cos θM = vM ·u, we see P [4
π2 θ

2
M ≥ (1− 1

150d
)Mδ−1] ≤ δ. Using

M = 150d log(1/εδ) gives P [θM

π
≥ ε] ≤ δ as required. 2

The additional factor of 1
ε

in the bound on unlabeled samples (Õ(d
ε
log 1

ε
)) follows

by upper bounding the number of unlabeled samples until an update: when the
hypothesis has error rate ε, the waiting time (in samples) until an update is 1

ε
, in

expectation.

3.6 An active modified Perceptron and {label, er-

ror} upper bounds

The ideal objective in designing an active learning rule that minimizes label-complexity
would be to query for labels only on points in the error region, ξt. However without
knowledge of u, the algorithm is unaware of the location of ξt. The intuition behind
our active learning rule is to approximate the error region, given the information the
algorithm does have: vt. As shown in Figure 3-3, the labeling region L is simply
formed by thresholding the margin of a candidate example with respect to vt.

The active version of the modified Perceptron algorithm is shown in Figure 3-
4. The algorithm is similar to the algorithm of the previous section, in its update
step. For its filtering rule, we maintain a threshold st and we only ask for labels of
examples with |vt · x| ≤ st. Approximating the error region is achieved by choosing
the threshold, st, adaptively, so as to manage the tradeoff between L being too large,
causing many labels to be wasted without hitting ξt (and thus yielding updates),
and L only containing points with very small margins with respect to vt, since our

59

Figure 3-3: The active learning rule is to query for labels on points x in L which is
defined by the threshold st on |vt · x|.

update step will make very small updates on such points. We decrease the threshold
adaptively over time, starting at s1 = 1/

√
d and reducing it by a factor of two

whenever we have a run of labeled examples on which we are correct.

For Theorem 5, we select values of R, L that yield ε error with probability at least
1− δ. The idea of the analysis is as follows:

Definition 1 We say the tth update is “good” if,

1− vt+1 · u ≤ (1− vt · u)
(

1− c

d

)

.

(The constant c is from Lemma 4.)

1. (Lemma 5) First, we argue that st is not too small (we do not decrease st too
quickly). Assuming this is the case, then 2 and 3 hold.

2. (Lemma 7) We query for labels on at least an expected 1/32 of all errors. In
other words, some errors may go undetected because we do not ask for their
labels, but the number of mistakes total should not be much more than 32 times
the number of updates we actually perform.

3. (Lemma 8) Each update is good (Definition 1) with probability at least 1/2.

4. (Theorem 5) Finally, we conclude that we cannot have too many label queries,
updates, or total errors, because half of our updates are good, 1/32 of our errors
are updates, and about 1/R of our labels are updates.

We first lower-bound st with respect to our error, showing that, with high proba-
bility, the threshold st is never too small.

60

Inputs: Dimensionality d, maximum number of labels L,
and patience R.

v1 = x1y1 for the first example (x1, y1).

s1 = 1/
√

d
For t = 1 to L:

Wait for the next example x : |x · vt| ≤ st and query its label.

Call this labeled example (xt, yt).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

else:
vt+1 = vt

If predictions were correct on R consecutive labeled

examples (i.e. (xi · vi)yi ≥ 0 ∀i ∈ {t−R + 1, t− R + 2, . . . , t}),
then set st+1 = st/2, else st+1 = st.

Figure 3-4: An active version of the modified Perceptron algorithm.

Lemma 5 With probability at least 1− L
(

3
4

)R
, we have:

st ≥
√

1− (u · vt)2

16d
for t = 1, 2, . . . , L, simultaneously. (3.6)

Before proving this lemma, it will be helpful to show the following lemma. As before,
let us define ξt = {x ∈ S|(x · vt)(x · u) < 0}.

Lemma 6 For any γ ∈
(

0,
√

1−(u·vt)2

4d

]

,

Pxt∈S

[

xt ∈ ξt

∣

∣ |xt · vt| < γ
]

≥ 1

4

Proof: Let x be a random example from S such that |x · vt| < γ and, without loss
of generality, suppose that 0 ≤ x · vt ≤ γ. Then we want to calculate the probability
we err, i.e. u · x < 0. We can decompose x = x′ + (x · vt)vt where x′ = x− (x · vt)vt is
the component of x orthogonal to vt, i.e. x′ · vt = 0. Similarly for u′ = u− (u · vt)vt.
Hence,

u · x = (u′ + (u · vt)vt) · (x′ + (x · vt)vt) = u′ · x′ + (u · vt)(x · vt)

In other words, we err iff u′ · x′ < −(u · vt)(x · vt). Using u · vt ∈ [0, 1] and since
x · vt ∈ [0,

√

(1− (u · vt)2)/(4d)], we conclude that if,

u′ · x′ < −
√

1− (u · vt)2

4d
(3.7)

61

then we must err. Also, let x̂′ = x′

‖x′‖ be the unit vector in the direction of x′. It is

straightforward to check that ‖x′‖ =
√

1− (x · vt)2. Similarly, for u we define û′ =
u′√

1−(u·vt)2
. Substituting these into (3.7), we must err if, û′·x̂′ < −1/

√

4d(1− (x · vt))2,

and since
√

1− (x · vt)2 ≥
√

1− 1/(4d), it suffices to show that,

Px∈S

[

û′ · x̂′ < −1
√

4d(1− 1/(4d))

∣

∣

∣

∣

∣

0 ≤ x · vt ≤ γ

]

≥ 1

4

What is the probability that this happens? Well, one way to pick x ∈ S would
be to first pick x · vt and then to pick x̂′ uniformly at random from the set S ′ =
{x̂′ ∈ S|x̂′ · vt = 0}, which is a unit sphere in one fewer dimensions. Hence the
above probability does not depend on the conditioning. By Lemma 2, for any unit
vector a ∈ S ′, the probability that |û′ · a| ≤ 1/

√

4(d− 1) is at most 1/2, so with
probability at least 1/4 (since the distribution is symmetric), the signed quantity
û′ · x̂′ < −1/

√

4(d− 1) < −1/
√

4d(1− 1/(4d)). 2

We are now ready to prove Lemma 5.
Proof [of Lemma 5]: Suppose that condition (3.6) fails to hold for some t’s. Let
t be the smallest number such that (3.6) fails. By our choice of s1, clearly t > 1.
Moreover, since t is the smallest such number, and u · vt is increasing, it must be the
case that st = st−1/2, that is we just saw a run of R labeled examples (xi, yi), for
i = t−R, . . . , t− 1, with no mistakes, vi = vt, and

si = 2st <

√

1− (u · vt)2

4d
=

√

1− (u · vi)2

4d
. (3.8)

Such an event is highly unlikely, however, for any t. In particular, from Lemma 6, we
know that the probability of (3.8) holding for any particular i and the algorithm not
erring is at most 3/4. Thus the chance of having any such run of length R is at most
L(3/4)R. 2

Lemma 6 also tells us something interesting about the fraction of errors that we
are missing because we do not ask for labels. In particular,

Lemma 7 Given that st ≥
√

(1− (u · vt)2)/(16d), upon the tth update, each erro-
neous example is queried with probability at least 1/32, i.e.,

Px∈S

[

|x · vt| ≤ st

∣

∣x ∈ ξt

]

≥ 1

32
.

62

Proof: Using Lemmas 6 and 2, we have

Px∈S [x ∈ ξt ∧ |x · vt| ≤ st] ≥ Px∈S

[

x ∈ ξt ∧ |x · vt| ≤
√

1− (u · vt)2

16d

]

≥ 1

4
Px∈S

[

|x · vt| ≤
√

1− (u · vt)2

16d

]

≥ 1

64

√

1− (u · vt)2 =
1

64
sin θt

≥ θt

32π

For the last inequality, we have used (3.2). However, Px∈S[x ∈ ξt] = θt/π, so we
are querying an error x ∈ ξt with probability at least 1/32, i.e., the above inequality
implies,

Px∈S

[

|x · vt| ≤ st

∣

∣ x ∈ ξt

]

=
Px∈S [x ∈ ξt ∧ |x · vt| ≤ st]

Px∈S[x ∈ ξt]
≥ θt/(32π)

θt/π
=

1

32
.

2

Next, we show that the updates are likely to make progress.

Lemma 8 Assuming that st ≥
√

(1− (u · vt)2)/(16d), a random update is good with
probability at least 1/2, i.e.,

Pxt∈S

[

(1− vt+1 · u) ≤ (1− vt · u)
(

1− c

d

)
∣

∣

∣
|x · vt| ≤ st ∧ xt ∈ ξt

]

≥ 1

2
.

Proof: By Lemma 7, each error is queried with probability 1/32. On the other
hand, by Lemma 4 of the previous section, 63/64 of all errors are good. Since we are
querying at least 2/64 fraction of all errors, at least half of our queried errors must
be good. 2

We now have the pieces to guarantee the convergence rate of the active algorithm,
thereby proving Theorem 5. This involves bounding both the number of labels that
we query as well as the number of total errors, which includes updates as well as
errors that were never detected.

Theorem 5 With probability 1 − δ, using L = O
(

d log
(

1
εδ

)

(log d
δ

+ log log 1
ε
)
)

labels
and making a total number of errors of O

(

d log
(

1
εδ

)

(log d
δ
+ log log 1

ε
)
)

, the final error
of the active modified Perceptron algorithm will be ε, when run with the above L and
R = O(log d

δ
+ log log 1

ε
).

Proof: Let U be the number of updates performed. We know, by Lemma 5 that
with probability 1− L(3

4
)R,

st ≥
sin θt

4
√

d
≥ θt

2π
√

d
(3.9)

63

for all t. Again, we have used (3.2). By Lemma 8, we know that for each t which is
an update, either (3.9) fails or

E[1− u · vt+1|vt] ≤ (1− u · vt)
(

1− c

2d

)

.

Hence, after U updates, using Markov’s inequality,

P

[

1− u · vL ≥
4

δ

(

1− c

2d

)U
]

≤ δ

4
+ L

(

3

4

)R

.

In other words, with probability 1− δ/4− L(3/4)R, we also have

U ≤ 2d

c
log

4

δ(1− u · vL)
≤ 2d

c
log

π2

δθ2
L

= O

(

d log
1

δε

)

,

where for the last inequality we used (3.1). In total, L ≤ R (U + log2 1/sL). This is
because once every R labels we either have at least one update or we decrease sL by
a factor of 2. Equivalently, sL ≤ 2U−L/R. Hence, with probability 1− δ/4− L(3/4)R,

θL

2π
√

d
≤ sL ≤ 2O(d log(1/δε))−L/R

Working backwards, we choose L/R = Θ(d log 1
εδ

) so that the above expression implies
θL

π
≤ ε, as required. We choose,

R = 10 log
2L

δR
= Θ

(

log
d log 1

εδ

δ

)

= O

(

log
d

δ
+ log log

1

ε

)

.

The first equality ensures that L(3/4)R ≤ δ/4. Hence, for the L and R chosen in the
theorem, with probability 1 − 3

4
δ, we have error θL/π < ε. Finally, either condition

(3.9) fails or each error is queried with probability at least 1/32. By the multiplica-
tive Chernoff bound, if there were a total of E > 64U errors, then with probability
≥ 1− δ/4, at least E/64 > U would have been caught and used as updates. Hence,
with probability at most 1− δ, we have achieved the target error using the specified
number of labels and incurring the specified number of errors. 2

3.7 Conclusions and open problems

Table 3.1 details the related work discussed above, with the results of this chapter
summarized in green. Algorithm names are stated in blue (CAL denotes [CAL94]),
with their analyses cited in black. Only the Perceptron and the algorithm introduced
in this chapter conform to the online constraints of interest in this thesis. Significant
reductions in {mistake, label}-complexity are evident between Perceptron and our
algorithm, in the supervised and active cases.

64

Table 3.1: The contributions of Chapter 3 in context.

While the theoretical study of active learning is still in its infancy, the one nontriv-
ial scenario in which active learning has been shown to give an exponential improve-
ment in sample complexity is that of learning a linear separator for data distributed
uniformly over the unit sphere. In this chapter, we have demonstrated that this par-
ticular case can be solved by a much simpler algorithm than was previously known:
in fact, an online algorithm. It is possible that our algorithm can be molded into
something of more general applicability, and so it would be interesting to study its
behavior under different circumstances, for instance a different distributional assump-
tion. The uniform input distribution is interesting to study, in that most of the data
is close to the decision boundary, but a more common assumption would be to make
the two classes Gaussian, or to merely stipulate that they are separated by a mar-
gin. Open problems include obtaining performance guarantees for our algorithm, or
appropriate variants, in such settings.

65

66

Chapter 4

Online active learning: further
analysis and application

Section 4.6 is based on joint work with Matti Kääriäinen that is currently in submis-
sion [MK06].

In this chapter we analyze the online active learning algorithm of Chapter 3 under
several different assumptions, beyond those in Chapter 3. In Section 4.3 we perform
a version space analysis of the hypothesis yielded from the algorithm in Chapter 3,
and show that it need not remain in the version space. This motivates a “target
region” approach to general active learning, in contrast to the version space approach
in much of the related work. We introduce and discuss this notion in Section 4.4. We
then relax the distributional assumptions from Chapter 3 in various ways, motivated
in part by an open problem in active learning which we present in Section 4.5.1. We
study the algorithm under relaxed distributional assumptions both theoretically, in
Section 4.5.2, providing a label-complexity upper bound when the input distribution
is λ-similar to uniform, and empirically, in Section 4.6.

In Section 4.6, in order to empirically assess the algorithm’s performance when
the distributional and separability assumptions are dropped, we compare its practical
performance to another recently proposed online active learning algorithm, with guar-
antees in a different analysis setting [CBGZ04]. We perform an empirical evaluation
of these two algorithms, and their combined variants along with random sampling, on
optical character recognition (OCR) data, an application that we argue to be appro-
priately served by online active learning. We compare the performance between the
algorithm variants and show significant reductions in label-complexity over random
sampling.

4.1 Related work

Since much of this chapter pertains to the algorithm from Chapter 3, most of the
related work has already been discussed in Section 3.2. In this chapter we will ad-
ditionally make use of the following notions introduced in previous work. The first

67

reference, of which we are aware, to the “region of uncertainty,” a notion we use in
this chapter, is due to Cohn, Atlas and Ladner (CAL94). We will use a pseudo-
metric over the space of hypotheses that is consistent with recent work by [Kää05;
Das05].

Of the algorithms with label-complexity bounds discussed in Chapter 3, the anal-
ysis of the algorithm given in that chapter, and the analysis by [BBL06] of the algo-
rithm due to [CAL94], were only performed with respect to the uniform input distri-
bution. Along with analyzing the uniform input distribution case, [FSST97] showed
a label-complexity bound of Õ(d

λ
log 1

ε
), when the input distribution is “λ-similar” to

uniform, a notion we will define below. Dasgupta also performed such an analysis
on his (intractable) scheme for upper bounding label-complexity, yielding a bound of
Õ(d log 1

λ
log2 1

ε
). None of these algorithms, except for the one we introduced in Chap-

ter 3, respect the online constraints of concern in this thesis, so in Section 4.5.2 we
will analyze this algorithm under input distributions that are “λ-similar” to uniform.

4.2 Preliminaries

Except when stated, we use the notation and assumptions of Chapter 3. Those
definitions are given in Section 3.3. We will additionally define several terms.

The terms defined below apply not only to learning half-spaces but also to general
concept learning, since we will occasionally analyze more general cases in this chapter.
We consider a selective sampling framework, in which unlabeled samples are drawn
independently, in a stream, from an arbitrary fixed distribution, D, referred to as
the input distribution, which is defined over an input space X. The concept class
over which learning is performed is denoted by H. The version space, Vt, is defined
as the set of hypotheses still consistent with the labelings of all t previously labeled
examples. In the realizable case, this is the set of hypotheses whose empirical error
after t labeled examples is zero. Denoting a hypothesis v’s prediction as v(x), we
define the distance between two hypotheses f, g ∈ H as the probability, under the
input distribution, that their classifications disagree, i.e.

d(f, g) = Px∼D[f(x) 6= g(x)].

Using this notation, one can express the error rate of hypothesis vt as εt = d(vt, u). We
will assume this notion of distance (which is in fact a pseudo-metric) when referring,
even implicitly, to distance. For example a ball, B(z, r) is defined with respect to this
pseudo-metric.

We define the region of uncertainty as

U = {x | ∃f, g ∈ V : f(x) 6= g(x)}.

The region of uncertainty can be maintained exactly for certain convex concept classes
such as half-spaces, or in general by allowing access to a supervised batch learner.

We will make use of the following notion of λ-similarity, as defined in [FSST97].

68

Definition 2 A distribution D is λ-similar to a distribution Q on domain X, if for
all A ⊆ X, the following holds for some λ ≤ 1:

λ ≤ Px∼Q[A]

Px∼D[A]
≤ 1

λ

4.3 Version space analysis of DKM algorithm

Here we analyze the algorithm from Chapter 3 (which we will hereafter refer to as
DKM) to ascertain whether its hypothesis can leave the version space. We answer
this question in the affirmative: it is possible for the hypothesis to misclassify a data
point for which it has already observed the label, even in the realizable case. We
provide an example in which the hypothesis attained does not correctly classify all
the training data and thus is not in the version space. A related observation is that
the algorithm’s error region, from which it makes label queries, can actually contain
points whose labels would already be known by an analogous batch learner.

4.3.1 DKM hypothesis can exit version space

Here we show that even in the realizable setting, and even under the uniform dis-
tribution (though our example holds with no assumptions on the input sequence)
DKM’s hypothesis need not be consistent with the training data. Since it can violate
a training data constraint, the hypothesis is thus not always in the version space.
This is possible both in the active setting, as well as the supervised setting.

We first discuss a condition that entails that the hypothesis need not be in the
version space, and is useful to consider, as it sheds light on potential room for im-
provement in the algorithm. This is the situation in which the algorithm’s error region
overlaps with the seen region, the complement of the uncertainty region. As a result,
the algorithm’s hypothesis misclassifies points that it has either already seen, or that
a batch algorithm would be able to label just by convexity from having seen, and
stored, other labeled points. Additionally, this situation could cause the algorithm to
request labels on a larger region than needed, since only a subset of the algorithm’s
error region actually intersects with the uncertainty region.

Theorem 6 There exists a linearly separable sequence of examples such that the
DKM online active learning algorithm, when run on that sequence, will yield a hy-
pothesis, vt, whose current error region, ξt, is not contained in the current uncertainty
region, Ut.

Proof: It will suffice to provide a counterexample, i.e. an x ∈ ξt, the error region
of DKM’s hypothesis, such that x /∈ Ut, the region of uncertainty. We will provide a
counterexample in R

2. We will give u, x0, x1 and x2 such that initializing DKM with
x0 and then updating DKM’s hypothesis on x1 and x2 yields a hypothesis v3 that
misclassifies a point x /∈ U3, i.e. the uncertainty region after the three label updates.

69

Figure 4-1: Target separator indicated by its normal vector, u. Hypothesis v is
initialized with x0, and updated with x1, yielding v2. Next update on x2 yields v3.
One of the training examples, x0, is now misclassified.

Figure 4-2: The indicated area is the positive “seen” region. It overlaps with the
error region: the wedge between the separators indicated by u and v3.

70

Since our subscripts only index label queries, these examples can arrive interspersed
with arbitrarily many unlabeled examples that fail DKM’s active learning rule.

Without loss of generality (as there is spherical symmetry), we will assume u =

(0, 1). Consider that x0, the point that initializes v1, is (

√
2+

√
3

2
,

√
2−

√
3

2
). So v1 =

y0x0 = SGN(u ·x0)x0 = (

√
2+

√
3

2
,

√
2−

√
3

2
). Let the next point in the stream that fulfills

DKM’s labeling rule be x1 = (

√
2+

√
3−

√
3

2

q

2−
√

2+
√

3
,

√
2−

√
3−1

2

q

2−
√

2+
√

3
). DKM will choose to label

this point since v1 · x1 =

q

2−
√

2+
√

3

2
≤ 1√

2
= 1√

d
. This point will yield an update

because it is a mistake: u · x1 =

√
2−

√
3−1

2

q

2−
√

2+
√

3
< 0 whereas v1 · x1 > 0. The DKM

update will yield v2 = v1 − 2(v1 · x1)x1 = (
√

3
2

, 1
2
).

If the next point point fulfilling the labeling criterion is x2 = (−
√

2+
√

3

2
,

√
2−

√
3

2
),

it will be labeled, since |v2 · x2| ≤ 1√
d

= 1√
2
. This point will yield an update because

it is a mistake: u · x2 =

√
2−

√
3

2
> 0, whereas v2 · x2 = − 1√

2
< 0. The DKM update

will yield: v3 = v2− 2(v2 · x2)x2 = (−1
2
,
√

3
2

). A schematic of this example is provided
in Figure 4-1.

Although v3 now correctly classifies x2, it will incorrectly classify points that are
no longer in the uncertainty region. When learning a half-space, the uncertainty
region can reduce from occupying the whole input space as soon as d points have
been seen (assuming the points are in general position, i.e. d points that do not lie
in a lower dimensional subspace). We will denote the complement of the uncertainty
region as, Ū3, and refer to it as the “seen” region (after three labels), where the seen
region is actually composed of two convex regions that are antipodal reflections of
eachother: the region of seen positive examples, Ū+

3 , and the region of seen negative
examples, Ū−

3 .
In this example in R

2, as shown in Figure 4-2, after having seen the points x0,
x1 and x2, Ū+

3 is the (shorter) arc along the surface of the ball in R
2 from x0 to

x2, and Ū−
3 is its antipodal reflection, connecting x̄0 to x̄2, where x̄ is the antipodal

reflection of x. However the error region after these three labels, ξ3 = {x ∈ R
d, ‖x‖ =

1
∣

∣ SGN(u · x) 6= SGN(v3 · x)} is the (shorter) arc from (1, 0) to (
√

3
2

, 1
2
). Thus the arc

from x0 = (

√
2+

√
3

2
,

√
2−

√
3

2
) to (

√
3

2
, 1

2
) is simultaneously in ξ3 and Ū+

3 , and thus not
in U , the uncertainty region. 2

While we just chose one example that was exact to write down in rational numbers,
such a scenario is sufficiently general. The example can be easily modified to hold
for vt, where t is an arbitrary number of updates, including the value of the bound in
Chapter 3. Our example remains unchanged as x0 descends arbitrarily close to (1, 0)
from above (and x1 is instantiated appropriately to attain the same value for v2).
However, although it is easy to show parts of the “seen” region that are misclassified,
we have not yet ascertained whether for a training point to be violated it had to have
been the point initializing v.

71

DKM need not be in version space

Theorem 6 implies the following corollary.

Corollary 2 There exists a linearly separable sequence of examples such that the
DKM online active learning algorithm, when run on that sequence, will yield a hy-
pothesis, vt, that misclassifies at least one training data point.

Given Theorem 6, we can prove the Corollary by applying Lemma 9, below, that
shows that the condition from Theorem 6 implies that DKM need not be in the
version space.

Lemma 9 is general in that it applies to arbitrary concept learning (as opposed
to just linear separators) in the realizable case. Thus for this lemma, we generalize
the definition of the error region to ξt = {x ∈ X |vt(x) 6= u(x)}, which in the linear
separator learning context is ξt = {x ∈ S |SGN(vt · x) 6= SGN(u · x)}, consistent with
its definition in Section 3.3. The following two lemmas make no reference to the
particular algorithm yielding the hypothesis.

Lemma 9 When learning an arbitrary concept in the realizable setting, if the error
region of a hypothesis is not contained in the uncertainty region of the hypothesis,
then the hypothesis is not in the version space. Or:

∃x ∈ ξt : x /∈ Ut ⇒ vt /∈ Vt.

Proof: We will prove the contrapositive, i.e.

vt ∈ Vt ⇒ (x ∈ ξt ⇒ x ∈ Ut).

By the definition of the error region ξt, if x ∈ ξt then vt(x) 6= u(x). Ut is defined as all
points in the input space such that there exists at least one pair of classifiers in the
current version space whose classifications on that point disagree. In the realizable
setting u ∈ Vt for all t. So when vt ∈ Vt, one pair of classifiers in the version space
that disagree on the classification of x ∈ ξt is the pair u, vt, and thus x ∈ Ut. 2

An example in which DKM misclassifies a point it has actually already been
trained on occurs in the proof of Theorem 6. The final hypothesis, v3, will misclassify

x0, since u · x0 =

√
2−

√
3

2
> 0 whereas v3 · x0 =

√
3(2−

√
3)−
√

2+
√

3

4
< 0, and x0 was one

of the previously seen labeled training points. This can be observed by comparing
the classifications of u and v3 of point x0, in Figure 4-2.

We note here that, at least in the case of learning linear separators, the converse
of Lemma 9 does not hold. We will show this in the following lemma.

Lemma 10 When learning linear separators in the realizable setting, if a hypothesis
is not in the version space, it is possible for its error region to be contained in its
uncertainty region, i.e. vt /∈ Vt need not imply ∃x ∈ ξt, x /∈ Ut.

72

Proof: In R
d, it takes at least d labeled examples before the seen region will have

non-zero surface area in R
d. So any hypothesis that misclassifies a training example

(and is thus outside the version space) after fewer than d labeled examples will have
its error contained in the uncertainty region, as the uncertainty region will still be
the entire input space. 2

4.3.2 Discussion

In comparison to previous work, the hypothesis updated by the Query by Committee
algorithm is always in the version space, as it is the Gibbs classification. However
this algorithm is not online and its analysis relies on Bayesian assumptions. The
hypothesis generated by standard Perceptron can leave the version space. We have
not yet checked this on all recent variants such as [CBGZ04; CBCG05].

The observation that DKM’s error region is not a subset of the uncertainty region
seems to leave room for improvement in label-complexity. The algorithm is designed
to query for labels on a constant fraction of the error region. However if parts of
the error region are redundant, in that they are not even in the uncertainty region,
it would seem the algorithm could make due with fewer labels. At least in the
uniform case however, DKM already attains the optimal label-complexity, in addition
to respecting online constraints. The only suggestion we can put forth in order to
perhaps decrease label-complexity in the general case would require knowledge of
the “seen” region. This can be implemented by keeping the convex hull of all seen
mistakes (for certain convex concepts), or via reduction to supervised batch learning,
in general. It seems unlikely for a method augmented in this way to still meet online
constraints.

As we will discuss further in the next section, our results suggest that, following
DKM’s example, it may not be necessary to track the version space in the process of
performing active learning

4.4 Target region vs. version space approach

Regardless of its possible applicability to online active learning, we will take this
section to consider the possible implications of the observation of Section 4.3 on the
design of general active learning algorithms, even in the batch case. The discussion
here will leave the concept class and input distribution as general as possible. Our
results in Section 4.3 suggest that in order to attain a hypothesis within some distance
(in terms of probability of disagreement) from the target, the current hypothesis need
not always be in the version space, i.e. consistent with all training examples seen so
far (in the online setting). Moreover, even the final concept (or the one learned in a
batch setting) can err on a fraction of the training examples if the fraction is small.

First we note that the observation above may aid in improvements to the upper
bound on label-complexity for active learning of arbitrary concepts under arbitrary
input distributions, in the batch setting, due to [Das05], since the proof idea involves

73

cutting the discretization of the version space based on labeled examples. Thus the
final hypothesis chosen cannot misclassify any of the training examples. Since it may
be the case that some hypotheses within error ε from the target do err on some of the
training examples, including such hypotheses in the search could reduce the number
of label queries needed to find a hypothesis ε-close to the target.

4.4.1 Target region approach

The conclusions of our version space analysis motivate the notion of the target region.

For a fixed ε ≤ 1, we define the target region as H∗ = {h ∈ H
∣

∣

∣
d(h, u) < ε}.

The target region contains u, but could potentially contain other hypotheses in h, so
taking the limit of the number of seen labeled examples to infinity, the target region
contains the version space (which is then just B(u, 0)) as a subset. In Theorem 5
in Chapter 3, we gave a t after which DKM outputs a hypothesis in H∗, and in
Section 4.3 we showed that for any t, the hypothesis need not be in Vt. Since, at least
in the case when t goes to infinity, H∗ can be a superset of V , this might motivate
an active learning algorithm aimed at tracking H∗ as opposed to V . We will discuss
this issue in light of designing a batch active learning algorithm, as adding the online
constraint would likely only make the problem harder.

An important issue in designing an efficient algorithm along these lines would of
course be implementation: how to maintain either an approximation to H∗, or a set
that contains H∗, even just with high probability, efficiently. Setting that problem
aside though, we analyze whether for a finite t, H∗ and Vt possess any subset or
superset relation, as such a relation would lend value to this approach.

4.4.2 Subset analysis of target region and version space

Here we analyze the relation of H∗ and Vt and show that for any finite t, neither
H∗ ⊆ Vt nor Vt ⊆ H∗ need hold. Our proofs are algorithm-independent: they are not
concerned with whether a learning algorithm could yield the hypothesis, h used in
the proof, and they are shown in the supervised case without addressing whether an
active learning algorithm could yield, as a labeled sequence, the sequence of examples
used in the proof. Thus when analyzing a specific algorithm, some subset relation
may actually hold between H∗ and Vt.

Lemma 11 For any fixed ε ≤ 1, there can exist a concept class H and an input
distribution D such that for any finite t, H∗ ⊆ Vt need not hold.

Proof: We will show that for any finite t, there can exist h ∈ H∗, and a se-
ries of t examples, such that h /∈ Vt. By the definition of h, if there exists an
h such that 0 < d(h, u) < ε, then h ∈ H∗. Since d(h, u) > 0 is equivalent to
Px∼D[h(x) 6= u(x)] > 0, with constant probability any x is misclassified by h. Thus
for any t, any sequence of t examples could contain an x that h misclassifies, in which
case h /∈ Vt. 2

74

Section 4.3 provided a sequence of labeled examples that illustrate a special case
of Lemma 11, that of learning linear separators, when h and the active learning rule
are specified by the update and filtering rules from Chapter 3, respectively.

Lemma 12 For any fixed ε ≤ 1, there can exist a concept class H and an input
distribution D such that for any finite t, Vt ⊆ H∗ need not hold.

Proof: We will show that for any finite t, there can exist h /∈ H∗, and a series of t
examples, such that h ∈ Vt. The version space, Vt, by definition, contains any h ∈ H
that has made zero mistakes on the t seen labeled examples. By definition of H∗, if
there exists an h such that ε < d(h, u) < 1 then h /∈ H∗. Since d(h, u) < 1 is equivalent
to Px∼D[h(x) 6= u(x)] < 1, then for such an h, we have that Px∼D[h(x) = u(x)] > 0.
For any t there exists at least one sequence of examples x1, . . . , xt such that with
non-zero probability h(xi) = u(xi) for all i,∈ {1 . . . , t}, for example an iid sequence
of draws from D: Pxi∼D[h(xi) = u(xi)] > 0 for each xi, and by independence, the
probability of the correct classification of the whole sequence is just the product of
the individual probabilities, which are each non-zero. In the case of that sequence
being observed, since h correctly classifies all examples in the sequence, h ∈ Vt. 2

As mentioned above, when analyzing a particular algorithm, some subset relation
may actually hold between these two sets, at least with some probability. If that
were the case, the goal in designing an algorithm would be to approximate or approx-
imately contain H∗ efficiently. Currently we are not aware of any tractable methods to
approximate the version space, unless it has special properties, such as being spherical
with high probability, which occurs for example when the concept class is linear sep-
arators and the input distribution is uniform. In that case Perceptron approximates
the version space by its center, as does the variant in Chapter 3, which combined with
the active learning mechanism of Chapter 3 yields the label-complexity guarantees
provided therein.

As to whether a method that approximates or approximately contains H ∗, if
tractable, would yield label-complexity savings over a version space method, it is
important to note that by uniform convergence, the version space converges to B(u, 0)
at a rate 1

t
, in a realizable, supervised iid setting. The rate of convergence of some

approximation or superset of H∗ to H∗ could not be faster than this, since the rate of
convergence of frequencies to probabilities increases with the value of the probability,
and is at best 1

t
, for probabilities close to zero. So in approximating H∗ = B(u, ε),

convergence to hypotheses with distance greater than zero from u can only be slower
than convergence to B(u, 0).

4.5 Relaxing distributional assumptions on DKM

In this section and the next, we relax the distributional assumptions from Chapter 3
in various ways, and study the algorithms from Chapter 3 theoretically in this section,
and empirically in Section 4.6.

75

One motivation for attaining performance guarantees under distributional assump-
tions that are more relaxed than those of Chapter 3, is that such an analysis could
potentially provide a preliminary answer to an open problem we recently proposed in
[Mon06], and present here. This is a general problem in active learning so it could be
solved by the analysis of a batch algorithm; however, solving it via the analysis of an
online algorithm such as DKM would suffice, and would provide even more efficiency
than required by the open problem.

4.5.1 Motivation: open problem in active learning

Here we describe an open problem concerning efficient algorithms for general active
learning. The purpose of this open problem is to probe to what extent the PAC-like
selective sampling model of active learning helps in yielding label-complexity savings
beyond PAC sample complexity. So we seek to pose the simplest problem such that
if active learning is a useful model, it should be solvable. By useful we mean that
studying the model yields efficient algorithms with label-complexity bounds less than
PAC. In order to simplify the problem we remove the aspects that could be solved via
unsupervised learning. Thus we seek to pinpoint the active learning problem only, in
order to determine its difficulty.

While the analysis of selective sampling is still in its infancy, we focus here on one
of the (seemingly) simplest problems that remain open. Given a pool of unlabeled
examples, drawn iid from an arbitrary input distribution known to the learner, and
oracle access to their labels, the objective is to achieve a target error rate with min-
imum label-complexity, via an efficient algorithm. No prior distribution is assumed
over the concept class, however the problem remains open even under the realizabil-
ity assumption: there exists a target hypothesis in the concept class that perfectly
classifies all examples, and the labeling oracle is noiseless.1 As a precise variant of the
problem, we consider the case of learning homogeneous half-spaces in the realizable
setting: unlabeled examples, xt, are drawn i.i.d. from a known distribution D over the
surface of the unit ball in R

d and labels yt are either −1 or +1. The target function
is a half-space u · x ≥ 0 represented by a unit vector u ∈ R

d such that yt(u · xt) > 0
for all t. Predictions are of the form v(x) = SGN(v · x).

Problem: Provide an algorithm for active learning of half-spaces, such that (with
high probability with respect to D and any internal randomness):

1. After L label queries, the algorithm’s hypothesis v obeys Px∼D[v(x) 6= u(x)] < ε.

2. L is at most the PAC sample complexity of the supervised problem, Õ(d
ε
log 1

ε
),

and for a general class of input distributions, L is significantly lower.

3. Running time is at most poly(d, 1
ε
).

The assumption that D is known reflects the attempt to extract what is difficult
about active learning from the larger problem that involves unsupervised learning. D

1In the general setting, the target is the member of the concept class with minimal error rate on
the full input distribution, with respect to the (possibly noisy) oracle.

76

could either be “known” approximately, via an initial unsupervised learning phase,
or known exactly, in a new model: there is infinite unlabeled data for computing
D, but the learner only has oracle access to labels on a finite subset. This notion is
somewhat analogous to a semi-supervised model, although it is still less constrained
in that within the subset with oracle access to labels, the learner has the freedom
to only query labels on an even smaller subset. In this case we are not concerned
with the total running time being polynomial, but the time to choose queries, and
make appropriate updates. Even these operations are intractable in existing schemes
currently providing label-complexity upper bounds under general distributions.

Left unspecified by this problem is the definition of a suitably “general class of
input distributions.” While the standard PAC bound for the specific problem variant
above is Õ(d

ε
log 1

ε
), Dasgupta provided a lower bound on label-complexity of Ω(1

ε
)

[Das04], so there does not appear to be a significant amount of slack. However, a
pathological distribution (confined to a lower dimensional subspace) yields the lower
bound. Thus could the class of input distributions be defined in such a way so as
to avoid the lower bound? In the uniform case, the PAC complexity is Θ̃(d

ε
) [Lon95;

Lon03], however in the active learning model, we have shown in Chapter 3 a label-
complexity upper bound of Õ(d log 1

ε
). This is the type of asymptotic savings we

would hope for in a more general case, however it remains to be defined what would
be considered sufficiently general in terms of input distributions.

Other open variants

Along with the simple version stated here, the following variants remain open. It is
clearly also an open problem when D is unknown to the learner. The agnostic setting,
under certain scenarios could be studied, however, the fully agnostic setting faces the
lower bound of [Kää06]. An analogous goal could be defined for other concept classes,
or for an algorithm that can learn general concepts. Along the lines of this thesis,
it would be interesting to additionally apply online constraints to this problem. I.e.,
not only must data access be sequential, but the storage and time complexity of the
online update must not scale with the number of seen labels or mistakes.

State of the art

The state of the art falls into several categories. Though we have touched on most of
the related works in Chapter 3 (Section 3.2) or in Section 4.1, here we characterize
them with respect to the open problem.

Recent work has provided several negative results. In Chapter 3 we showed that
standard Perceptron requires Ω(1

ε2
) labels under the uniform, using any active learning

rule. Dasgupta [Das05] provided a general lower bound for learning half-spaces of
Ω(1

ε
) labels, when the size of the unlabeled sample is bounded. Kääriäinen provided

a lower bound of Ω(η2

ε2
), where η is the generalization error of the best hypothesis in

the concept class. [Kää06].
Several of the positive results to date have been based on intractable algorithms.

Dasgupta [Das05] gave a general upper bound on labels for selective sampling to

77

learn arbitrary concepts under arbitrary input distributions, which for half-spaces
under distributions λ-similar to uniform is Õ(d log 1

λ
log2 1

ε
). The algorithm achieving

the bound is intractable: exponential storage and computation are required, as well
as access to an exponential number of functions in the concept class (not just their
predictions). Similarly, recent work by Balcan, Beygelzimer and Langford [BBL06]

provides an upper bound on label-complexity of Õ(d2 log 1
ε
) for learning half-spaces

under the uniform, in a certain agnostic scenario, via an intractable algorithm.

Several selective sampling algorithms have been shown to work in practice, e.g.
[LG94]. Some lack performance guarantees, or have been analyzed under different
assumptions than those of this problem (e.g. the regret framework [CBGZ04]). Under
a Bayesian assumption, Freund et al. [FSST97] gave a bound on label-complexity for
QBC of Õ(d log 1

ε
) for learning half-spaces under the uniform, and Õ(d

λ
log 1

ε
) under

“λ-similar” to uniform. Not only is the algorithm computationally complex, requiring
sampling from the version space, but also the Bayesian assumption is significantly
stronger than the realizability assumption considered here.

There have also been some positive results for efficient algorithms for this setting,
however to date the analyses have only been performed with respect to the uniform
input distributions such as the Õ(d2 log 1

ε
) bound of [BBL06] in the realizable case,

and our Õ(d log 1
ε
) label-complexity upper bound in Chapter 3. With regard to the

larger goals of this thesis, only the latter algorithm is online.

Possible approaches

It is important to note that solving this open problem might only require a new
analysis, not necessarily a new algorithm. It may be the case, for example, that some
algorithms previously only analyzed in the regret framework, could yield the desired
label-complexity guarantees with the appropriate analysis. If this were the case, then
perhaps the solution to this open problem could actually be with an algorithm that
is online in the sense we are concerned with in this thesis.

4.5.2 A label-complexity upper bound under λ-similar to
uniform

As a first step towards relaxing the distributional assumption, we extend the analysis
from Chapter 3 to input distributions that are λ-similar to uniform.

We make use of Definition 2. In particular, a distribution D is λ-similar to the
uniform distribution, U , if:

λ ≤ U [A]

Px∼D[A]
≤ 1

λ

λ Px∼D[A] ≤ U [A] ≤ 1

λ
Px∼D[A]

78

This provides the following relations:

Px∼D[A] ≤ 1

λ
U [A] (4.1)

Px∼D[A] ≥ λ U [A] (4.2)

We will now use these relations to prove a label-complexity upper bound on the
algorithm in Chapter 3, for input distributions λ-similar to uniform. As in Chapter 3,
the bound will depend on d, the dimension, and ε, the final error rate on the input
distribution, and in addition the bound will depend on λ.

Theorem 7 With probability 1 − δ, the online active learning algorithm stated in
Chapter 3, given iid samples from a distribution D that is λ-similar to the uni-
form, will reach error ≤ ε after Õ(poly(1

λ
) d log 1

ε
) label queries, and make at most

Õ(poly(1
λ
) d log 1

ε
) errors (on all points, labeled or not).

Proof: We will closely follow the proof of Theorem 5 in Chapter 3. We will need
to modify several lemmas. We start by showing that Lemma 6 of Chapter 3 holds
exactly as stated however with probability λ2

4
, as opposed to 1

4
as in the uniform case,

i.e. we will show the following lemma.

Lemma 13 For any γ ∈
(

0,
√

1−(u·vt)2

4d

]

,

Pxt∼D

[

xt ∈ ξt

∣

∣ |xt · vt| < γ
]

≥ λ2

4

Proof: By the exact initial argument in Lemma 6, we have that it would suffice to
show:

Px∼D

[

û′ · x̂′ < −1
√

4d(1− 1/(4d))

∣

∣

∣

∣

∣

0 ≤ x · vt ≤ γ

]

≥ λ2

4

We proceed to expand the left hand side. Noting that

Px∼D[A|B] =
Px∼D[A, B]

Px∼D[B]
≥ λ U [A, B]

1
λ
U [B]

= λ2U [A|B]

where the inequality follows by applying (4.2) and (4.1) to the numerator and de-
nominator, respectively. By the proof of Lemma 6, we have that

Px∼U

[

û′ · x̂′ < −1
√

4d(1− 1/(4d))

∣

∣

∣

∣

∣

0 ≤ x · vt ≤ γ

]

≥ 1

4

Thus

Px∼D

[

û′ · x̂′ < −1
√

4d(1− 1/(4d))

∣

∣

∣

∣

∣

0 ≤ x · vt ≤ γ

]

≥ λ2

4

79

and we are done, using the mechanics of Lemma 6 mentioned above. 2

This leads directly to a version of Lemma 5 from Chapter 3, which we will state
here without proof as the proof is identical to the proof of Lemma 5.

Lemma 14 With probability at least 1− L
(

1− λ2

4

)R
, we have:

st ≥
√

1− (u · vt)2

16d
for t = 1, 2, . . . , L, simultaneously.

where L is the total number of label queries.

We now prove a modification of Lemma 7 from Chapter 3.

Lemma 15 Given that st ≥
√

(1− (u · vt)2)/(16d), upon the tth update, each erro-
neous example is queried with probability at least λ4/32, i.e.,

Px∼D

[

|x · vt| ≤ st

∣

∣x ∈ ξt

]

≥ λ4

32
.

Proof: First we simplify Px∼D [x ∈ ξt ∧ |x · vt| ≤ st]. Applying Lemma 14,

Px∼D [x ∈ ξt ∧ |x · vt| ≤ st] ≥ Px∼D

[

x ∈ ξt ∧ |x · vt| ≤
√

1− (u · vt)2

16d

]

Now using
Px∼D[A, B] = Px∼D[B|A]Px∼D[A] ≥ Px∼D[B|A]λ U [A]

(where the inequality is by (4.2)), as well as Lemma 13, we can continue to simplify
the right hand side.

Px∼D

[

x ∈ ξt ∧ |x · vt| ≤
√

1− (u · vt)2

16d

]

≥ λ3

4
Px∼U

[

|x · vt| ≤
√

1− (u · vt)2

16d

]

≥ λ3θt

32π

where the last inequality summarizes several steps that follow the proof of Lemma 7
exactly.

Now we can analyze the quantity Px∼D

[

x ∈ ξt

∣

∣ |x · vt| ≤ st

]

.

Px∼D

[

x ∈ ξt

∣

∣ |x · vt| ≤ st

]

=
Px∼D [x ∈ ξt ∧ |x · vt| ≤ st]

Px∼D[x ∈ ξt]
≥

λ3θt

32π
1
λ

θt

π

=
λ4

32

where we apply the lower bound on the numerator we just derived, as well as the
upper bound on the denominator from (4.1). 2

80

Given Lemma 15, assuming Lemma 13 holds, we query for labels on at least λ4

32
of

the total errors. In order to show that a constant fraction of our label queries yield
“good” updates, i.e. updates that decrease the error of the algorithm’s hypothesis by
a factor we will instantiate below, it will suffice to show that the probability of the
update made on a given error being “good” is at least 1− λ4

64
. Since we are querying

labels on at least a 2λ4

64
fraction of errors, if at most a λ4

64
fraction of errors are not

good, then at least half of our label queries yield good updates. Therefore we prove
a modification of Lemma 4 from Chapter 3.

Lemma 16 For any vt, with probability at least 1− λ4

64
,

1− vt+1 · u ≤ (1− vt · u)

(

1− cλ12

d

)

.

where c is a constant.

Proof: We proceed very similarly to the proof of Lemma 4, starting with P [A|B] ≤
P [A]/P [B].

Px∼D

[

|vt · x| ≤
λ6θt

128π
√

d

∣

∣

∣

∣

x ∈ ξt

]

≤
Px∼D[|vt · x| ≤ λ6θt

128π
√

d
]

Px∼D[x ∈ ξt]

≤
1
λ
Px∼U [|vt · x| ≤ λ6θt

128π
√

d
]

λ θt

π

≤
1
λ

λ6

128
θt

π

λ θt

π

=
λ4

128

For the second inequality we applied (4.1) and (4.2) to the numerator and denomina-
tor, respectively. The last inequality is an application of the band lemma (Lemma 2
from Chapter 3).

Following the proof of Lemma 4, the probability that |u · x| is less than the
threshold above is bounded identically. So using the union bound on the probability
that either quantity is small, we can now lower bound the size of 2|vt · x||u · x| as
follows:

Px∼D

[

2|vt · x||u · x| ≥
2λ12θ2

t

(128π)2d

∣

∣

∣

∣

x ∈ ξt

]

≥ 1− 2
λ4

128
= 1− λ4

64

Concluding via the identical argument to the proof of Lemma 4, this implies a mul-
tiplicative decrease in error of the algorithm’s hypothesis by a factor of (1 − cλ12

d
)

that holds with probability 1− λ4

64
, as desired. This also provides us a bound on the

81

expected error.

Ext∈ξt[1− vt+1 · u] ≤ (1− vt · u)

(

1− λ4

64

) (

1− cλ12

d

)

≤ (1− vt · u)

(

1− cλ12

d

)

(4.3)

This is because with probability at least 1− λ4

64
it goes down by a factor of (1− cλ12

d
)

and with the remaining probability it does not increase. 2

To finish the proof of Theorem 7, we follow the logic of the proof of Theorem 5
of Chapter 3. We have now shown that at least half of the label queries yield good
updates, and Lemma 15 entails that the number of total errors is at most a factor of
32
λ4 more than the number of label queries. By definition of the algorithm, about 1

R

label queries are updates. So for our bounds to hold, it remains to show that there
exists an R = Õ(poly(1

λ
)) that allows our probabilistic guarantees to hold and yields

the bound on updates and labels that we claim.

We closely follow the proof of Theorem 5, spelled out here with all the required
modifications. Let U be the number of updates performed. We know, by Lemma 14

that with probability 1− L
(

1− λ2

4

)R
,

st ≥
sin θt

4
√

d
≥ θt

2π
√

d
(4.4)

for all t, making use of (3.2). Using Lemma 16, which was computed so that we query
labels on at least half of the errors if (4.4) holds, and making use of equation (4.3),

we have that for each t which is an update, with probability 1− L
(

1− λ2

4

)R
,

E[1− u · vt+1|vt] ≤ (1− u · vt)

(

1− cλ12

2d

)

.

because with probability 1/2 it decreases by a factor of (1 − cλ12

d
) and with the

remaining probability it does not increase. Hence, after U updates, using Markov’s
inequality,

P

[

1− u · vL ≥
4

δ

(

1− cλ12

2d

)U
]

≤ δ

4
+ L

(

1− λ2

4

)R

.

In other words, with probability 1− δ/4− L(1− λ2

4
)R, we also have

U ≤ 2d

cλ12
log

4

δ(1− u · vL)
≤ 2d

cλ12
log

π2

δθ2
L

= O

(

d

λ12
log

1

δε

)

,

where for the last inequality we used (3.1). In total, L ≤ R (U + log2 1/sL). This is
because once every R labels we either have at least one update or we decrease sL by a

82

factor of 2. Equivalently, sL ≤ 2U−L/R. Hence, with probability 1− δ/4−L(1− λ2

4
)R,

θL

2π
√

d
≤ sL ≤ 2O(d

λ12 log(1/δε))−L/R

Working backwards, we choose L/R = Θ(d
λ12 log 1

εδ
) so that the above expression

implies θL

π
≤ ε, as required. To ensure L(1− λ2

4
)R ≤ δ/4, we choose,

R =
4

λ2
log

2L

δR
= Θ

(

1

λ2
log

d log 1
εδ

λ12δ

)

= O

(

1

λ2

(

log
d

λ12δ
+ log log

1

ε

))

.

Hence, for the L and R chosen in the theorem, with probability 1− 3
4
δ, we have error

θL/π < ε. Finally, either condition (4.4) fails or each error is queried with probability
at least λ4/32. By the multiplicative Chernoff bound

Pr[E > 2
32

λ4
U] ≤ e−

32U

3λ4 ≤ δ

4
(4.5)

So if there were a total of E > 64U/λ4 errors, then with probability ≥ 1 − δ/4,
at least λ4E/64 > U would have been caught and used as updates. Hence, with
probability at most 1− δ, we have achieved the target error using Õ(poly(1

λ
) d log 1

ε
)

label queries, and incurring at most Õ(poly(1
λ
) d log 1

ε
) errors (labeled or unlabeled). 2

Discussion

We have made no attempt to minimize the exponent on 1
λ

in the label-complexity
bound, as the goal was simply to prove the poly(1

λ
) dependence. Tightening the

bound is left for future work.

The extent to which Theorem 7 addresses the open problem from Section 4.5.1
depends on the question of how to define a suitably general class of input distributions,
and whether λ-similar to uniform could be considered suitably general. It also depends
on whether the bound is considered tight enough in terms of its dependence on λ. The
only comparable bounds are for methods that are not online. A bound logarithmic
in 1

λ
was shown in the hypothetical case in which the method need not be a tractable

algorithm [Das05]. Another analysis yields a bound that is linear in 1
λ

[FSST97],
however it relies on the QBC algorithm, whose storage and time complexity scales
with the number of seen mistakes, and the analysis includes a Bayesian assumption.
While the dependence in Theorem 7 is polynomial in 1

λ
, as far as we are aware it is the

only such upper bound for an efficient algorithm, in the online active learning setting
we are considering. To the extent that the class of distributions is considered general,
it answers the open problem in that it is polynomial in the salient parameters.

83

4.6 Comparison of online active learning algorithms

in application to OCR

We will now explore the empirical performance of DKM, the algorithm from Chap-
ter 3, when the distributional assumptions, and in several cases even the separability
assumption, are violated, by applying it to real data from OCR, an application that we
deem particularly appropriate for strongly online active learning. We compare DKM’s
performance to another state-of-the-art strongly online active learning algorithm due
to Cesa-Bianchi, Gentile and Zaniboni (CBGZ) [CBGZ04], which has performance
bounds in the individual sequence prediction context. We focus on these algorithms
(and their combined variants) as they are the only algorithms of which we are aware
that both have some form of theoretical guarantee and perform selective sampling
while meeting both of the online constraints of concern in this thesis. In fact, as they
are both based on Perceptron variants, they each only store a single vector and their
algorithmic form is very light-weight and easy to implement.

The two algorithms have been analyzed under disjoint assumptions but have not
been compared theoretically. Additionally, since some of their analysis assumptions
are rather limiting, we evaluate them on real data, in order to assess their perfor-
mance when these assumptions are removed. In doing so, we also illustrate the useful
application of online active learning to optical character recognition (OCR). OCR is
a particularly appropriate application of online active learning, due to the potential
need for online active learning for OCR training on small devices, as we motivated
in the introduction to this thesis, in Section 1.3.3. We compare the performance
on this problem between the algorithm variants and show significant reductions in
label-complexity over random sampling.

4.6.1 Algorithms

The algorithms we consider are both for learning linear separators through the origin,
in the sequential selective sampling framework. Each algorithm can be decomposed
into two parts: an active learning mechanism, wrapped around a sub-algorithm that
implements supervised learning.

Application of DKM to the non-uniform setting

In Figure 4-3 we restate DKM, indicating the variant we apply to the non-uniform
setting and providing a higher level of implementation detail than in Chapter 3, for
the purpose of comparison to CBGZ. In applying the algorithm from Chapter 3 to the
non-uniform setting we changed the initial setting of the active learning threshold.
We used s1 = 1√

d
in the uniform case based on a fact about uniform random projec-

tions, Lemma 2, that need not hold when the distribution is non-uniform. Instead
of starting the initial learning threshold so low, we make no assumptions about the
input distribution and thus set the initial threshold to the maximum value that |x ·vt|
could take, which is one, since the algorithm guarantees that, given input vectors xt

such that ‖xt‖ = 1, ‖vt‖ = 1 for all t. Changing the initial active learning threshold

84

Initialization: s1 = 1, τ = 0, t = 1, v1 = x0y0, τ = 0.
Do
Receive x.
Predict ŷ = sign(x · vt).
If |x · vt| ≤ st then:

Query the label y ∈ {−1, +1} of x, and set (xt, yt) = (x, y).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

τ = 0
else:

vt+1 = vt

τ = τ + 1
If τ ≥ R, then:

st+1 = st/2
τ = 0

else: st+1 = st.

t = t + 1.
Until t == L

Figure 4-3: The DKM algorithm applied to the non-uniform case, parameterized by
R, the waiting time before halving the active learning threshold.

Initialization: t = 1, v1 = (0, . . . , 0)>.
Do
Receive x.
Set p̂ = x · vt, and predict ŷ = sign(p̂).
Toss a coin with P (Heads) = b

b+|p̂|.

If Heads
Query the label y ∈ {−1, +1} of x.
If y 6= ŷ, then:

vt+1 = vt + ηyx>

else:
vt+1 = vt

t = t + 1.
Until t == L

Figure 4-4: The CBGZ algorithm, parameterized by b > 0, and learning rate η > 0.

85

might imply that R should also differ from the value given in Chapter 3. Regardless,
we have not optimized the constants in Chapter 3, so we tuned R, along with the
parameters of the other algorithms, as discussed in the evaluation section.

The CBGZ algorithm

Similar to DKM, the strongly online selective sampling algorithms proposed by Cesa-
Bianchi et al. [CBGZ04] are based on augmenting Perceptron-type algorithms with
a margin-based filtering rule; for the first-order version used in our experiments, see
Figure 4-4. The algorithm queries for a label with probability b/(b + |p̂|), where p̂
is the margin of the example with respect to the current hypothesis, and b > 0 is a
parameter.2 If a label is queried and the algorithm’s prediction sign(p̂) is incorrect,
a standard Perceptron update is performed.

The main result in [CBGZ04] is a bound on the expected (with respect to the
algorithm’s randomness) number of mistakes the algorithm makes on arbitrary input
sequences. Both this mistake bound and the expected number of label queries depend
on b. By optimizing b for the mistake bound, one can match the mistake bound for
standard Perceptron. However, this choice of b may result in querying almost all the
labels. Another complication is that the optimal choice of b depends on the data, and
thus in practice is known only in hindsight. To circumvent this issue, the authors
provide and analyze a method for tuning b on the fly, but in practice this adaptive
strategy has inferior performance [CBGZ04].

The theoretical results for DKM and CBGZ are not directly comparable; CBGZ
provides a bound on labels that is sequence dependent, whereas our upper bound
from Chapter 3 on label-complexity as a function of the final error rate attained,
is sequence independent, assuming the input distribution is uniform. The lack of
unified theoretical results motivates our empirical study of the performance of these
algorithms on real data.

4.6.2 Evaluation

Comparison class of algorithms

In designing our evaluation, we considered comparing to the SVM-based active learn-
ing algorithms proposed by Tong and Koller [TK01], as they are well-known bench-
marks for active learning. However our problem framework is different from their
pool-based model in which active learners have unlimited access to all unlabeled
data. Although their active learning criteria could potentially also be adapted for the
sequential setting, their algorithmic form is less constrained: SVMs do not obey the
online constraint on storage and running time that we are also concerned with in this
thesis.

Given these two extra degrees of freedom, we would expect SVM-based methods
with batch access to the data to outperform all the strongly online algorithms. We

2For clarity of exposition, we have also listed η, the learning rate of the Perceptron sub-algorithm,
as a parameter, however the CBGZ algorithm is in fact only sensitive to changes in the ratio b

η
.

86

confirmed this with experiments using an SVM as the sub-algorithm, paired both
with random queries and with the Simple active learning heuristic [TK01], with batch
access to the remaining unlabeled pool. In both cases the number of labels queried was
strictly lower than that of all the online algorithms studied, for each associated error
rate. Since random sampling from a pool (drawn iid from the input distribution) is
equivalent to a stream of iid draws from the input distribution, the random sampling
case fulfills the online constraint on data observation. Thus the ability to break the
second online constraint (on time and memory) by running the SVM sub-algorithm,
suffices to provide improved performance versus the strongly online algorithms. In
fact the gains in performance due to using SVMs instead of online methods were
greater than those from using the Simple active learning heuristic [TK01] instead of
random sampling. Our conclusion from this study is that the online active learning
algorithms studied here and in Chapter 3 seem to be most useful in settings with strict
online requirements, such as those upon which we focus in this thesis, while methods
without online constraints seem to have superior performance when applicable.

Therefore as an appropriate comparison class, we instead consider only algorithms
that are strongly online. Thus we compare all six combinations of the two online
active learning rules discussed above, as well as random sampling, paired with two
strongly online supervised learning algorithms: Perceptron and the supervised update
of DKM. We will denote as DKM2 the exact algorithm from Chapter 3, i.e. the
DKM active learning logic with the DKM supervised update as the sub-algorithm.
Running DKM’s active learning logic with Perceptron as the sub-algorithm, we refer
to as DKMactivePerceptron. We will denote as CBGZ, the CBGZ active learning
rule with Perceptron as the sub-algorithm, as specified in [CBGZ04]. For the sake of
completeness, we also experimented with combining CBGZ’s active learning rule and
the DKM update, denoted below as CBGZactiveDKMupate. The random sampling
methods simply flip a coin as to whether to query the current point’s label, and update
using Perceptron (randomPerceptron) or the DKM update (randomDKMupdate).
This method is equivalent to performing supervised learning with the sub-algorithm
in question, as this method yields a sequence of labeled examples that are simply iid
samples from the input distribution.

Experiments

We conducted our evaluation on benchmark data from OCR, since OCR on small
devices could stand to benefit from strongly online active learning solutions. Addi-
tionally, these datasets are known to be non-uniformly distributed over inputs. We
used both MNIST [LeC98] and USPS in order to experiment with multiple datasets
and dimensionalities (d = 784 for MNIST, d = 256 for USPS).

We experimented on 7 binary classification problems, 5 from MNIST and two
from USPS, each consisting of approximately 10,000 examples. All the problems
but two were linearly separable. (Using svmLight we were unable to find separating
hyperplanes for the problem {1,4,7} vs. all other characters, both in the MNIST
and USPS versions). Since the algorithms access the data in one pass in a sequential
fashion, for each problem we ran 5 runs in which the dataset was uniformly re-

87

MNIST: 0v1 (0.01) 0vAll (0.05) 4v7 (0.05) 6v9 (0.025) 147vAll (0.15)

DKM2 28.02±25.26 105.30±42.39 150.02±49.61 163.12±42.45 275.34±72.00

DKMperc 13.78±5.88 57.26±15.92 44.00±15.32 20.44±11.75 217.06±75.85

CBGZ DKM 130.12±116.45 183.78±120.83 194.36±80.20 218.28±94.95 379.16±138.38

CBGZperc 32.78±19.52 62.66±30.48 63.32±30.76 30.66±13.31 170.02±63.61

randDKM 87.72±101.84 173.44±114.55 276.92±150.59 367.24±191.25 375.46±164.33

randPerc 83.76±78.47 103.74±76.25 107.98±57.41 104.06±75.10 214.16±93.12

USPS: 0vAll (0.05) 147vAll (0.1)

DKM2 174.22±63.85 190.72±80.09

DKMperc 87.56±28.97 137.86±58.21

CBGZ DKM 156.08±66.75 193.70±96.35

CBGZperc 115.14±61.09 116.28±60.68

randDKM 235.10±129.11 210.40±109.39

randPerc 173.96±98.96 151.32±72.65

Table 4.1: Mean and standard deviation (over 5 runs of 10 fold cross-validation) of
the minimum number of labels to reach the test error threshold (in parentheses) for
the problem.

permuted, of 10 fold cross-validation.

Several of the algorithms have parameters: Perceptron’s learning rate, CBGZ’s
b and DKM active learning version’s R, so each was tuned independently on a sep-
arate holdout set for each problem, using 10 fold cross-validation on approximately
2,000 examples. A threshold on test error, ε, was chosen for each problem based
(qualitatively) on level of separability, and each algorithm’s parameters were tuned
to minimize the number of labels, averaged over folds, to reach test error ε.

In Table 4.1 we report the mean and standard deviations, over all the experiments
run, of the minimum number of labels after which each algorithm reached the test
error threshold (ε listed in parentheses) for that problem. In our discussion of the
results, we will indicate which conclusions can be drawn from the mean label values
reported in the table, with statistical significance. We tested statistical significance
using Wilcoxan signed rank hypothesis testing, which is non-parametric and thus
robust, and which takes into account the magnitude of the difference in mean labels,
between the algorithms compared, for each problem.

The minimum number of labels was attained by DKMactivePerceptron, in all but
two of the problems, in which the minimum was achieved by CBGZ. DKMactivePer-
ceptron also reports the smallest variance on this figure, in all but one problem.
Both methods used significantly fewer labels than the random sampling methods.
We tested this by assuming as the null hypothesis that the active learning method
in question did not reduce label-complexity beyond that of Perceptron with random
sampling (the best-performing random sampling method), yielding, for CBGZ, a p-
value of 0.0156, entailing that the null hypothesis is rejected for significance levels
of 1.56% and higher, and, for DKMactivePerceptron, at significance levels of 3.13%
and higher (p = 0.0313). The difference in these two active learning algorithms’

88

performance, compared pairwise per problem, was not statistically significant how-
ever. Interestingly, the problems for which CBGZ was the top performer are the
only two unseparable problems. Although both algorithms use Perceptron as the
sub-algorithm, we did not have enough unseparable problems to conclude, with sta-
tistical significance, whether CBGZ’s active learning rule is better equipped for the
non-realizable case than that of DKM.

Similarly, using the DKM active learning rule showed significant improvements
over using the DKM update with random sampling. DKM2 used fewer labels per
problem than randomDKMupdate, at significance levels of 1.56% and higher. More-
over, we observe that, compared to the best active learning method for each problem,
at the comparison test error threshold, Perceptron with random sampling used more
labels by a factor between 1.26–6.08, and for more than half of the problems the
factor was 2 or higher.

The DKM supervised update, and methods that used it as their sub-algorithm
tended to perform worse than their Perceptron counterparts. This is statistically
significant at significance levels of 1.56% and higher, for each pairwise comparison
between the Perceptron and DKM updates, with the active learning rule fixed. In
the unseparable cases, this may be explained by DKM’s update being much more
aggressive than Perceptron’s, when the point has a large margin: the DKM update
adds to its hypothesis the same quantity, ytxt, as Perceptron, however scaled by a
factor of 2|xt · vt|, which could be greater than one, as opposed to the Perceptron’s
learning rate which is less than one. The comparison may not be completely fair
however, as the DKM update was the only algorithm without parameters, and thus
the only algorithm not at all tuned per problem. In fact, both of the active learning
variants of standard Perceptron were actually doubly tuned per problem, as the Per-
ceptron learning rate was first tuned, and then the active learning parameter (R or
b) was tuned for the problem, using the tuned Perceptron as the sub-algorithm. It is
also important to note that mistake bounds implying better performance of the DKM
update than Perceptron have only been shown under the uniform [Chapter 3], and λ
similar to uniform [Section 4.5.2], input distributions, and here the input distribution
is known to be highly non-uniform.

For both sub-algorithms, the DKM active learning rule tended to outperform the
CBGZ active learning rule; with the DKM update as the sub-algorithm, the DKM
active learning rule (DKM2) used fewer labels than that of CBGZ (CBGZactiveD-
KMupdate) in all problems but one. As mentioned above, for the Perceptron-based
methods, this observation does not have statistical support. However for the al-
gorithms using the DKM update as the sub-algorithm, the advantage of the DKM
active learning rule over that of CBGZ is statistically significant at significance levels
of 4.69% and higher.

In Figure 4-5 we plot statistical efficiency curves. Points indicate the average
over all the experiments of the minimum number of labels to reach attain test error
lower than a given threshold on test error (i.e. one minus the value plotted on
the x-axis), only if all experiments reached that threshold. It is important to note
that the algorithms were only tuned to minimize labels to reach one of these test
error thresholds; an algorithm that was minimal at the chosen threshold need not be

89

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 4

v7
.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45

50

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 0

v1
.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

700

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 U

S
P

S
 0

vA
ll.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 0

vA
ll.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

Figure 4-5: Statistical efficiency. Mean minimum labels to attain test accuracy (i.e.
1 − test error) above each threshold is over 5 folds 10 runs if all folds/runs reached
that test accuracy. a). MNIST 4v7. b) MNIST 0v1. c) USPS 0vAll. d) MNIST
0vAll.

minimal at all thresholds plotted. Some of the plots illustrate a slower rate of label
increase for algorithms using DKM as their active learning rule. Not all the plots
were as conclusive, but an interesting example is Figure 4-5 b) in which the DKM
active algorithms have higher label usage, at most of the thresholds measured, than
their CBGZactive counterparts, however the rate of label increase, as the test error
decreases (x-axis increases), appears to be much slower.

To provide a qualitative perspective we present some representive learning curves,
with respect to labeled examples, in Figure 4-6. We show a) a problem that was
particularly easy and b) a problem that we did not find to be linearly separable.
Figure 4-6 c) and d) compare the MNIST and USPS versions of the problem of 0 vs.
all other characters, which is separable but has a large label imbalance with very few
positive examples. In these problems, while DKMactivePerceptron reduces test error
at a faster rate than all the other algorithms, DKM2 and CBGZ continue querying
for more labels, eventually reaching lower error.

90

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 0

v1

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

LabelsM
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 1

47
vA

ll

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 U

S
P

S
 0

vA
ll

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 0

vA
ll

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

Figure 4-6: Learning curves. a) An extremely separable problem, MNIST 0v1. b) An
unseparable problem, MNIST 147vAll. c) USPS 0vAll. d) MNIST 0vAll.

4.6.3 Discussion and conclusions

One potentially detrimental artifact of our experimental framework may have been
overfitting of the parameter settings to the holdout tuning set, per problem, which
may have prevented some of the algorithms from generalizing well to the actual prob-
lem data. Supervised DKM has no parameters, but for all other algorithms, tuning
was involved.

Another tuning issue relates to the behavior observed above in Figure 4-6 c) and
d), of DKMactivePerceptron attaining an initial test error threshold faster than all
other algorithms, but then not querying for any more labels in the rest of the fold.
This issue is related to how one should set the waiting time threshold R for the
DKM active learning algorithm. With a very small value of R, the algorithm has
very little tolerance for labeled examples that do not yield a mistake and thus an
update, and so will quickly halve its active learning threshold. Labeling an example
with a smaller margin with respect to the current hypothesis, is more likely to yield a
mistake. Although this can cause a steep descent of error with respect to the number
of labels, once the active learning threshold becomes too small the algorithm will
hardly ever make label queries. Since we are experimenting on a finite set of data as
opposed to an endless stream, this means the algorithm may not query for any more
labels on the fold. Ideally, we would like to optimize the constants in DKM so that

91

the parameter R need not be tuned, but this is left for future work. Additional future
work would entail modeling other domains using online active learning, and testing
the performance of these algorithms therein.

At a general level, we conclude that online active learning provides significant
performance gains over random sampling the same number of labels, when the random
sampler must obey online constraints on memory and computation. In particular, we
provide an application of DKM, and to our knowledge this algorithm had not yet been
applied in practice. We study the performance of DKM when the input distribution
is non-uniform, a question left open in Chapter 3, as the performance guarantees
were shown under the assumptions of realizability and a uniform input distribution.
When these assumptions are violated, we observe that, in this application, DKM
active learning has better performance when paired with standard Perceptron as the
supervised sub-algorithm, as opposed to the update proposed in Chapter 3. This is
an outcome we did not predict, due to the strikingly better performance guarantees
of the update proposed in Chapter 3, with respect to Perceptron, under the uniform
assumption.

92

Chapter 5

Conclusion

This thesis presented several theoretical advances for learning with online constraints,
and demonstrated them in practical applications. When online constraints are con-
sidered for their efficacy in modeling temporal forecasting problems, in which the
observations may change with time, we advanced the understanding of a class of
shifting algorithms, by providing a negative result: a lower bound on their regret.
We applied an algorithm we provided in previous work, that avoids this lower bound,
to an energy-management problem in wireless networks, yielding encouraging results
in simulation.

In the context of supervised online learning algorithms with mistake bounds under
the iid assumption, we gave a negative result for standard Perceptron in the half-space
learning framework we analyzed, and we introduce a modification to Perceptron that
avoids this lower bound. We showed that our modified algorithm attains the optimal
mistake-complexity for this setting.

We motivated online active learning, a combined framework of active learning
with online constraints, useful whenever resource-constrained agents perform learning,
and labels are hard to come by. Our lower bound applies to the active learning
setting as a lower bound on labels for Perceptron, using any active learning rule. We
presented an online active learning algorithm for this framework, and showed that it
avoids this lower bound. We upper bounded its label-complexity by the optimal for
this setting, and showed that this also bounds the algorithm’s total errors, labeled
and unlabeled. We analyzed the algorithm in several other scenarios, yielding a
label-complexity bound that relaxes the distributional assumption. We applied our
algorithm, as well as various other online active learning variants, to the problem of
optical character recognition, demonstrating encouraging empirical performance even
though the analysis assumptions were unmet by the real data.

Along the way, we introduced several analysis techniques, raised some interesting
open problems, and made progress towards bridging theory and practice for machine
learning in general, and for learning with online constraints, and active learning, in
particular. Interestingly our advances come full circle in the study of learning with
online constraints, in that our results build on algorithms that are descended from the
two canonical forms of online learning algorithms: Winnow [Lit88] and Perceptron
[Ros58].

93

94

Appendix A

Proof of Claim 1

We start by taking the first derivative of LT (α), by taking the derivative of LT (α)−
LT (α∗) with respect to α, since LT (α∗) is constant with respect to α. We use the form
for LT (α) − LT (α∗) shown in the proof of Theorem 1 [Mon03], and let T ′ = T − 1,
and f(α̂) = exp{T ′ (α̂ log α

α∗
+ (1− α̂) log 1−α

1−α∗

)

}. Thus

d

dα
LT (α) = − d

dα
log Eα̂∼Q [f(α̂)]

= − 1

Eα̂∼Q [f(α̂)]

d

dα
Eα̂∼Q [f(α̂)]

= − 1

Eα̂∼Q [f(α̂)]
Eα̂∼Q [

d

dα
f(α̂)]

= − 1

Eα̂∼Q [f(α̂)]
Eα̂∼Q [eT ′(α̂ log α

α∗
+(1−α̂) log 1−α

1−α∗)T ′(
α̂

α
− 1− α̂

1− α
)]

We now proceed to take the derivative with respect to α again, yielding

d2

dα2
LT (α) =

1

(Eα̂∼Q [f(α̂)])2

(

d

dα
Eα̂∼Q [f(α̂)]

)

×

× Eα̂∼Q [eT ′(α̂ log α
α∗

+(1−α̂) log 1−α
1−α∗)T ′(

α̂

α
− 1− α̂

1− α
)] −

1

Eα̂∼Q [f(α̂)]

d

dα
Eα̂∼Q [eT ′(α̂ log α

α∗
+(1−α̂) log 1−α

1−α∗)T ′(
α̂

α
− 1− α̂

1− α
)]

=
1

(Eα̂∼Q [f(α̂)])2
(Eα̂∼Q [eT ′(α̂ log α

α∗
+(1−α̂) log 1−α

1−α∗)T ′(
α̂

α
− 1− α̂

1− α
)])2

− 1

Eα̂∼Q [f(α̂)]
Eα̂∼Q [

d

dα
eT ′(α̂ log α

α∗
+(1−α̂) log 1−α

1−α∗)T ′(
α̂

α
− 1− α̂

1− α
)]

95

=
1

(Eα̂∼Q [f(α̂)])2
(Eα̂∼Q [f(α̂)T ′(

α̂

α
− 1− α̂

1− α
)])2 −

1

Eα̂∼Q [f(α̂)]
Eα̂∼Q [f(α̂)(T ′2(

α̂

α
− 1− α̂

1− α
)2 + T ′(− α̂

α2
− 1− α̂

(1− α)2
))]

We continue by evaluating this expression at α = α∗:

d2

dα2
LT (α))|α=α∗ = (Eα̂∼Q [T ′(

α̂

α∗ −
1− α̂

1− α∗)])
2 −

Eα̂∼Q [T ′2(
α̂

α∗ −
1− α̂

1− α∗)
2 + T ′(− α̂

α∗2 −
1− α̂

(1− α∗)2
)]

As shown in the full proof of Theorem 1 (see [Mon03]), the optimality constraint
on α∗ is equivalent to the following constraint on Q: Eα̂∼Q[α̂] = α∗. Thus we can
simplify as follows:

= 0 − Eα̂∼Q [T ′2(
α̂2

α∗2 − 2
α̂(1− α̂)

α∗(1− α∗)
+

(1− α̂)2

(1− α∗)2
)] +

T ′

α∗(1− α∗)

= − T ′2
[

1

α∗2 Eα̂∼Q [α̂2]− 2

α∗(1− α∗)
(Eα̂∼Q [α̂]− Eα̂∼Q [α̂2]) +

1

(1− α∗)2
(1− 2Eα̂∼Q [α̂] + Eα̂∼Q [α̂2])

]

+
T ′

α∗(1− α∗)

= − T ′2
[

Eα̂∼Q [α̂2](
1

α∗2 +
2

α∗(1− α∗)
+

1

(1− α∗)2
)−

2

(1− α∗)
+

1

(1− α∗)2
− 2α∗

(1− α∗)2

]

+
T ′

α∗(1− α∗)

= − T ′2
[

Eα̂∼Q [(α̂− α∗)2 + 2α̂α∗ − α∗2]
(1− α∗)2 + 2α∗(1− α∗) + α∗2

α∗2(1− α∗)2
−

1

(1− α∗)2

]

+
T ′

α∗(1− α∗)

= − T ′2
[

(Eα̂∼Q [(α̂− α∗)2] + α∗2)
1

α∗2(1− α∗)2
− 1

(1− α∗)2

]

+
T ′

α∗(1− α∗)

= − T ′2

α∗2(1− α∗)2
Eα̂∼Q [(α̂− α∗)2] +

T ′

α∗(1− α∗)

=
T ′2

α∗2(1− α∗)2

[

α∗(1− α∗)

T ′ − Eα̂∼Q [(α̂− α∗)2]

]

2

96

Appendix B

Proof of Lemma 2

Let r = γ/
√

d and let Ad be the area of a d-dimensional unit sphere, i.e. the surface
of a (d + 1)-dimensional unit ball.

Px [|a · x| ≤ r] =

∫ r

−r
Ad−2(1− z2)

d−2
2 dz

Ad−1

=
2Ad−2

Ad−1

∫ r

0

(1− z2)d/2−1dz

First observe,

r(1− r2)d/2−1 ≤
∫ r

0

(1− z2)d/2−1dz ≤ r (B.1)

For x ∈ [0, 0.5], 1− x ≥ 4−x. Hence, for 0 ≤ r ≤ 2−1/2,

(1− r2)d/2−1 ≥ 4−r2(d/2−1) ≥ 2−r2d.

So we can conclude that the integral of (B.1) is in [r/2, r] for r ∈ [0, 1/
√

d]. The ratio
2Ad−2/Ad−1 can be shown to be in the range [

√

d/3,
√

d] by straightforward induction
on d, using the definition of the Γ function, and the fact that Ad−1 = 2πd/2/Γ(d/2).

2

97

98

Bibliography

[ACBFS02] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
The non-stochastic multi-armed bandit problem. SIAM Journal on Com-
puting, 32(1):48–77, 2002.

[Ang01] Dana Angluin. Queries revisited. In Proc. 12th International Conference
on Algorithmic Learning Theory, LNAI,2225:12–31, 2001.

[Bau97] Eric B. Baum. The perceptron algorithm is fast for nonmalicious distri-
butions. Neural Computation, 2:248–260, 1997.

[BBK99] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging.
In Proc. 40th Annual IEEE Symposium on Foundations of Computer
Science, page 450, New York, New York, October 1999.

[BBL06] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic
active learning. In Proc. International Conference on Machine Learning,
2006.

[Ber96] Berkeley. UC Berkeley home IP web traces. In
http://ita.ee.lbl.gov/html/contrib/UCB.home-IP-HTTP.html, 1996.

[BFKV96] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A
polynomial-time algorithm for learning noisy linear threshold functions.
In Proc. 37th Annual IEEE Symposium on the Foundations of Computer
Science, 1996.

[CAL94] David A. Cohn, Les Atlas, and Richard E. Ladner. Improving general-
ization with active learning. Machine Learning, 15(2):201–221, 1994.

[CBCG03] Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. Learning prob-
abilistic linear-threshold classifiers via selective sampling. In Proc. 16th
Annual Conference on Learning Theory, 2003.

[CBCG05] Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order
perceptron algorithm. SIAM Journal on Computing, 34(3):640–66, 2005.

[CBGZ04] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case
analysis of selective sampling for linear-threshold algorithms. In Advances
in Neural Information Processing Systems 17, 2004.

99

[CBM99] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Dynamic
power management for non-stationary service requests. In Proc. DATE,
pages 77–81, 1999.

[CJBM02] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris.
Span: an energy-efficient coordination algorithm for topology mainte-
nance in ad hoc wireless networks. ACM Wireless Networks Journal,
8(5), September 2002.

[Das04] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Ad-
vances in Neural Information Processing Systems 17, 2004.

[Das05] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning.
In Advances in Neural Information Processing Systems 18, 2005.

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis
of perceptron-based active learning. In Proc. 18th Annual Conference on
Learning Theory, 2005.

[FN01] Laura Marie Feeney and Martin Nilsson. Investigating the energy con-
sumption of a wireless network interface in an ad hoc networking envi-
ronment. In Proc. INFOCOM 2001, Anchorage, Alaska, April 2001.

[FS99] Yoav Freund and Robert Schapire. Adaptive game playing using multi-
plicative weights. Games and Economic Behavior, 29:79–103, 1999.

[FSST97] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selec-
tive sampling using the query by committee algorithm. Machine Learn-
ing, 28(2-3):133–168, 1997.

[FV99] Dean P. Foster and Rakesh Vohra. Regret in the on-line decision problem.
Games and Economic Behavior, 29:7–35, 1999.

[GBNT05] Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Query by com-
mittee made real. In Advances in Neural Information Processing Systems
18, 2005.

[HK99] Steven Hampson and Dennis Kibler. Minimum generalization via reflec-
tion: a fast linear threshold learner. Machine Learning, 37:51–73, 1999.

[HKW98] David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Sequential
prediction of individual sequences under general loss functions. IEEE
Trans. on Information Theory, 44(5):1906–1925, 1998.

[HSSW96] David P. Helmbold, Robert E. Schapire, Yoram Singer, and Manfred K.
Warmuth. On-line portfolio selection using multiplicative updates. In
Proc. International Conference on Machine Learning, pages 243–251,
1996.

100

[HW98] Mark Herbster and Manfred K. Warmuth. Tracking the best expert.
Machine Learning, 32:151–178, 1998.

[IEE99] IEEE. Computer society LAN MAN standards committee. In IEEE
Std 802.11: Wireless LAN Medium Access Control and Physical Layer
Specifications, August 1999.

[Kää05] Matti Kääriäinen. Generalization error bounds using unlabeled data. In
Proc. 18th Annual Conference on Learning Theory, 2005.

[Kää06] Matti Kääriäinen. Active learning in the non-realizable case. In Proc.
17th International Conference on Algorithmic Learning Theory, 2006.

[Kal01] Adam Kalai. Probabilistic and on-line methods in machine learning. PhD
Thesis. In Carnegie Mellon Computer Science Technical Report CMU-
CS-01-132, 2001.

[KB02] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless
web access with bounded slowdown. In Proc. MobiCom 2002, Atlanta,
GA, September 2002.

[Kra02] Ronny Krashinsky. Traces of bsd simulation runs, in ns http traffic sim-
ulators, generated in personal communication with authors. MIT, 2002.

[KT81] Raphail E. Krichevsky and Victor K. Trofimov. The performance of uni-
versal encoding. IEEE Transactions on Information Theory, 27(2):199–
207, 1981.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Compu-
tational Learning Theory. MIT Press, 1994.

[LeC98] Yann LeCun. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/. 1998.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for training
text classifiers. In Proc. of SIGIR-94, 17th ACM International Confer-
ence on Research and Development in Information Retrieval, 1994.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2(4), 1988.

[Lon95] Philip M. Long. On the sample complexity of PAC learning halfspaces
against the uniform distribution. IEEE Transactions on Neural Networks,
6(6):1556–1559, 1995.

[Lon03] Philip M. Long. An upper bound on the sample complexity of PAC
learning halfspaces with respect to the uniform distribution. Information
Processing Letters, 87(5):229–23, 2003.

101

[LW89] Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-
rithm. In Proc. IEEE Symposium on Foundations of Computer Science,
pages 256–261, 1989.

[MBFJ04] Claire Monteleoni, Hari Balakrishnan, Nick Feamster, and Tommi
Jaakkola. Managing the 802.11 energy/performance tradeoff with ma-
chine learning. In MIT-LCS-TR-971 Technical Report, 2004.

[MJ03] Claire Monteleoni and Tommi Jaakkola. Online learning of non-
stationary sequences. In Advances in Neural Information Processing Sys-
tems 16, 2003.

[MK06] Claire Monteleoni and Matti Kääriäinen. Online active learning in prac-
tice. In submission., 2006.

[Mon03] Claire E. Monteleoni. Online learning of non-stationary sequences. SM
Thesis. In MIT Artificial Intelligence Technical Report 2003-011, 2003.

[Mon06] Claire Monteleoni. Efficient algorithms for general active learning (Open
problem). In Proc. 19th Annual Conference on Learning Theory, 2006.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386–407,
1958.

[SBGM00] Tajana Simunic, Luca Benini, Peter W. Glynn, and Giovanni De Micheli.
Dynamic power management for portable systems. In Proc. ACM MO-
BICOM, pages 11–19, Boston, MA, 2000.

[Ser99] Rocco A. Servedio. On PAC learning using winnow, perceptron, and a
perceptron-like algorithm. In Computational Learning Theory, pages 296
– 307, 1999.

[SOS92] H. S. Seung, Manfred Opper, and Haim Sompolinsky. Query by commit-
tee. In Proc. Fifth Annual ACM Conference on Computational Learning
Theory, 1992.

[Ste02] Carl Steinbach. A reinforcement-learning approach to power manage-
ment. In AI Technical Report, M.Eng Thesis, Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, May 2002.

[TK01] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. Journal of Machine Learning
Research, 2:45–66, 2001.

[Val84] Leslie Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[Vov99] Vladimir Vovk. Derandomizing stochastic prediction strategies. Machine
Learning, 35:247–282, 1999.

102

