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Abstract

Many practical problems such as forecasting, real-time decision making, streaming
data applications, and resource-constrained learning, can be modeled as learning with
online constraints. This thesis is concerned with analyzing and designing algorithms
for learning under the following online constraints:

i) The algorithm has only sequential, or one-at-time, access to data.

ii) The time and space complexity of the algorithm must not scale with the num-

ber of observations.
We analyze learning with online constraints in a variety of settings, including active
learning. The active learning model is applicable to any domain in which unlabeled
data is easy to come by and there exists a (potentially difficult or expensive) mecha-
nism by which to attain labels.

First, we analyze a supervised learning framework in which no statistical assump-
tions are made about the sequence of observations, and algorithms are evaluated based
on their regret, i.e. their relative prediction loss with respect to the hindsight-optimal
algorithm in a comparator class. We derive a lower bound on regret for a class of
online learning algorithms designed to track shifting concepts in this framework. We
apply an algorithm we provided in previous work, that avoids this lower bound, to an
energy-management problem in wireless networks, and demonstrate this application
in a network simulation. Second, we analyze a supervised learning framework in which
the observations are assumed to be iid, and algorithms are compared by the number
of prediction mistakes made in reaching a target generalization error. We provide a
lower bound on mistakes for Perceptron, a standard online learning algorithm, for
this framework. We introduce a modification to Perceptron and show that it avoids
this lower bound, and in fact attains the optimal mistake-complexity for this setting.

Third, we motivate and analyze an online active learning framework. The ob-
servations are assumed to be iid, and algorithms are judged by the number of label
queries to reach a target generalization error. Our lower bound applies to the active
learning setting as well, as a lower bound on labels for Perceptron paired with any
active learning rule. We provide a new online active learning algorithm that avoids
the lower bound, and we upper bound its label-complexity. The upper bound is opti-
mal and also bounds the algorithm’s total errors (labeled and unlabeled). We analyze
the algorithm further, yielding a label-complexity bound under relaxed assumptions.



Using optical character recognition data, we empirically compare the new algorithm
to an online active learning algorithm with data-dependent performance guarantees,
as well as to the combined variants of these two algorithms.
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Chapter 1

Introduction

Machine learning, a dynamic subfield of artificial intelligence (AI), produces tools and
techniques currently in effective use and high demand in a broad range of research
and applications. In the past few decades, machine learning and statistical pattern
recognition algorithms have impacted not only computer science, but also a range
of fields from economics to the health sciences, and have potential in many more.
Within computer science, machine learning algorithms have been applied to caching,
bug detection, and recent problems in computer networks. Designers of Web search-
engines currently rely on machine learning expertise for intelligent search techniques,
mining data from Web pages and automatically indexing the Web. Machine learning
has been used in economic and financial applications such as portfolio management
strategies that adapt to the current market climate. Moreover, machine learning and
statistical pattern recognition tools have been revolutionizing discovery in the natural
sciences, as evidenced by the recent emergence of the fields of bioinformatics, and its
efficacy for analyzing the genome, and computational chemistry, and its successes in
the discovery of new medications.

It is currently the state of the art, however, that machine learning practitioners
face a myriad of choices when applying a technique or tool. These choices begin with
very basic ones, such as which algorithm to use, or which model class to consider for
hypotheses. Even beyond basic decisions however, there remains a series of complex
choices, such as how to set the parameters of an algorithm, and how many data
points ought to be used for training and testing. Often, there are no formal methods
available by which to make these decisions. Yet the decisions required in applying a
machine learning technique do in fact depend on some fundamental quantities and
complexity tradeoffs inherent to the problem of learning. For example, there is a
basic tradeoff between the number of training examples used and the level of error
obtained by the learned classifier. Similarly, there is a tradeoff between the complexity
(in parameter space) of the model, and its ability to generalize to examples that were
not present in the training set. Formalizing the tradeoffs that define the complexity
of machine learning, and designing algorithms that exploit them, are the goals of a
research field at the intersection of theoretical computer science and machine learning,
best described by the terms theoretical machine learning and computational learning
theory.
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The individual contribution of this dissertation to the fields of theoretical machine
learning, and computational learning theory, is focused on several constraints to the
learning problem that we have chosen because they are well motivated by fundamental
questions of Al, they are relevant to practical applications, and they address open
problems in the literature. All the work that follows addresses learning with two online
constraints: data is received in a sequential fashion, and the learner is constrained
against computation and memory that scales with the amount of seen data. The
subproblems addressed include learning when there are no statistical assumptions on
the observations, and learning in the active setting in which the data is unlabeled
and the learner can choose to pay for labels. In the rest of this introduction we will
introduce the various frameworks studied, and then outline our contributions.

1.1 Learning with online constraints

This thesis is concerned with applying online constraints to the problem of machine
learning. In particular, there are two types of online constraints defining all the
results we report. The first concerns the algorithm’s access to data observations.
We are concerned with models in which the observations are received in a sequential
fashion, i.e. one at a time. Once an observation has been seen, it might not ever be
observed again. The second constraint concerns allowable algorithmic solutions to the
learning problem we define. The learner has constraints on computation and memory
entailing that it cannot solve the problem via batch learning: it is constrained against
increasing its memory usage and computation time with the number of seen examples.

1.1.1 Online access to observations

The first constraint, that the observations be received sequentially, defines the se-
quential or online learning framework: training examples are received one at a time,
and the learner must make a prediction at each time-step. This requirement is well
motivated from an Al perspective, in emulating human cognition. Humans are not
usually granted the luxury of learning a concept from a batch of labeled examples.
Instead we receive observations in a sequential fashion, and must update our beliefs
online. The sequential framework effectively models many practical problems. Two
categories of applications that are well served by the sequential model are problems
of temporal forecasting, such as predicting the stock market, weather, or usage pat-
terns and burstiness of the internet, and streaming data applications. In forecasting
problems,; the online model is useful because not only are observations received in a
sequence, but also it is often the case that predictions are needed almost immedi-
ately after each data observation, and the data may vary with time. In streaming
applications, the data is received in a sequential fashion and is often of extremely
high-dimension, in which case online access to the data may be the only practical
model.
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1.1.2 Online constraint on time and space complexity

The second constraint, which limits time and memory usage from scaling with the
number of observations, is motivated in part by the real-world limits on time and
memory faced by any computational learner, and in part by an effort to best match
the solution to the problem: to reflect the sequential nature of the problem in the
design of algorithms that solve it. In other words, the sequential framework raises
interesting computational issues: tradeoffs in complexity and resources for computa-
tional learners. We require that the learner cannot store all previously seen examples
and then apply a batch learning algorithm to them, but must instead intelligently
summarize its observations. Without this constraint, the problem would be reduced
to that of batch learning, which already has an abundant literature. Practical mo-
tivations include computation on small devices for which the memory limit is easily
reached, as well as learning under non-stationarity where memory of the distant past
is less useful for current predictions. Additionally, the time complexity of the belief
update step should be constrained against scaling with the number of past examples,
in order for the algorithm to be effective in the online setting. This constraint has
practical motivation in any system that must predict in real-time.

1.2 Swupervised learning framework

Online learning can be studied in the supervised learning framework, meaning all the
examples are labeled. The previous section outlined some of the practical motivations
for supervised online learning, which is typically just called online learning. We will
study two such frameworks which model two different scenarios with two different
measures for judging an algorithm’s performance, involving different assumptions
and analysis techniques.

1.2.1 Non-stochastic setting and regret bounds

First we study a universal prediction setting in which no statistical assumptions are
made on the observation sequence. By non-stochastic, we denote the lack of statistical
assumptions. The observations could even be generated online by an adaptive adver-
sary. Since no sampling assumptions can be made about the sequence to be predicted,
algorithms can only be judged by relative performance measures. The analysis of
algorithms is therefore focused on establishing bounds on the regret, or the difference
between the cumulative loss of the algorithm and the loss of the best method in an
appropriately defined comparator class, with respect to hindsight knowledge of the
observed sequence. In this framework we study shifting algorithms: a general class of
algorithms that model the observations as being non-stationary, but generated from
a shifting sequence of stationary distributions.

17



1.2.2 Tid assumption and mistake bounds

Motivated by a desire to bound a quantity that is intuitively more absolute and
definitive than the notion of regret, we then study a supervised online learning anal-
ysis setting that permits us to bound the final error of the hypothesis attained. In
order to do so, we add a statistical assumption on the generation of the sequence
of observations. We assume the sequence of observations is 7id, the abbreviation for
“independently, identically distributed,” meaning that it results from independent
random draws from a fixed probability distribution over the input space. Algorithms
for the sequential iid framework can be compared by their mistake-complexity. the
number of prediction mistakes they make before converging on an accurate model.
This convergence can be analyzed with respect to the error rate of the hypothesis
on the full input distribution. If the concept class over which learning is performed
contains a perfect classifier for the problem, then this error rate is actually the gen-
eralization error of the hypothesis.

1.3 Active learning framework

Online learning can also be studied in an active learning framework. In many ma-
chine learning applications, such as speech recognition, medical diagnosis and Web
page classification, access to labeled data is much more limited or expensive than
access to unlabeled samples from the same data-generating distribution. It is often
realistic to model this scenario as active learning. Since active learning allows for
intelligent choices of which examples to label, often the label-complexity, the number
of labeled examples required to learn a concept via active learning, is significantly
lower than the PAC sample complexity. PAC refers to the “Probably Approximately
Correct” learning theoretic analysis framework, originally proposed by [Val84], and
well explained in [KV94]. The PAC sample complexity of a concept is an upper bound
on the number of labeled examples, sampled iid from a fixed input distribution, such
that with high probability with respect to the sampling, the function generating the
labels of the examples can be approximated to within a fixed error rate on the input
distribution. Here we describe the specific online active learning framework studied.

1.3.1 Active learning in the PAC-like selective sampling model

The active learning model is applicable in any domain in which unlabeled data is
easy to come by and there exists a (potentially difficult or expensive) mechanism by
which to obtain their labels. While the query learning model has been well studied
theoretically (see e.g. [Ang01]), it is often unrealistic in practice, as it requires access
to labels for the entire input space. It has been shown in domains such as text and
OCR that the synthetic examples on which the learner has the most uncertainty
may be difficult even for a human to label [LG94]. In selective sampling (originally
introduced by [CAL94]) the learner receives unlabeled data, sampled iid from a fixed
input distribution, and may request certain labels to be revealed, at a constant cost
per label.
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1.3.2 Online active learning

Selective sampling can be modeled in an online or sequential setting, in which un-
labeled examples are received one at a time and the learner must make a one-time
choice whether to pay for the current label. We will use the terms “sequential selective
sampling” and “online active learning” interchangeably. We motivate a framework
involving both online constraints: an algorithm must perform sequential selective
sampling, thus respecting the first constraint, and obey the second constraint in that
neither the time nor space complexity scales with the number of seen labeled exam-
ples, or mistakes. Algorithms for sequential selective sampling that also respect the
online constraints on time and memory we consider to be strongly online active learn-
ers, though with a slight overload of terminology we will also refer to them simply as
online active learners.

In an iid framework that is both active and sequential, interesting issues arise.
Beyond just minimizing the number of mistakes needed to learn a concept to a fixed
error rate on the full input distribution, in active learning the goal is to minimize
the number of labels that the algorithm needs to check, in doing so, i.e. the label-
complexity in this setting. A distinction now exists between mistakes and errors:
mistakes are a subset of total errors on which the algorithm requests labels, and thus
receives feedback on its erroneous predictions. Thus error-complexity can be analyzed
as a separate quantity from mistake-complexity for active sequential algorithms.

1.3.3 Practical motivations

Sequential active learning with online constraints has well motivated real-world ap-
plications such as OCR on small devices. As of 2004, a quarter of US physicians were
using handheld computers.! In the 2004 US presidential election, several major polit-
ical organizations equipped canvassers going door-to-door with handheld computers
to collect neighborhood voting data. Limited computing power may constrain the
OCR training of these handhelds to be online. In the selective sampling setting, the
device may occasionally ask the user to provide a label for a written character, for
example by entering it through the keypad. Human usage would favor algorithms
that minimize the number of such correction events during the learning process.

Document filtering is a problem that has been modeled using active learning: the
filtering mechanism implements the choice of whether to query a label, which amounts
to forwarding the document to the human user and thus receiving feedback from the
user as to the document’s relevance. Email filtering is an increasingly important
problem, as electronic information flow, both relevant and irrelevant (such as spam)
continues to increase. With many users receiving email on handheld devices that may
have memory and computation constraints, online email filtering is poised to become
an increasingly necessary application of online active learning.

IMcAlearney A. S., Schweikhart S. B., Medow M. A., Doctors’ experience with handheld com-
puters in clinical practice: qualitative study. British Medical Journal. 328(7449):1162. 2004.
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1.4 Outline of contributions

The organization of our contributions is as follows. The first part of this thesis con-
cerns supervised online learning. In Chapter 2, we consider a scenario in which there
are no assumptions on the observation sequence, and algorithms are judged in terms
of their regret: their relative loss with respect to the hindsight optimal algorithm in a
comparator class. In this chapter we provide a lower bound on regret for a broad class
of online learning algorithms for this setting, and apply an algorithm we introduced
in previous work, that avoids this lower bound, to a problem in wireless networks, in
simulation. We continue considering supervised online learning in Chapter 3, through
Section 3.5, focusing instead on a scenario in which the observations are assumed to
be iid and algorithms are judged by the number of mistakes to reached a fixed error
rate on the input distribution. In these sections we provide a lower bound on mistakes
for standard Perceptron, and introduce a Perceptron variant for which we provide a
new upper bound on mistakes.

In the remainder of the thesis we consider an active setting, retaining the iid
assumption, in which algorithms are judged by the number of labels to reached a
fixed error rate on the input distribution. The lower bound of Section 3.4 holds for
labels as well, and in the remainder of Chapter 3 we give an online active learning
algorithm with upper bounds on label queries and total errors. In Chapter 4 we
analyze the algorithm from Chapter 3 in various additional ways, and then apply it
to optical character recognition, along with an online active learning algorithm from
the literature and several variants combining the two algorithms, as well as random
sampling.
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Chapter 2

Learning shifting concepts

This chapter is based on joint work with Tommi Jaakkola. Sections 2.2-2.4 are based
on work that originally appeared in [MJ03]. Section 2.5 is based on work that is also
joint with Hari Balakrishnan and Nick Feamster [MBFJ04].

In this chapter we study a supervised online learning framework involving no sta-
tistical assumptions. This framework can be used to model, regression, estimation,
or classification. As in the typical online learning setting, the learner receives ex-
amples, (x;,y;), one at a time. We study a setting in which the learner has access
to a set of “experts,”! and their predictions on each observation, but possesses no
other a prior: information relating to the observation sequence. In this chapter we
are concerned with cumulative prediction loss, i.e. loss on every example counts, as
opposed to Chapters 3 and 4, in which we are only concerned with the final error
attained. The objective in this setting is to design algorithms whose prediction loss
can be upper bounded with respect to the best (in an appropriately chosen compar-
ison class) algorithm that has hindsight access to the observation sequence, over a
finite, known, time horizon T'. All algorithms in this chapter respect the two online
constraints as defined in the introduction.

The motivation of our previous work in [Mon03], which we summarize in Sec-
tion 2.2, was to improve online learning in the non-stochastic case, by removing prior
assumptions. Previous algorithms for this setting, designed to track shifting con-
cepts, are parameterized by the switching-rate, or rate of concept shift, requiring a
prior assumption as to the level of non-stationarity of the observation sequence. We
designed an algorithm to learn this parameter online, simultaneous to the original
learning task, and showed that its regret is upper bounded by O(logT"). Our analysis
also yielded a regret upper bound for an existing class of algorithms, including the
shifting algorithms, discussed above.

In Section 2.3 we derive the optimal learning discretization for our algorithm. In
Section 2.4 we provide a lower bound on regret for the class of shifting algorithms
discussed above, which can be Q(T'), depending on the observation sequence. The
lower bound illustrates the asymptotic advances made by our algorithm.

IThe term “expert” is arbitrary: the “experts” need not have any true expertise.
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In Section 2.5 we apply our algorithm to energy management for mobile wireless
devices of the 802.11 standard, in a network simulation. In our ns-2 simulations,
our application saved 7%-20% more energy than 802.11 in power-saving mode, with
an associated increase in average latency by a factor of 1.02, and not more than 1.2.

2.1 Related work

This chapter relates to the literature on shifting algorithms. The ability to shift
emphasis from one “expert” to another, in response to changes in the observations, is
valuable in many applications. When given access to a set of experts whose prediction
mechanisms are unknown to the learner, the learner may choose to quickly identify a
single best expert to rely on, thus modeling a static concept, as in an algorithm due to
Littlestone and Warmuth [LW89], or switch from one expert to another in response to
perceived changes in the observation sequence, thus modeling shifting concepts, as in
an algorithm due to Herbster and Warmuth [HW98]. Both of these algorithms make
modeling assumptions about the switching dynamics of the observation sequence.

Many algorithms developed for universal prediction on the basis of a set of experts
have clear performance guarantees (e.g., [LW89; HKW98; HW98; Vov99]). The per-
formance bounds characterize the regret relative to the best expert, or best sequence
of experts, chosen in hindsight. Algorithms with such relative loss guarantees have
also been developed for adaptive game playing [FS99], online portfolio management
[HSSW96], paging [BBK99] and the k-armed bandit problem [ACBFS02]. The form
of these algorithms involves multiplicative weight updates, reminiscent of Winnow, a
canonical online learning algorithm due to [Lit88]. Other relative performance mea-
sures for universal prediction involve comparing across systematic variations in the
sequence [FV99.

Our goal of removing the switching-rate as a parameter to the class of algorithms
considered in [HW9S] is similar to Vovk’s in [Vov99], though the approach and the
comparison class for the bounds differ.

2.2 Regret framework and review of our previous
work

In this section we explain the regret framework and summarize our previous work
that appeared in [Mon03].

2.2.1 Preliminaries

The learner has access to n experts, aq,...,a,. Each expert makes a prediction at
each time-step over a finite (known) time period ¢ = 1,...,T, and each expert’s
prediction is observed by the learner. We denote the i expert at time ¢ as a;;
since the algorithm may not have any information as to how the experts arrive at
their predictions and what information is available to facilitate the predictions. The
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Figure 2-1: The algorithm maintains a distribution over the experts, in order to
inform its own predictions.

prediction mechanisms of the experts are unknown; they may vary from one expert
to another and may change over time. In this framework, z; is simply the vector of
the experts’ predictions at time t.2 However we will operate only upon the prediction
losses, as explained below. We denote the non-negative prediction loss of expert ¢ at
time ¢ as L(i,t), where the loss, a function of ¢, naturally depends on the observation
Yy € Y at time t. We consider here algorithms that provide a distribution p,(7),
1 = 1,...,n, over the experts at each time point. The prediction loss of such an
algorithm is denoted by L(py,t). Figure 2-1 is a schematic of these dependencies.

For the purpose of deriving learning algorithms such as Static-expert and
Fixed-share described in [HW98], we associate the loss of each expert with a pre-
dictive probability so that —log p(ve|yi—1,-..,41,1) = L(i,t). We define the loss of
any probabilistic prediction to be the log-loss:

L(pi,t) = —log > " pu(i) plyrlisn, - yim1) = —log Y pi(i)e 20 (2.1)
=1 =1

Many other definitions of the loss corresponding to p;(-) can be bounded by a scaled
log-loss [HKW98; HW98]. We omit such modifications here as they do not change
the essential nature of the algorithms nor their analysis.

The algorithms combining expert predictions can be now derived as simple Bayesian
estimation methods calculating the distribution p;(7) = P(i|y1,...,y;_1) over the ex-
perts on the basis of the observations seen so far. p;(i) = 1/n for any such method
as any other initial bias could be detrimental in terms of relative performance guar-
antees. The Bayesian algorithm updating p;(-) is defined as follows:

. 1 ¢ o LGi=1) g
pi(i; o) = ZZpt_l(J;a)e LoD il ; ) (2:2)
j=1

where Z; normalizes the distribution. This is analogous to forward propagation in a

2In contrast, in the k-armed bandit problem (e.g. [ACBFS02]), the learner only views the loss of
one of the experts per time-step: the arm (expert) chosen.
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Figure 2-2: A generalized Hidden Markov Model (HMM) of probability of the next
observation, given past observations, and the current best expert.

generalized HMM (allowing observation dependence on past), such as the one shown
in Figure 2-2, in which we model the identity of the best expert for predicting the
current observation as a hidden state variable. Updating p;(-) involves assumptions
about how the optimal choice of expert can change with time, p(i|j; ). For simplicity,
we consider here only a Markov dynamics where o parameterizes the one-step tran-
sition probabilities, and could be an arbitrary transition matrix. To derive previous
algorithms, we can use a scalar 0 < a < 1 to model the switching-rate between which
expert is currently best at prediction. We define

Pl ={ L 7 23)

which corresponds to the Fixed-share algorithm, and yields the Static-expert
algorithm when a = 0.

While we have made various probabilistic assumptions (e.g., conditional indepen-
dence of expert predictions) in deriving the algorithm, the algorithms can be used in
a context where no such statistical assumptions about the observation sequence or
the experts are warranted. The performance guarantees in this chapter do not require
these assumptions.

2.2.2 Upper bound on regret for shifting algorithms

The existing upper bound on the relative loss of the Fixed-share algorithm [HW98]
is expressed in terms of the loss of the algorithm relative to the loss of the best
k-partition of the observation sequence, where the best expert is assigned to each
segment. Here is a guarantee which is similar in spirit, but which characterizes the
regret relative to the best Fixed-share algorithm, parameterized by a*, where a* is
chosen in hindsight after having seen the observation sequence. The proof technique
is different from [HWO9S8] and gives rise to simple guarantees for a wider class of
prediction methods, along with a lower bound on this regret.
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Lemma 1 (Mon03) Let Ly(a) = 3, L(ppa, t), a € [0,1], be the cumulative loss
of the Fized-share algorithm on an arbitrary sequence of observations. Then for
any o, a*:

Lr(a) — Ly(a*) = — log [Eag eT-DIP@la")=D(@la)] (2.4)

Proof: The cumulative log-loss of the Bayesian algorithm can be expressed in terms
of negative log-probability of all the observations:

Lr(a) = — log[Z &(3)p(5; )] (2.5)

where &= {i1,...,ir}, ¢(8) = [[—, e 20" and p(5: ) = py(ir) [T—, p(ic]ir-1; @).
Consequently, Lr(a) — Lp(a)

s @Ep(5a) P(3)p(sia”) '\ p(Sia
Seopra) [Z (o) >]

S p(55a)
= —log |} Q%0 p(s.’ a)] = —log [ZQ(:?; oz*)el"gp(s?m]

— log

5

= —log Z Qs a*)e(T—l)(d(§) log % +(1-&(3)) log {=% )]

where Q(S;a*) is the posterior probability over the choices of experts along the se-
quence, induced by the hindsight-optimal switching-rate o*, and &(3) is the empirical
fraction of non-self-transitions in the selection sequence 5. This can be rewritten as
the expected value of & under distribution Q. O

Upper and lower bounds on regret are obtained by optimizing () in Q, the set of
all distributions over & € [0, 1], of the expression for regret.

The upper bound follows from solving: maxgeg { — log [Eanq e/~ DIP@le?)=D(@le)] 1
subject to the constraint that a* has to be the hindsight-optimal switching-rate, i.e.
that: (C1)  “L(Ly(a) — Lr(a®))jaza =0

Theorem 1 (Mon03) Let Ly(a*) = min, Ly («) be the loss of the best Fized-share
algorithm chosen in hindsight. Then for any o € [0,1], Ly(a) — Ly(a®) < (T —
1) D(a*||er), where D(a*||a) is the relative entropy between Bernoulli distributions
defined by o and .

The bound vanishes when o = o* and, unlike previous work, it does not depend
directly on the number of experts. The dependence on n may appear indirectly
through o, however. While the regret for Fixed-share algorithms is proportional
to T, this dependence vanishes for a learning algorithm that is guaranteed to find «
such that D(a*||a) < O(1/T), as we will show in Section 2.2.3.
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Theorem 1 follows, as a special case, from an analogous result (Mon03) for al-
gorithms based on arbitrary first-order Markov transition dynamics. In the general
case, the regret bound is: (7' — 1) max; D(P(jli, ®) || P(j|i, ), where o, o are now
transition matrices, and D(-||-) is the relative entropy between discrete distributions.
Here is the essence of the proof for the scalar case of Theorem 1.3

Proof: Constraint (C1) can be expressed simply as -= Ly(a)ja—a- = 0, which is
equivalent to Esq{d} = a*. Taking the expectation outside the logarithm, in Equa-
tion 2.4, results in the upper bound. O

2.2.3 Algorithm Learn-a and upper bound on regret

In addition to facing the lower bound on regret which we will provide in Section 2.4,
the algorithms described above take a as a parameter. Setting a entails an assumption
as to the level of non-stationarity of the observation sequence. In contrast, Learn-a,
the algorithm from (Mon03) which we will describe here, learns the switching-rate,
a, simultaneously to updating the probability weighting over the experts.

As illustrated in Figure 2-3, Learn-« is a hierarchical algorithm that maintains
m “a-experts”. The a-experts are Fixed-share sub-algorithms each running with a
different switching-rate, a, that each maintain a distribution, p;;(i) = pya, (i), over
the original experts given in the problem. Learn-a tracks the best “a-expert” using
the Static-expert algorithm, i.e. it updates its distribution over the Fixed-share
sub-algorithms with a model which assumes no switching, as specified in Section 2.2.1.

Since the cumulative loss L;(«) of each Fixed-share algorithm running with
switching parameter o can be interpreted as a negative log-probability, the posterior
distribution over the switching-rate becomes

pt(a) = P<a|yt—17 ey yl) X e_Ltil(a) (26)

assuming a uniform prior over a € [0, 1]. As a predictive distribution p;(«) does not
include the observation at the same time point.

We will consider a finite resolution version of this algorithm, allowing only m
possible choices for the switching-rate, {aq,...,a,}. For a sufficiently large m and
appropriately chosen values {«;}, we expect to be able to always find o; ~ o* and
suffer only a minimal additional loss due to not being able to represent the hindsight-
optimal value exactly.

Let p;;(i) be the distribution over experts defined by the j* Fixed-share al-
gorithm corresponding to «;, and let pi(4) be the top-level algorithm producing a
weighting over such Fixed-share experts. The top-level algorithm is given by

op/ - 1 op, e
PP (j) = Zpi_pl(J)e Lpe—r,5.t=1) (2.7)

3For more details and the full proof for general transition matrices, we refer to the reader to
[Mon03].
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P o)

Figure 2-3: The hierarchy of experts and “a-experts,” Fixed-share algorithms run-
ning with different settings of «, maintained by the Learn-« algorithm.

where pi”(j) = 1/m, and the loss per time-step becomes

Ltop( top t o IOg Z pt0p fL(Pt,Jv = lOg Z Zp pt,] 7L(l t) (28)

7j=1 =1

as is appropriate for a hierarchical Bayesian method.

Upper bound on regret for Learn-«

Here is the extension to Theorem 1 providing an analogous guarantee for the Learn-«
algorithm.

Corollary 1 (Mon03) Let LY be the cumulative loss of the hierarchical Learn—o
algorithm using {aq, ..., an}. Then

LY — Lyp(a*) <log(m)+ (T —1) I{lm D(a*|lay) (2.9)

m

The hierarchical algorithm involves two competing goals that manifest themselves
in the regret: 1) the ability to identify the best Fixed-share expert, which de-
grades for larger m, and 2) the ability to find a; whose loss is close to the op-
timal « for that sequence, which improves for larger m. The additional regret
arising from having to consider a number of non-optimal values of the parame-
ter, in the search, comes from the relative loss bound for the Static-Expert al-
gorithm, i.e. the relative loss associated with tracking the best single expert [HW9S;
LWS89]. This regret is simply log(m) in our context. More precisely, the corollary
follows directly from successive application of that single expert relative loss bound,
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and then our Fixed-share relative loss bound (Theorem 1):

L7 — Ly(a*) < log(m) + jmin Ly (aj) (2.10)
< log(m)+ (T'—1) I{lin D(a*||e;) (2.11)
J=L,....m

2.3 Optimal discretization for learning o

Here we show the derivation of the optimal choice of the discrete set {a,. .., an},
based on optimizing the upper bound on Learn-a’s relative loss. We start by finding
the smallest discrete set of switching-rate parameters so that any additional regret
due to discretization does not exceed (7" — 1)d, for some threshold 6. In other words,
we find m = m(d) values a1, ..., ame) such that

i D(a*||a;) =06 2.12
Jnax  min - D(aa;) (2.12)
The resulting discretization, a function of 9, can be found algorithmically as follows.
First, we set a; so that max,«cp,q,) D(a*|la;) = D(0||;) = ¢ implying that a; =
1 — e, Each subsequent «; is found conditionally on «;_; so that

max min{D(a"||a;_1), D(a"||a;)} =0 (2.13)

a*€laj-1,a4]
The maximizing a* can be solved explicitly by equating the two relative entropies
giving
1 — 1 — o \ !
a = log(#) (log( % ¢)) (2.14)
-«

i aj1 L—ay

which lies within [o;_1, ;] and is an increasing function of the new point «;. Substi-
tuting this a* back into one of the relative entropies we can set «; so that D(a*||a;_1) =
d. The relative entropy is an increasing function of «; (through a*) and the solution is
obtained easily via, e.g., bisection search. The iterative procedure of generating new
values «; can be stopped after the new point exceeds 1/2; the remaining levels can
be filled-in by symmetry so long as we also include 1/2. The resulting discretization
is not uniform but denser towards the edges; the spacing around the edges is O(9),
and O(v/§) around 1/2.

For small values of 9, the logarithm of the number of resulting discretization levels,
or logm(d), closely approximates —1/2logd. We can then optimize the regret bound
(2.9): —1/2log§ + (T — 1), yielding §* = 1/(27), and m(6*) = v/2T. Thus we will
need O(v/T) settings of a.

Optimized regret bound for Learn-«

The optimized regret bound for Learn-a(¢*) is thus (approximately) 3 log T'+c, which
is comparable to analysis of universal coding for word-length 7' [KT81]. The optimal
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discretization for learning the parameter is not affected by n, the number of original
experts. Unlike regret bounds for Fixed-share, the value of the bound does not
depend on the observation sequence. And notably, in comparison to the lower bound
on Fixed-share’s performance, which we will prove in the next section, Learn-a’s
regret is at most logarithmic in 7.

2.4 A lower bound on regret for shifting algorithms

The relative losses obviously satisfy Lr(a) — Ly(a*) > 0 providing a trivial lower
bound. Any non-trivial lower bound on the regret cannot be expressed only in terms
of o and a*, but needs to incorporate some additional information about the losses
along the observation sequence. We express the lower bound on the regret as a
function of the relative quality £* of the minimum o*:

a*(1—a*) d?

A= T—1 dao?

Lr(a)ja=ar (2.15)

where the normalization guarantees that * < 1. g* > 0 for any o* that minimizes
LT(CK).

The lower bound is found by solving: mingeg {— log [EdNQ e(Tfl)[D(d”a*)*D(&”“)q }
subject to both constraint (C1) and (C2) %(LT(Q))MZQ* = £

a*(1—a*)

Theorem 2 Let 3* and o* be defined as above based on an arbitrary observation

sequence, and q; = [1 + lT__Bl o171 and gy = [1+ IT__Bl 171 Then

Lr(a) — Ly(a®) > —1log [Egng e DIP@l07) =D o)) (2.16)

where Q(1) = q1 and Q((a* —q1)/(1 —q1)) = 1 — q1 whenever a > o*; Q(0) = qo and
Q(a*/(1 —qo)) =1 — qo otherwise.

The upper and lower bounds agree for all a,a* € (0,1) when §* — 1. In other
words, % — 1 results in a guaranteed loss specified by the matching upper and lower
bounds. Thus there may exist observation sequences on which Fixed-share, using
a # o, must incur regret linear in 7.

Proof: The proof is similar to the upper bound case except that we minimize the ex-
pression for Ly(a) — Ly (a*) with respect to distributions @ subject to the constraints
imposed by a* and 3*. I.e. we minimize the regret, the expression from Lemma 1:

1—
Lr(o) = Lrla®) = ~logEag |oxp{T'(alog % + (1~ a)log =)}
(0] —

= —logEavq| f(d;a,a")] (2.17)

where f(&; a, o) = exp {T"(@log = + (1 — &) log 1=%) } and 7" = T'— 1. The mini-

1—
1—a*
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mization is carried out with respect to the distributions ) subject to

1) L (@) =0 (2.15)
(2) % LT(Q)\aza* - % (2.19)

These constraints can be expressed as expectation constraints involving (). As in the
upper bound context, the first condition is equivalent to Esg{d} = a*. To simplify
the second condition we rely on the following expression for the second derivative,
applying the first constraint, Es.o{ad} = o

Claim 1 The second derivative of the cumulative loss, Lr(«), of the Fixed-share
algorithm, is of the following form, around o = o*, where o* = min, Ly («a).
d2 Tl2 O[*(l _ Oé*)
—L —a* =
dOéQ T(Q)W*O‘ 06*2(1 _ @*)2 T

— Eanql(a@—a")’]|  (2:20)

The proof is given in Appendix A.
The second constraint is therefore equivalent to

(1—p5%)a"(1—a)
T/

Eang(a —a”)’] = =0 (2.21)

Let Q be the set of all distributions over [0,1]. Using the fact that minimizing
—log(+) is the same as maximizing the argument, we write the optimization problem
for @) as follows

max Eavg f(G;a,a") (2.22)
subject to Fag{a} = a* and Esug [(& — a*)?] = (5. We find the maximizing Q
in closed form and substitute the result for the expression of the regret to yield the
lower bound. Note that we have relaxed the problem slightly by considering the set
of all distributions ©Q rather than those possibly induced by the observed sequence.
The resulting lower bound on the regret will nevertheless be valid but slightly weaker.
We first identify the form that the optimum ) must take by introducing Lagrange
multipliers for the two equality constraints. The Lagrange multipliers can take any
real values, since they encode equality constraints. We avoid introducing two ad-
ditional Lagrange multipliers, for the positivity constraint and the constraint that
(2 must integrate to one, by performing the optimization of () only over probability
distributions, as mentioned above.

JQN) = EBaglf(@a,a”)] = M(Eavgla] = a%) = ho(Eang (@ — ")) — )
= Eavg [f(@a,a%) = M(& —a®) — Xa(@ — a*)® + XafB3] (2.23)

where the second step is by linearity of expectation. The original optimization can
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thus be written as

max min J(Q, \) (2.24)

This expression can in turn be upper bounded as follows:

max min J(Q,\) < min max J(Q, \) (2.25)

So by optimizing the right hand side, we will be upper bounding the argument to
—log(+) in the expression for regret (2.17), and thus lower bounding the regret. Thus
in order to obtain the bound, it is not necessary to invoke Strong Duality.

The optimizing ¢ will just place mass at the the & values that maximize this
quantity. So we can define an objective

G, %) = f(@0,0") = Mld —a%) = Mo(d — a®)? + Mol
0 Ay 1A * N
6dG(a7 A) = fl&a,a") — A — 204
62 Ay 1" oA *
8@2G(a’ A = G a,a%) — 2\ (2.26)

The maxima of G on the interval will either occur at the endpoints, or at values of &
in the interval where the first derivative of G vanishes and the second derivative is non-
positive. In order to characterize such points, we first consider the form of f”(&; «, a*).
f(&; a,a*) is of the form ¢y exp{co@} where ¢; > 0, and ¢y € R is determined by the
relation of o to a*. So f"(&;a,a*) = c1c3 exp{ca@}, and is therefore convex in &,
strictly positive, and strictly monotonic (increasing for ¢o > 0 and decreasing for
cy < 0) If Ay < 0 then %G(d, X) will be convex in ¢, and still strictly positive,
so the condition for maxima will not hold. Thus solutions will be such that Ay > 0.
Since the second derivative is strictly monotonic, there will be at most one value of
& on the interval at which it is zero. I.e. for any fixed ¢; > 0, co € R, and Ay > 0,
there will exist one value of & that solves:

82

042

0

G(&, X) = c12 exp{ca@} — 2Xs (2.27)

If this value of & is in [0,1] then there can exist a second maximum of G along
the interval, aside from a maximizing endpoint (if any). This is because when the
second derivative of GG is zero, G' changes from convex to concave, or vice-versa. The
strict monotonicity of the second derivative also entails that any maximum of G on
the interval will be attained at a point; not along a subinterval. This provides an
upper bound of two on the number of maximizing & values along the interval. The
trivial cases in which both points are at endpoints of the interval, or there is only one

4cy =0 = a = vk, in which case there is no regret.
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maximizing point, violate the variance constraint, thus yielding trivial bounds, and
will be covered implicitly.

Depending on the relation of o to a* we need to consider just the two points 0
and a € [0,1], or 1 and @’ € [0, 1]. @ and the corresponding points can now be solved
based on the constraints alone. When a < o, we place probability mass gg on 0 and
1 —qop on a. Thus

O0xqg+a(l—q) = o (2.28)

w0 o)+ (1-g)a—a? = LZICLZE) g0

and solving for a and qq, gives

*

Q 1

1-— qo o 1+ 1?@* 1(1&* ( )

a

or Q(0) = g0 and Q(a) = Q(a”/(1 — q)) = 1 — go. Analogously, when a > a*, we
place probability mass ¢; on 1 and (1 — ¢;) on '

I a — qQ1 o 1
@ =" - G = TR (2.31)
The bound follows by substitution. O

2.5 Application to wireless energy management

In this section we discuss an application of Learn-a to the problem of managing the
tradeoff between energy consumption and performance in wireless devices implement-
ing the IEEE 802.11 standard [IEE99]. We performed a preliminary study for this
application in [Mon03]; here we strengthen and validate the application by applying
it in network simulation. To save energy, the 802.11 specification proposes a power-
saving mode (PSM), where a device can sleep to save energy, periodically waking
up to receive packets from a neighbor (e.g., an access point) that may have buffered
packets for the sleeping device. Previous work has shown that a fixed polling time
for waking up degrades the performance of Web transfers [KB02], because network
activity is bursty and time-varying. We apply algorithm Learn-a to this problem
and show, using ns-2 simulation and trace analysis, that it is able to adapt well to
network activity. Our learning power-saving algorithm, LPSM, guides the learning
using a loss function that combines the increased latency from potentially sleeping
too long and the wasted use of energy in waking up too soon. In our ns-2 simu-
lations, LPSM saved 7%-20% more energy than 802.11 in power-saving mode, with
an associated increase in average latency by a factor of 1.02, and not more than 1.2.
LPSM is straightforward to implement within the 802.11 PSM framework.
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2.5.1 The 802.11 energy/performance tradeoff

Energy is an important resource in mobile computing systems. Because processing,
storage, display activity, and communication all consume energy, energy-saving tech-
niques targeted at improving these subsystems have received significant attention in
recent years. Impressive advances in hardware design and operating systems have
greatly reduced the energy consumed by the processing and storage subsystems, and
have led to the wireless network becoming a significant consumer of energy in many
mobile devices. This trend is especially true for handheld mobile devices and nodes
in wireless ad hoc and sensor networks.

Most wireless network interfaces consume energy not only while transmitting or
receiving data, but also when they are simply awake. Therefore, to save energy, most
modern wireless interfaces support a power saving mode (PSM). In abstract terms,
the PSM primitive allows an interface to be in one of two states, SLEEP or AWAKE.
SLEEP is a low-power state, but the interface cannot send or receive data in this state.
In contrast, AWAKE allows data flow, but is a higher-power state. Depending on the
actual device, these two states may differ in power consumption by between a factor
of 10 and 50. For instance, in some current 802.11 cards, the ratio is about a factor
of 20 (1 W v. 50 mW) [FN01; CJBMO02].

With the PSM primitive, power-saving algorithms can save energy by keeping the
wireless interface in the SLEEP state for as long as possible. A SLEEPing device pe-
riodically wakes up and polls its neighbors (either an access point in “infrastructure”
mode, or a neighboring node in “ad hoc” mode) for packets.® To avoid excessive
packet loss, the neighbor must therefore buffer packets for each SLEEPing receiver.
Then, the neighbor sends these buffered packets when it receives a poll from a waking
receiver.

Power-saving algorithms built on top of the PSM primitive introduce a tradeoff
between the amount of energy saved and the degree of performance degradation. If
a device awakens and finds no data buffered for it, then it could have slept for longer
and saved some more energy. On the other hand, if any packets are buffered when the
interface awakens, then the latency to obtain those packets would be larger than if the
network interface had been awake instead of asleep. This increased latency degrades
not just the latency of the on-going data transfers, but often the throughput as well.

This section addresses the problem of designing an algorithm by which a device
can decide when to SLEEP and when to be AWAKE. Our goal is to devise an algorithm
that manages the tradeoff between energy consumption and data transfer latency in a
principled, well-specified way, such that users or application designers can specify their
desired operating point. The goal of a managing the tradeoff in a principled manner is
motivated in part by Krashinsky and Balakrishnan’s work on the Bounded SlowDown
(BSD) algorithm [KB02], which demonstrates that the IEEE 802.11’s non-adaptive
polling time strategy [IEE99] degrades both the latency and the throughput of TCP
transfers. Consistent with that work, we focus our algorithm on Web-like workloads
because they are currently the dominant workloads for many mobile devices.

5This is an abstract model: some implementations first have the neighbor advertise information
before the polls occur.

33



Outline of contributions

We develop a PSM algorithm called LPSM (Learning PSM) by applying Learn-«a
to determine a device’s sleep/awake schedule.  In order to adapt the schedule in
response to observations of current network activity, we instantiate each expert as a
deterministic setting of the polling time. At each decision epoch, the polling time
chosen is the weighted sum of the experts’ times, where the weights are updated by
Learn-«. LPSM makes no assumptions on the distribution of packet arrivals and
network activity.

The first contribution of this section is to show how online machine learning can be
used to solve the wireless power-saving problem. The key to this solution is to define
a loss function that the Learn-a algorithm uses in determining how to update the
weights of the experts every time the mobile device awakens. If the device awakens
and there is no data present, then the weights of the experts are carefully adjusted
such that the next sleep time is longer. Conversely, if any packets were present, the
opposite adjustment is made.

The second contribution of this section is a performance evaluation of LPSM in
trace-driven network simulation and on traces of real-time Web activity. We compare
the performance of both the non-adaptive 802.11 PSM and the BSD algorithm to
LPSM. In our experiments using a Web-like request /response workload, LPSM saves
7%-20% more energy than 802.11 in power-saving mode, with an associated increase
in average slowdown of 2%, and not more than 20%. LPSM is straightforward to
implement within the 802.11 PSM framework.

The rest of this chapter is organized as follows. Section 2.5.3 gives the LPSM
algorithm. Section 2.5.4 presents several results from trace-driven ns-2 simulations
and trace-based analysis of LPSM, and Section 2.5.5 concludes with a discussion of
our results.

2.5.2 Previous work related to application

Using trace-driven simulations, i.e. simulations that sample from an empirical prob-
ability distribution computed from traces of real-time Web activity, Krashinsky and
Balakrishnan [KB02| show that the 802.11 PSM algorithm, which uses a fixed polling
interval (typically 100 ms) to wake up and check for data, causes response latency
for Web-like transfers to be as bad as 2.2x longer than in the absence of any power-
saving algorithm. To better manage the tradeoff in question, they propose BSD, an
algorithm that uses an adaptive control loop to change polling time based on network
conditions. The algorithm uses a parameter, p, and guarantees that the response
latency does not ever exceed (14 p) times the response latency without power-saving.
Within that constraint and assuming adversarial traffic arrivals, BSD guarantees that
the energy consumption is minimized. In contrast, LPSM does not attempt to guar-
antee bounded latency under adversarial traffic arrivals; instead, our approach is to
explicitly encode a tradeoff between energy and latency and give an online learning
algorithm that manages this tradeoft.

Simunic et al. formulate the wireless power-saving problem as policy learning
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in a Markov Decision Process (MDP) [SBGMOO0]. Their algorithm is not an online
algorithm since the linear programming algorithm used to resolve the policy over any
given time period requires access to data over that entire period. They also assume
that network activity is stationary. In the MDP there is fixed distribution governing
the selection of next states, given the current state and action. For any fixed policy
such as the optimal policy in this framework, the network activity is modeled as a
Markov process. This model is not an ideal one for a mobile node, since the network
activity need not conform to a Markov process of any finite order k.

Simunic et al. refer to Chung et al. [CBM99] for the solution in non-stationary
environments. That work proposes “policy interpolation,” however it still assumes
that the underlying process is Markovian, even though it may initially appear non-
stationary due to a lack of observations. They then propose to learn the associated
MDP parameters sequentially [CBM99]. Another machine learning approach to this
problem was proposed by Steinbach, using Reinforcement Learning [Ste02]. This
approach also imposes the assumption that network activity has the Markov property
which, as discussed above, is unrealistic. These previous learning approaches differ
from ours in that LPSM does not make any Markovian or stationarity assumptions,
nor require any a priori knowledge of the phenomenon being learned. LPSM is also
simpler to implement in the 802.11 framework.

We focus on online learning algorithms of the type described in Section 2.2. The
related work has been discussed in Section 2.1. We consider algorithms that treat
network activity as non-stationary, although possibly composed of variable-length
periods that exhibit stationarity in some sense. These algorithms are parameterized
by the switching-rate of the non-stationary process. In the context of wireless net-
works, this value cannot be known by a mobile node a priori. Thus we will use
Learn-a to learn the switching-rate parameter online, simultaneous to learning the
target concept: the polling time in this context

2.5.3 Application of Algorithm Learn-«

The intuition behind our application of Learn-« is as follows. The IEEE 802.11 PSM
standard is a deterministic algorithm polling at fixed polling time, 7" = 100 ms, which
can be viewed as one “expert,” who always claims that 100 ms is the polling time
that should be used. Clearly the ability to consult a set of experts, in which each
expert is a deterministic algorithm using a different 7" value as its polling time, would
enable a more flexible algorithm compared to operating with just one polling time.
LPSM maintains a probability distribution over a set of such deterministic experts.
The algorithm computes its polling time as a function all the experts, subject to this
distribution. It adaptively updates its distribution over experts, based on current
network activity.

Not only is this approach more flexible than that of the 802.11 PSM standard,
but also it is a promising alternative to approaches like BSD that are based on an
adaptive control framework. While BSD adaptively updates its polling time, T, based
on network conditions, it evolves only one T value. In contrast, LPSM maintains and
updates a set of n T" values simultaneously, instead of just one. Although the form
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of the updates is different than that of BSD, the LPSM algorithm explores across a
range of T" values in parallel, which should allow it to choose a better instantaneous
T value to manage the tradeoff. Since sequential exploration for the sake of learning
can incur loss, LPSM’s parallel exploration should allow it to better manage the
energy /latency tradeoff than previous approaches. Additionally, since Learn-« allows
rapid switching between experts, it is able to handle sudden changes in the observed
process, for example a sudden burst of network activity, in this context.

The protocol we propose for a node using LPSM is similar to that of 802.11 PSM
in mainly sleeping except for polls. The main difference in using LPSM is that the
sleep times would be of variable length. Additionally, after retrieving any packets
that may have arrived from the neighbor’s buffer, the node will only stay awake if
the link continues to be active.

The intuition behind how LPSM updates its distribution over experts is that
different experts should gain or lose favor based on current network activity. Upon
awakening, if many packets had been buffered, then the algorithm should adjust
and sleep for less time. On the other hand if only a few packets were received, the
algorithm can sleep for longer, in order to save energy. Below we will present an
objective function aimed at simultaneously minimizing energy and slowdown. After
each observation, LPSM updates the weight of each expert based on that expert’s
loss with respect to this objective, which is a measure of how well the polling time
that the expert proposes would manage the energy/latency tradeoff under the current
network conditions.

Instantiation of experts and prediction function

We apply the Learn-a algorithm exactly as in 2.2.3, unless otherwise stated. To
do so there are several quantities we must instantiate. The algorithms of the type
discussed in Section 2.2 have performance guarantees with respect to the best expert
in the expert set given. These guarantees make no assumptions on the set of experts,
as they are worst case guarantees computed as if the expert set is just a black box,
and could even contain algorithms that are adversarial. Thus when applying such
learning algorithms to a specific problem, we can achieve additional gains from the
performance guarantees, by choosing experts that are actually helpful for the problem
domain in question. In the wireless energy management problem, we use n experts,
each corresponding to a different but fixed polling times, T; : ¢ € {1...n}. The
experts form a discretization over the range of possible polling times.

Unlike many previous problems where online learning has been applied, our prob-
lem imposes the constraint that the learning algorithm can only receive observations,
and perform learning updates, when the mobile device is awake. Thus our subscript ¢
here signifies only wake times, not every time epoch during which bytes might arrive.

To apply this type of online learning algorithm to this problem, we i