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1 Introduction 
Recently, machine learning has been applied to the problem of predicting future climates, informed by the 
multi-model ensemble of physics-based climate models that inform the Intergovernmental Panel on 
Climate Change (IPCC).  There are over 20 laboratories, worldwide, running climate model simulations 
that inform the IPCC. Yet these climate models differ significantly, and there is high variance among their 
predictions. Climate scientists are currently interested in methods to combine the predictions of this multi-
model ensemble of GCMs, in order to better predict future climates. Past work [3,4] demonstrated the 
promise of (supervised) online learning algorithms applied to this problem. Here we propose a novel 
approach, in the batch, unsupervised setting, using sparse matrix completion. Consistent with previous 
work, our method takes the climate models’ predictions into account, including their projections into the 
future, in addition to the past observation data, however our approach to prediction is markedly different. 
We create a sparse (incomplete) matrix from climate model predictions and observed temperature data, 
and apply a matrix completion algorithm to recover it, yielding predictions of unobserved temperatures.  

2 Technical Approach 
Recently, several efficient algorithms have been proposed for sparse matrix completion. 
Applications of matrix completion have found success in ecology [11], and have also been proposed for 
paleo-climate reconstruction problems [8,9,10]. The algorithm we apply in this paper is OptSpace, a 
combination of spectral techniques and manifold optimization [5], which minimizes the nuclear norm 
(sum of the singular values) of the reconstructed matrix, and works well in practice.  

We construct an incomplete matrix from the climate model predictions and the true temperature 
observations as illustrated in Figure 1. The first row of the matrix has 
the observed temperature data over time (e.g. one value per year), 
and the rest of the rows are historic and future temperature 
predictions of the climate models. The missing part of the matrix 
represents the unknown future temperature observations, and the 
future predictions of a subset of the model runs. We set all the 
unknown entries of the matrix to zero, in order to recover them using 
the OptSpace algorithm. 
   We used global mean temperature anomaly data, since it is considered an indicator of climate change 
and was also studied in previous machine learning applications [3,4]. We used two sets of GCM hindcasts 
(predictions of years in the past), as well as historical temperature observations. The first set of GCM 
hindcasts has 7 models obtained from the IPCC Phase 3 Coupled Model Intercomparison Project 
(CMIP3) archive [2]; the second set has 9. These are all distinct, yielding an ensemble size of 16. We 
used the Climate of the 20th Century Experiment (20C3M) historic scenario (years 1901-1999), and the 
SRESB1 experiment future scenario (years 1901-2100). We obtained historical global temperature 
anomalies from the NASA GISTEMP archive for 1980-2012 [1]. 

To evaluate matrix completion on the climate prediction task, we compute its error on the predicted 
(missing) temperature data, with respect to the true observations, on historical validation periods. We 
compare this error to that of the average prediction over the multi-model ensemble of GCMs (also 

Figure 1: Schematic of Matrix M
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computed with respect to the true observations). Predicting with the ensemble average is currently the 
standard method, in climate science, of harnessing the predictions of the multi-model ensemble [6,7]. 

 
 
 
 
 
 

 
 

 
In the first experiment (Table 1, Figure 2), we construct a matrix of annual temperature anomalies that 

has 112 columns for the years 1901-2012. Then, for several values of T, we set to zero all the entries of 
the past T years in the observation row and assume they are missing. Table 1 shows that the prediction of 
the matrix completion algorithm has consistently lower root-mean-square error (RMSE) compared to that 
of the average prediction over all the climate models. This result holds for each of the five experiments, 
which differ on the number of years to predict. 

 
 

In order to use much larger data sets than in the annual experiment, we also ran experiments on global 
monthly temperature anomalies by creating a matrix with column size 1188 (12 months × 99 years. 
Following standard practice [3], anomalies are computed separately per month, to remove seasonal 
effects. Again in this experiment (Table 2), the matrix completion algorithm’s prediction outperforms the 
average prediction over all the climate models. Notably, the variances of both methods are driven down, 
versus the annual experiment. This is likely due to the 12-fold increase in the amount of input data, and 
the similarly increased number of values per validation period, over which the results are averaged. 

While this problem may bear some (superficial) similarity to regression, it is markedly different. In 
particular, to meaningfully fit a regression model, the data should include values for the target variable 
corresponding to the relevant regions of feature space. In contrast, for all times in the validation interval, 
although our method is trained on the feature values (a subset of climate model projections), the 
corresponding (target) observation variable is missing. Nevertheless it would be interesting to compare 
our results to the results of regression using various techniques and evaluation scenarios. 

Since sparse matrix completion typically works in the presence of low intrinsic dimensionality, these 
encouraging results suggest that perhaps there is a low-dimensional projection along which the climate 
models cluster, or a lower dimensional subspace in which the most predictive information lies. This is 
consistent with recent evidence [12] that only a small number of climatological factors (known as 
predictive components [13]) have a significant affect on climate model "skill." 

	  	  	  	  	   	   	  
	   	   	  

8	  years	  
(2005-‐12)	  

13	  years	  
(2000-‐12)	  

23	  years	  
(1990-‐12)	  

33	  years	  
(1980-‐12)	  

43	  years	  
(1970-‐12)	  

Prediction	  
RMSE	   0.667	   0.620	   0.512	   0.280	   0.237	  
σ2	   0.007	   0.012	   0.022	   0.006	   0.005	  

Avg.	  of	  the	  models	  
RMSE	   0.838	   0.774	   0.648	   0.563	   0.496	  
σ2	   0.014	   0.028	   0.059	   0.066	   0.067	  

	  
5	  years	  

(1995-‐99)	  
10	  years	  
(1990-‐99)	  

15	  years	  
(1980-‐99)	  

20	  years	  
(1970-‐99)	  

30	  years	  
(1960-‐99)	  

Prediction	  
RMSE	   0.012	   0.010	   0.010	   0.008	   0.007	  
σ2	   1.47e-‐08	   1.11e-‐08	   1.14e-‐08	   6.92e-‐09	   5.61e-‐09	  

Avg.	  of	  the	  Models	  
RMSE	   0.018	   0.018	   0.016	   0.016	   0.014	  
σ2	   8.76e-‐08	   1.02e-‐07	   8.48e-‐08	   7.42e-‐08	   5.96e-‐08	  

Table 1: Comparison between the algorithm’s prediction error and that of the average prediction over climate models, on 
annual temperature anomalies, for 5 different values of T. 
 

Table 2: Comparison between the algorithm’s prediction error and that of the average prediction over climate models, on monthly 
temperature anomalies, for 5 different values of T 

 

Figure 2: Comparison between the algorithm’s prediction and that of the average over climate models, for annual temperature anomalies with 
validation periods of the past 8, 13 years. (Red: Average over climate models, Green: Observation and Black: Prediction)  
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