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We present a numerical algorithm for simulating the spinodal decomposition described 
by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order 
stochastic partial differential equation with a noise term. The equation is discretized in 
space and time based on a fully implicit, cell-centered finite difference scheme, with an 
adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each 
time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear 
system. We discuss various numerical and computational challenges associated with the 
method. The numerical scheme is validated by a comparison with an explicit scheme of 
high accuracy (and unreasonably high cost). We present steady state solutions of the CHC 
equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal 
decomposition process is studied. We show that the existence of the thermal fluctuation 
accelerates the spinodal decomposition process and that the final steady morphology is 
sensitive to the stochastic noise. We also show the evolution of the energies and statistical 
moments. In terms of the parallel performance, it is found that the implicit domain 
decomposition approach scales well on supercomputers with a large number of processors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Proposed in 1958, the Cahn–Hilliard (CH) equation was initially used to model phase transition in a binary alloy [8,9]. The 
CH equation has subsequently found many applications from nanoscale [42] to planetary-scale [35], such as polymers [32], 
image processing [17], electromagnetic driven void migration [40], and planetary dynamics [35]. Since the pioneering work 
of Langer et al. [30], numerical methods for the CH equation have been extensively studied, including finite difference [14,
33], finite element [21,22,41], finite volume [16,28], and Monte-Carlo lattice methods [31].

Recently progress has been made to simulate the 3D morphological evolution of the CH equation. With a NURBS-based 
finite element scheme and implicit adaptive time stepping, Gomez et al. performed an isogeometric analysis of the CH 
equation and obtained from early random initial conditions several steady morphologies in both 2D and 3D [24]. By us-

* Corresponding author.
E-mail address: cai@cs.colorado.edu (X.-C. Cai).
http://dx.doi.org/10.1016/j.jcp.2015.01.016
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.01.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:cai@cs.colorado.edu
http://dx.doi.org/10.1016/j.jcp.2015.01.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.01.016&domain=pdf


56 X. Zheng et al. / Journal of Computational Physics 285 (2015) 55–70
ing a domain decomposition method for parallel computing, Wodo et al. performed further analysis on various implicit 
schemes and identified all five hypothesized periodic solutions of the CH equation in 3D [36]. Yang et al. conducted similar 
studies using thousands of processor cores, and discovered that lower-order boundary conditions in the additive Schwarz 
preconditioner lead to better convergence of the implicit solver [38,39].

In 1970, Cook found that thermal fluctuations play an important role in the process of spinodal decomposition [15] and 
the CH equation may be unrealistic for describing the entire process, especially for the early state [4]. Cook proposed to re-
vise the CH equation by including the influence of the thermal fluctuation, which is also known as the Cahn–Hilliard–Cook 
(CHC) equation [15]. Since then numerous papers in the literature have addressed the modeling and effects of the ther-
mal fluctuation [4,5,19,20]. Due to the existence of the thermal fluctuation in spinodal decomposition experiments, only a 
stochastic process can correctly describe the whole physical process [3]. Recently Galenko et al. suggested that the diffusion 
field (the deterministic contribution) and the noise (the stochastic contribution) both have an essential influence on the rate 
of spinodal decomposition [23].

There are a number of published numerical results on the CHC equation. Hawick et al. discussed various discretization 
schemes for integrating the CHC system, and the visualization of the morphology evolution [25]. Based on the CHC equation, 
Rogers et al. studied numerically the effect of the thermal fluctuation in the early stage, and the domain growth for a critical 
quench in the late stage in two dimensions [19,20]. Using a finite difference method, Cardon–Weber developed an implicit 
scheme for the CHC equation, which converges in the sense of probability [13]. Kovács et al. introduced a finite element 
method for the CHC equation, and showed its optimal order of convergence [29]. The high spatial order and the noise in the 
CHC equation make the numerical study very expensive, especially in 3D. Moreover, the energy of the solution, a principal 
quantity of interest, changes by leaps between near plateaus, which makes numerical integration challenging.

In this work we propose an efficient parallel algorithm for computing the equilibrium solutions of the CHC equation. The 
equation is discretized by a fully implicit, cell-centered finite difference scheme; the time step size is decided by an adap-
tive time stepping strategy; the conserved noise term is approximated by a random variable with a Gaussian distribution. 
A Newton–Krylov–Schwarz algorithm is used to solve the nonlinear problem at each time step [10,11,26]. Compared with 
explicit methods, the fully implicit scheme allows much larger time steps. We are able to compute the entire evolution of 
the morphologies, energies, and statistical moments in both 2D and 3D. It is found that the thermal fluctuation accelerates 
the spinodal decomposition process. We compare the final steady morphology obtained with the CHC and the CH equations, 
and find that the stochastic noise changes the final steady morphology in some situations.

The remainder of the paper is organized as follows. The next section offers some physical background about the CHC 
equation. The numerical methodology and solvers are presented in Section 3, and numerical results with some analysis are 
given in Section 4. Finally, Section 5 provides concluding remarks and possible future research directions.

2. Physical background

In this section we briefly describe the physical phenomena and a mathematical derivation of the CHC equation. Spinodal 
decomposition, as well as other phase separation process, starts from an initially homogeneous mixture, evolves through 
spontaneous growth of fluctuations of concentration, and results in the separations with distinctly different chemical compo-
sitions [38]. For a binary mixture system, we define the local concentration of the two species as c1 and c2, with c1 + c2 = 1
as a result of mass conservation. In this paper we use the concentration difference u = c1 − c2 ∈ [−1, 1] as the dependent 
variable in the phase field model. Here u is a function of x ∈ Ω and time t ≥ 0. In particular, u = ±1 represents pure fluids 
at equilibrium of the spinodal decomposition. A unit cubic domain Ω and periodic boundary conditions are considered in 
our study.

Based on the Ginzburg–Landau theory, the energy function for a binary mixture system typically consists of two parts, 
i.e., E(u) = E1(u) + E2(u). Here E1(u) = ∫

Ω
f (u)dΩ is the bulk energy and E2(u) = ∫

Ω
ε2

2 |∇u|2dΩ is the interfacial energy 
(ε > 0 is called the interfacial parameter). The bulk energy is dependent only on the local concentration difference. And the 
interfacial energy, which is scaled by ε , depends on the concentration gradient.

The potential term f (u) in the bulk energy has a non-convex and double-well form, and is often approximated by the 
polynomial function f (u) = 1/4(1 −u2)2. However, the above quartic form is inaccurate when the phase quench is deep, i.e., 
the ratio between the critical temperature and the absolute temperature is large [2]. Using a more realistic Flory–Huggins 
model [36], the potential term takes the logarithmic form:

f (u) = 1

2

(
(1 + u) ln(1 + u) + (1 − u) ln(1 − u) − θu2), (1)

where θ is the ratio of the critical temperature Tc and the temperature T . For θ > 1, the non-convex chemical free energy 
has a double-well form and drives the phase separation into two binodal points, while for θ ≤ 1, it has only one well and 
generates a single phase. Following [24], we take the quench ratio θ = 3/2, corresponding to a physically relevant case.

The dissipation of the Cahn–Hilliard energy is:

J (u) = δE(u)

δu
. (2)

The system evolves to the equilibrium by minimizing the free energy. Taking into account of the thermal fluctuation, the 
mathematical form of the spinodal decomposition process is
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∂u

∂t
= −∇ · M(u)∇ J (u) + ζ(u), (3)

where ζ(u) is the thermal contribution to the total flux [7], and M(u) is the mobility. In this paper we employ a variable 
mobility M = 1/4(1 − u2) for the thermodynamic consistency. This dependence between the mobility and the concentration 
difference produces important changes during the coarsening process [24,27].

Combining (1)–(2) into (3), the CHC equation becomes:

∂u

∂t
+

(
ε2∇ · M∇(�u) + θ∇ · M∇u − 1

4
�u

)
+ ζ = 0. (4)

We model the thermal fluctuation using the Langevin approach [19,34,37], which assumes that ζ is a Gaussian space–time 
white noise, with the following properties:{ 〈

ζ(t, x)
〉 = 0,〈

ζ(t1, x1)ζ(t2, x2)
〉 = −σ Mδ(t1 − t2)�δ(x1 − x2),

(5)

where 
√

σ is the intensity of the thermal fluctuation, δ() is the Dirac Delta function, and 〈 〉 is the expectation operator 
defined as 〈η〉 = ∫ +∞

−∞ ηp(η)dη, where η is a random variable and p is the probability density function.
We remark that the statistical conditions of the thermal fluctuation imply three things [25]. First, there is no overall 

drift force. Second, the random noise is uncorrelated in time, but partially correlated in space, which escapes long wave 
length components in the noise spectrum. Finally, as a result of the Laplacian operator, a conservation law is satisfied by 
the random force. A random force component which piles up matter at one cell center must be exactly balanced by force 
contributions at neighboring cells that deplete the matter. The second condition of (5) ensures this property.

3. Numerical methodology and solvers

In this section, we illustrate our numerical methodology in 3D, while numerical results of both 2D and 3D are shown in 
the next section. The CHC equation (4) is a high-order parabolic equation, thus explicit schemes are limited in terms of time 
step size due to stability restrictions. In order to use large time steps and maintain good accuracy, we discretize (4) with 
a fully implicit, cell-centered finite difference scheme. A nonlinear system is solved by using the Newton–Krylov–Schwarz 
method at each time step.

3.1. Discretization

Without loss of generality, we discretize the CHC equation on a unit cube, i.e., Ω = [0, 1]3. We use a uniform mesh with 
N = 1/h mesh cells in each direction and formally denote xi = (i −0.5)h, y j = ( j −0.5)h, zk = (k −0.5)h as the center of the 
cell. In finite difference scheme, the solution u is approximated as uijk ≈ u(xi, y j, zk), for all 1 ≤ i, j, k ≤ N . The discretized 
solution on the time level t = tn is denoted as un

ijk , and t0 = 0 is the initial time level. We use the notation

∇h = (Dx, D y, Dz)

to represent the discrete gradient operator, where

Dxuijk =
ui+ 1

2 jk − ui− 1
2 jk

h
,

and D y , and Dz are defined similarly, with a natural generalization to nonuniform Cartesian meshes in which n is defined 
locally for each coordinate. Then the Laplacian operator � is discretized by

�h = ∇h · ∇h = D2
x + D2

y + D2
z ,

and ∇ · M∇ is discretized by

(∇ · M∇)h = ∇h · M∇h = DxM Dx + D y M D y + Dz M Dz,

where the value of M on a cell face is approximated by the averaged value of M on the two adjacent cell centers. With 
the above discretization, the stencil for cell (i, j, k) depends on the values from all mesh cells (i′, j′, k′) satisfying |i′ − i| +
| j′ − j| + |k′ − k| ≤ 2. Thus the overall scheme is a 25-point stencil. In this paper, we use the periodic boundary condition.

The condition in (5) has the discrete form [19,34]⎧⎨
⎩

〈
ζn

i jk

〉 = 0,〈
ζn

i jkζ
n′
i′ j′k′

〉 = −σ M
(
un

ijk

) δnn′

|tn − tn′ |�h
δ(i jk)(i′ j′k′)

h3
,

(6)

where ζn
i jk is the discretized thermal fluctuation at (i, j, k) of the nth time level tn , δi j is the Kronecker delta, with single in 

time or multi-index in space. If i and j are component-wise equal, then δi j = 1, otherwise δi j = 0.
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In our numerical examples, we replace the discretized thermal fluctuation ζn
i jk by a series of computer-generated pseudo 

independent random numbers {ξ : ξi, i = 1, 2, · · · , 3N3} obeying a uniform distribution in [0, 1]. We pair ξ into 3N3/2 sub-
groups. For each subgroup, there are two independent random numbers ξi and ξi+1. The Box–Mueller algorithm transforms 
them into two independent random numbers ρi and ρi+1 satisfying the standard Gaussian distribution [6]:{

ρi = √−2 ln ξi cos(2πξi+1),

ρi+1 = √−2 ln ξi sin(2πξi+1).
(7)

Therefore, using ξ we obtain a series of independent random numbers {ρ : ρi, i = 1, 2, · · · , 3N3} that satisfy 〈ρi〉 = 0 and 
〈ρiρi′ 〉 = δii′ . For each (i, j, k), we need a vector including three independent random numbers: ρn

i jk = (ρi jkx, ρi jky, ρi jkz), 
where (i jkx, i jky, i jkz) = (3(i − 1)N2 + 3( j − 1)N + 3(k − 1)) × (1, 1, 1) + (1, 2, 3) is the mapping from the one dimensional 
series ξ to the three dimensional vectors ρn

i jk .
We express ζn

i jk by ρn
i jk and ∇h [34]

ζn
i jk =

√
σ M(un

ijk)

h3�tn
∇h · ρn

i jk, (8)

where �tn = tn − tn−1 is the time step size at the nth time level. We should note that, by making the vectors ρn
i jk at each 

cell of each time step independent, independent ξ are generated at each tn .
We employ a backward Euler scheme for the time integration, i.e., the spatial derivative term and the thermal fluctuation 

term are both evaluated at the nth time level, and the transient term is approximated as(
∂un

ijk

∂t

)
h
= un

ijk − un−1
i jk

�tn
, (9)

with first-order accuracy.
With the fully implicit discretization scheme, we need to solve a system of nonlinear algebraic equations

F
(
un) := un − un−1

�tn
+ G

(
un) + ζn

h = 0, (10)

where F = (F n
000, . . . , F

n
i jk, . . .)

T and un = (un
000, . . . , u

n
ijk, . . .)

T. In (10), G represents the spatial discretization, and ζn
h is the 

discretized thermal fluctuation.
The evolution of a phase-field problem admits various time scales. For a typical spinodal decomposition, the minimiza-

tion of the chemical energy results in very fast development in the early stage, and later in the coarsening process, the 
dissipation of the interfacial energy is orders of magnitude slower. An adaptive time-step control is necessary in the numer-
ical simulation. The idea of the adaptive time-stepping is from [24,36], which works well for the Cahn–Hilliard equation. 
We extend the idea by using the variation of the solution u of two consecutive time steps as the monitoring criteria. In our 
case the time step size is computed by

�tn = min
{
α�tn−1,�tmax

}
, (11)

when n > 1 and where

α = min

{
αmax,max

{
αmin,

(
1 + γ ·

(
ρ0

‖un−1‖ + β

‖un−1 − un−2‖ − 1

))}}
. (12)

Here γ , β and ρ0 are used to control the degree of adaptivity as in [24,36]. Some safeguards, such as αmax, αmin, and �tmax
are included to avoid excessive increase or decrease of the time step size. The values of the above parameters are selected 
experimentally. In this paper, we set �tmax = 0.1, αmax = 1.5, αmin = 0.6, γ = 0.5, β = 3.0, ρ0 = 0.015, and an initial time 
step size �t0 = 1.5 × 10−4.

3.2. Newton–Krylov–Schwarz solvers

For solving (10), a Newton–Krylov–Schwarz (NKS) method is applied. The NKS method has three main components: 
(1) an inexact Newton method for solving the nonlinear system, with the solution of the previous time step as the initial 
guess; (2) a Krylov subspace method for solving the linear Jacobian system at each Newton iteration; and (3) a Schwarz 
preconditioner for the Jacobian matrix.

The inexact Newton method solves (10) iteratively in the following way{ ∥∥F(ul) + J(ul)δul
∥∥ < max

{
ηa,

∥∥F(ul)
∥∥ηr

}
,

ul+1 = ul + δul, l = 0,1, . . . ,
(13)
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for a given initial guess u0. Here, J = ∂F
∂u is the associated Jacobian matrix, ηa and ηr are stopping parameters that determine 

how accurately the Jacobian system needs to be solved [18].
The Newton iteration is terminated based on the following stopping condition∥∥F(ul)

∥∥ < max
{
εa,

∥∥F(u0)
∥∥εr

}
, (14)

or a sufficiently small Newton update∥∥δ(ul)
∥∥ < εs, (15)

where εa , εs are absolute tolerances, and εr is a relative tolerance, respectively.
In (13), we use a right-preconditioned GMRES method to solve the Jacobian system

JM−1(Mδu) = −F(u), (16)

with M−1 being a restrictive additive Schwarz preconditioner. To define the preconditioner, we first partition Ω into np (np
is the number of processors) non-overlapping subdomains Ωp , p = 1, . . . , np, and pad each subdomain with δ mesh layers. 
We denote the overlapping subdomain as Ωδ

p .
For each of the overlapping subdomains we define Jp as the restriction of J to Ωδ

p , i.e.,

Jp = Rδ
pJ

(
Rδ

p

)T
, (17)

where Rδ
p is the restriction operator.

The restricted additive Schwarz (RAS) method uses residuals from points in the overlapping region, while discarding 
computed corrections in the overlapping region. It has the standard form:

M−1 =
np∑

p=1

(
R0

p

)T
B−1

p

(
Rδ

p

)
, (18)

where (R0
p)T is the interpolation operator for the nonoverlapping subdomain. The subdomain matrix Bp is crucial to the 

success of the RAS preconditioner. Here, B−1
p is the inverse or an approximate inverse of Jp , whose multiplication with a 

vector is computed by a sparse LU or ILU factorization. We refer to [12] for a more detailed introduction of RAS.

4. Numerical results and analysis

We implement the algorithms described in the previous section on top of the Portable Extensible Toolkit for Scientific 
computation (PETSc) library from the Argonne National Laboratory [1]. Because of the randomness in the equation, if the 
problem is solved with two algorithms (for example, an explicit method and an implicit method), they may not arrive at 
the same steady state solution in the classical sense (i.e., assume the same value at the same spatial location and the same 
time), but they are considered as the same solution if they agree with each other after certain translations and rotations to 
be described. To validate the algorithm and software, we first show some 2D experiments in which we compare the implicit 
results with results obtained with an explicit algorithm. The main focus of this section is the implicit results in 3D.

For the nonlinear solver: the absolute convergence tolerance is εa = 10−8; the relative convergence tolerance is εr =
10−6; the convergence tolerance in terms of the norm of the change in the solution between steps is εs = 10−7.

For the linear solver, the absolute convergence tolerance is ηa = 10−9; the relative convergence tolerance is ηr = 10−3; 
in the RAS preconditioner, sparse LU or ILU decompositions are used as the subdomain solvers; 1 to 3 overlaps are used for 
different problem sizes and numbers of subdomains.

There are two physical parameters: the interfacial parameter ε2, and the amplitude of the thermal fluctuation σ . The 
values of ε2 and σ are varied to demonstrate the system evolution and associated scalability results. For the CHC equation, 
we use a constant initial condition u (referred to as the volume fraction), since the thermal fluctuation helps drive the 
steady initial condition into phase separation. Some statistical quantities are necessary to compare numerical solutions. In 
this paper, we compute the statistical moments from order 2 to 10. Similar to [24], the qth order moment is defined as:

Mq =
∫
Ω

(
u − u

2

)q

dΩ, (19)

which is evaluated numerically using the values at the cell centers.
In the next section, E , E1, and E2 are the free, bulk, and interfacial energy of the system respectively.

4.1. 2D experiments

In this section we study the following issues: (1) validation of the fully implicit method and (2) the effect of the thermal 
fluctuation.
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Fig. 1. Steady morphologies: (a) σ = 10−14, explicit scheme; (b) σ = 10−14, implicit scheme; (c) the translation and rotation of (b).

Table 1
The energies and statistical moments at steady state computed by using the explicit and fully implicit scheme.

E E1 E2 M2

Explicit −1.77 × 10−2 −3.79 × 10−2 2.03 × 10−2 1.24 × 10−1

Implicit −1.77 × 10−2 −3.79 × 10−2 2.03 × 10−2 1.24 × 10−1

M3 M4 M5 M6

Explicit −2.67 × 10−2 2.45 × 10−2 −9.80 × 10−3 6.13 × 10−3

Implicit −2.68 × 10−2 2.46 × 10−2 −9.83 × 10−3 6.15 × 10−3

M7 M8 M9 M10

Explicit −3.01 × 10−3 1.70 × 10−3 −8.92 × 10−4 4.89 × 10−4

Implicit −3.02 × 10−3 1.70 × 10−3 −8.95 × 10−4 4.90 × 10−4

4.1.1. Validation of the fully implicit method
To validate the implicit method, we implement a fully explicit method, which has the same discretization in space as 

the implicit method. Therefore, we evolve the CHC system by the following scheme:

un = un−1 − �tn−1(G
(
un−1) + ζn−1

h

)
. (20)

For the explicit scheme, we use a constant time step size �t = 10−7. For the fully implicit scheme, the adaptive time 
step strategy is applied with an initial time step size �t = 1.5 × 10−4.

Fig. 1 shows the final morphologies with and without the thermal fluctuation computed using the fully implicit scheme, 
and the explicit scheme. Fig. 1(a) is the steady state solution with the thermal fluctuation obtained with the explicit method, 
and Fig. 1(b) is the corresponding implicit result. They do not look the same, in the classical sense; however, if we shift and 
rotate the final morphologies, they look the same, as pictured in Fig. 1(c). This is due to the periodic boundary conditions 
and the random initial condition.

For a more comprehensive comparison between the explicit and implicit scheme, Table 1 shows the energies and statis-
tical moments at steady state with and without thermal fluctuation. The values are very close for both schemes.

4.1.2. Case studies
Case I. We next study the effect of the thermal fluctuation by showing the evolution of the morphology, energies, and 

statistical moments with different intensities. We present two test cases with different initial conditions 0.5 and 0.63. For 
u = 0.5, we set the sharpness parameter ε2 = 15/(8 × 1282), and for u = 0.63, we set ε2 = 1/12 000, which are the same 
values used in [24,36,38]. We set the intensity parameter to be σ = 10−14, 10−16, 10−18, 10−20. Fig. 2 shows the energies 
and statistical moments evolution for u = 0.5. We also investigate the morphology evolution in Fig. 3 on a 128 × 128 mesh.

It is clear that the increase of the thermal fluctuation intensity leads to an acceleration of system evolution in the 
early stage. After the initial separation stage, the system starts to coarsen, which is dominated by the distribution of 
the concentration in the physical domain. The thermal fluctuation not only affects the system positively, but also disturbs 
the coarsening negatively. Therefore, there is not a monotone relationship between the evolution of the coarsening and 
the thermal fluctuation. This property can be found in the following examples.

We next test a case with u = 0.63 on a 256 × 256 mesh. Fig. 4 shows the respective evolutions of energies and statistical 
moments. Fig. 5 is the morphology evolution of the case with σ = 10−14.

4.2. 3D experiments

The study for the 3D problem is more challenging than the 2D problem, since the topology of the solution changes 
significantly as time evolves, and the final steady morphology has more types. For validation, we use the same parameter 
sets as in [24,36,38], which are ε2 = 1/800, u = 0.26, and ε2 = 1/2400, u = 0.5. We use the same mesh as in [38], which 
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Fig. 2. Evolution of the energies and statistical moments for ε2 = 15/(8 × 1282), u = 0, and σ = 10−14,10−16,10−18,10−20.

Fig. 3. Evolution of the concentration difference for ε2 = 15/(8 × 1282), u = 0, and σ = 10−14.
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Fig. 4. Evolution of the energies and statistical moments for ε2 = 1/12 000, u = 0.26, and σ = 10−14,10−16,10−18,10−20.

Fig. 5. Evolution of the concentration difference for ε2 = 1/12 000, u = 0.26, and σ = 10−14.

is 1283. The system evolution with different intensities of the thermal fluctuation σ = 10−14, 10−16 and 10−18 is studied. 
We obtain the same final stages, cylinder and sphere. In terms of energies and statistical moments, our results agree well 
with the results published in [24,36]. We also study the equation with other parameter sets and obtain different steady 
morphologies, e.g., Lawson surface. With some interfacial parameters, we find that the existence of the stochastic noise 
changes the final morphology, from cylinder to plane.
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Fig. 6. Evolution of the energies and statistical moments for ε2 = 1/800, u = 0.26, and σ = 10−14,10−16,10−18.

4.2.1. Case studies
We compute the solution on a 1283 mesh with four set of parameters, corresponding to four different steady state 

solutions. We run the tests with different intensities of the thermal fluctuation and compute the energies and statistical 
moments. We observe that the random noise drives the initially constant concentration to a complex interconnected pattern, 
and finally a steady morphology.

Case I. In this example, u = 0.63, ε2 = 1/800, and σ = 10−14, 10−16, 10−18. The CHC equation reaches a steady state 
and the converged solution is a cylinder. Fig. 6 shows the evolutions of energies and statistical moments, and Fig. 7 is the 
snapshots of the solution at some intermediate and the final time steps.

Case II. In this example, ε2 = 1/2400, u = 0.5, and σ = 10−14, 10−16, 10−18. See Fig. 8 for energies and statistical mo-
ments evolution, and Fig. 9 for the phase variable evolution. The final solution is a sphere.

Case III. In this example, we set ε2 = 1/2400, u = 0.26, and σ = 10−14, 10−16, 10−18. Numerical results show that the 
stochastic forcing does not lead to a different finally morphology than the deterministic PDE. Its solution does evolve to the 
Lawson surface [36]. Fig. 10 is the evolutions of energies and statistical moments, and Fig. 11 is the snapshots of isosurfaces 
respectively. Before separating into phases globally, the system finds local metastable configurations as cylinders. As the 
system evolves, these metastable configurations are destroyed under the influence of the fluctuation. A similar history was 
observed in two dimensions in Fig. 3.

4.2.2. The adaptive time size evolution
Our time step control strategy is capable of detecting rare coarsening events that are typical for spinodal decomposition, 

and adjusting the time step size by several orders of magnitude accordingly. Also, this strategy allows us to reach steady 
state much faster than using a fixed time step for both two and three dimensional cases. In Fig. 12, we present the history 
of the time-step size for some examples discussed in the previous subsection.
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Fig. 7. Evolution of the concentration difference for ε2 = 1/800, u = 0.63, and σ = 10−14.

Fig. 8. Evolution of the energies and statistical moments for ε2 = 1/2400, u = 0.5, and σ = 10−14,10−16,10−18.
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Fig. 9. Evolution of the concentration difference for ε2 = 1/2400, u = 0.5, and σ = 10−14.

Fig. 10. Evolution of the energies and statistical moments for ε2 = 1/2400, u = 0.26, and σ = 10−14,10−16,10−18.
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Fig. 11. Evolution of the concentration difference for ε2 = 1/2400, u = 0.26, and σ = 10−14.

Fig. 12. The time size history of Cases I, II, and III of 3D experiments.

4.3. Scalability studies

In this section, we study the convergence properties of the proposed algorithm. We pay special attention to the number 
of linear and nonlinear iterations and how they change when the mesh is refined and the number of processors is increased. 
We also compare the total computing time for each of the test runs. We focus on Case I with σ = 10−14 and 10 fixed-size 
time steps. We report the performance results at two different points in time; one for the starting time t = 0, and one 
for the starting time of the coarsening stage (in this case, the time when the system energy E = −0.01 is considered as a 
typical coarsening time, and test results are in the second part of the following tables).

In tables below, “np” is the number of processors, “ICT” is the initial coarsening time, “IN” is the number of inexact 
Newton iterations per time step, “GMRES” is the number of GMRES iterations per Newton step, “Time” is the total execution 
time in seconds, and “TS” is the time step size. In the tables, the results in the first part is at t = 0, while the second part 
is for the coarsening stage.

Table 2 shows a comparison of different subdomain solvers on a 1283 mesh. It can be seen that when the number of 
processors is small, ILU is faster than LU, but the scalability is not as good, due to larger number of linear iteration counts. 
Therefore the optimal choice of the subdomain solver depends on the scale of the problem and the number of processors.

Table 3 shows how the numbers of linear and nonlinear iterations and the computing time change when the mesh is 
refined and the number of processors increases. The subdomain solver is ILU(0), and the time step size is 10−4 . From the 
results, we see clearly that the number of nonlinear iterations is not sensitive with respect to the mesh size or the number 
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Table 2
A comparison of different subdomain solvers for Case I. Overlap = 1, and the time step size = 0.0001.

np ILU(0) ILU(1) ILU(2) LU

IN GMRES Time IN GMRES Time IN GMRES Time IN GMRES Time

Average over 10 time steps starting at t = 0
256 2.0 10.0 43.2 2.0 3.5 65.7 2.0 4.5 280.5 2.0 4.5 2401.2
512 2.0 9.6 33.1 2.0 5.0 44.6 2.0 4.5 153.9 2.0 4.5 511.4

1024 2.0 9.7 27.4 2.0 9.5 30.4 2.0 4.5 105.2 2.0 4.5 169.5
2048 2.0 9.5 30.3 2.0 5.0 31.7 2.0 5.0 62.0 2.0 4.5 88.3

Average over 10 time steps starting at t = ICT
256 2.0 8.0 41.3 2.0 5.0 65.8 2.0 5.0 284.6 2.2 4.3 2647.8
512 2.0 8.0 30.1 2.0 5.0 47.1 2.0 5.0 155.7 2.9 3.7 740.3

1024 2.0 11.9 33.7 2.0 5.0 34.9 2.0 5.0 108.4 2.7 4.1 219.5
2048 2.0 12.0 34.3 2.0 5.0 31.0 2.0 4.9 63.6 2.4 4.5 105.4

Table 3
Iteration numbers of Newton, GMRES, and computing time with different meshes. The subdomain overlap = 1, 2, 4, and the subdomain solver is ILU(0).

np 323 643 1283

IN GMRES Time IN GMRES Time IN GMRES Time

Average over 10 time steps starting at t = 0
256 2.0 2.0 4.8 2.0 3.0 9.7 2.0 14.7 114.3
512 2.0 2.0 4.1 2.0 3.0 8.6 2.0 14.7 71.9

1024 2.0 2.0 4.9 2.0 3.0 14.3 2.0 19.8 74.9
2048 2.0 2.0 5.9 2.0 3.0 10.3 2.0 16.7 79.8

Average over 10 time steps starting at t = ICT
256 2.0 1.5 3.0 2.0 3.0 10.1 2.0 9.8 102.8
512 2.0 1.5 3.3 2.0 2.0 18.2 2.9 15.0 84.1

1024 2.0 1.5 4.6 2.0 2.0 8.8 2.6 9.8 60.2
2048 2.0 1.5 6.8 2.0 2.5 9.2 2.3 17.0 60.5

Table 4
Impact of the overlapping size. The subdomain solver is ILU(0), and the time step size = 10−4.

np 1 2 3

IN GMRES Time IN GMRES Time IN GMRES Time

Average over 10 time steps starting at t = 0
256 2.0 10.0 43.2 2.0 13.1 54.1 2.0 14.1 73.3
512 2.0 9.6 33.1 2.0 12.0 38.7 2.0 14.1 65.4

1024 2.0 9.7 27.4 2.0 11.6 53.4 2.0 14.0 45.6
2048 2.0 9.5 30.3 2.0 9.6 31.9 2.0 15.5 45.3

Average over 10 time steps starting at t = ICT
256 2.0 8.0 41.3 2.0 8.0 51.1 2.7 8.9 88.5
512 2.0 8.0 30.1 2.0 8.0 32.3 2.8 8.7 68.1

1024 2.0 11.9 33.7 3.0 6.3 70.9 2.6 8.6 55.5
2048 2.0 12.0 34.3 2.0 7.5 33.9 2.6 9.0 55.9

of processors. Once the mesh size is fixed, the number of linear iterations doesn’t change much as we increase the number 
of processors, but if the number of processors is fixed, then the number of linear iterations increases as we refine the mesh.

Table 4 shows the impact of the subdomain overlaps. The subdomain solver is ILU(0), the mesh is 1283 and the time step 
size is 10−4. From the test results, we found that 512 processors are the optimal choice. When we increase the numbers of 
processors after 512, the scalability is not linear.

Table 5 shows a comparison of different time step sizes, on a 1283 mesh and subdomain solver ILU(0). The results show 
that the number of linear iterations and computing time increases, as the time step size increases.

We remark that when the time step size is large, ILU(0) is not as reliable as ILU(1) and sometime it fails to converge.

4.4. Comparison with the CH equation

In this section, we compare the CHC equation with the CH equation. For the CH equation, the constant initial condition 
keeps the evolution silent forever. Therefore, using the treatment in [24,36], we apply a random initial condition:

u0(x) = u + r(x), (21)

where r(x) is a random variable, with uniform distribution in [−0.01, 0.01]. In the numerical experiments, an independent 
random number is generated.
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Table 5
A comparison of different time step sizes, the subdomain solver is ILU(0), overlap = 1.

np 0.0001 0.001 0.01

IN GMRES Time IN GMRES Time IN GMRES Time

Average over 10 time steps starting at t = 0
256 2.0 10.0 43.2 2.0 11.5 72.5 2.0 27.0 98.8
512 2.0 9.6 33.1 2.0 11.2 47.9 2.0 26.2 56.7

1024 2.0 9.7 27.4 2.0 11.5 37.1 2.0 26.8 43.4
2048 2.0 9.5 30.3 2.0 12.0 34.5 2.0 30.3 41.1

Average over 10 time steps starting at t = ICT
256 2.0 8.0 41.3 3.0 10.0 103.9 3.0 25.3 134.9
512 2.0 8.0 30.1 3.0 9.7 72.3 3.0 25.0 83.2

1024 2.0 11.9 33.7 3.0 10.0 52.5 3.0 26.6 64.1
2048 2.0 12.0 34.3 3.0 10.0 49.9 3.0 28.8 77.1

Fig. 13. Evolution of the concentration difference computed with the CH equation with the random initial condition (the top row) and the CHC equation 
with the random noise σ = 10−14 (the bottom row), ε2 = 1/200, u = 0.26.

We first solve the CH equation with parameter sets provided in the previous section for the CHC equation, including 
both 2D and 3D cases. It is found the CH and CHC equations have the same steady state solutions in all tests. Some of these 
steady states are consistent with other reports [24,36,38].

We next solve the CH and CHC equations with a set of parameters not used in the previous section, ε2 = 1/200, u = 0.26. 
It is found that the steady state solution of the CH equation with the random initial condition is a cylinder, but the steady 
state solution of the CHC equation is a plane. We also note that the relative percentage difference of the steady system 
energy between the two models is small (1.5%). For bulk, interfacial energy, and statistical moments at steady state, the 
relative percentage difference between the CH and CHC equation are larger (from 4.5% to 77%). Fig. 13 illustrates the steady 
states of the CHC and CH models respectively.

5. Conclusions

In this paper, we presented a fully implicit method for solving the Cahn–Hilliard phase-field problem with the thermal 
fluctuation. Our method consists of a fully implicit cell-centered finite difference discretization, together with an adaptive 
time stepping strategy. For solving the nonlinear system of equations at each time step, we use an NKS algorithm, which 
proves to be effective for this highly nonlinear problem. We are able to obtain steady state solutions in both 2D and 3D.
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Typical steady state morphologies, e.g., circle, slab, cylinder, are obtained. We found that the random noise, the interfacial 
parameter and the initial concentration have significant impact on the steady state solution. For certain parameter sets, the 
CHC equation and the CH equation evolve to different steady states. The evolution of energies and statistical moments with 
different intensities of thermal fluctuation are also studied. We found that the thermal fluctuation plays an important role 
in the early stage, which is consistent with Cook’s conclusion. The increase of the thermal fluctuation intensity leads to the 
acceleration of the phase separation. Later, during the coarsening stage, the separated concentration distribution dominates 
the slow process. There is no monotonic relationship between the system evolution and the thermal fluctuation in the 
coarsening process. To our knowledge, this is the first time that 3D steady state calculations of the CHC equation are carried 
out. We also studied the scalability of our method with respect to the number of processors, the mesh size, subdomain 
solver, subdomain overlap, and time step size.

Our future research includes the extension of the Schwarz methods to multi levels so that higher resolution meshes can 
be used on machines with larger number of processors.
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