
J Sci Comput (2011) 47: 258–280
DOI 10.1007/s10915-010-9436-4

Parallel Two-Grid Semismooth Newton-Krylov-Schwarz
Method for Nonlinear Complementarity Problems

Haijian Yang · Xiao-Chuan Cai

Received: 18 June 2010 / Revised: 3 November 2010 / Accepted: 4 November 2010 /
Published online: 18 November 2010
© Springer Science+Business Media, LLC 2010

Abstract We develop scalable parallel domain decomposition algorithms for nonlinear
complementarity problems including, for example, obstacle problems and free boundary
value problems. Semismooth Newton is a popular approach for such problems, however,
the method is not suitable for large scale calculations because the number of Newton itera-
tions is not scalable with respect to the grid size; i.e., when the grid is refined, the number of
Newton iterations often increases drastically. In this paper, we introduce a family of Newton-
Krylov-Schwarz methods based on a smoothed grid sequencing method, a semismooth in-
exact Newton method, and a two-grid restricted overlapping Schwarz preconditioner. We
show numerically that such an approach is totally scalable in the sense that the number of
Newton iterations and the number of linear iterations are both nearly independent of the grid
size and the number of processors. In addition, the method is not sensitive to the sharp dis-
continuity often associated with obstacle problems. We present numerical results for several
large scale calculations obtained on machines with hundreds of processors.

Keywords Complementarity problem · Semismooth Newton · Two-level methods · Grid
sequencing · Parallel computing · Schwarz preconditioners

1 Introduction

Complementarity problems have many important applications in engineering modeling, op-
erations research and the pricing of stock options; see, e.g., [8, 15, 20], and there are grow-
ing interests in developing efficient and robust algorithms for solving these semismooth

The research was supported in part by DOE under DE-SC0001774 and FC-02-06ER25784, and in part
by NSF under grant DMS 0913089.

H. Yang
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, P.R. China
e-mail: haijianyang@gmail.com

X.-C. Cai (�)
Department of Computer Science, University of Colorado at Boulder, Boulder, CO, 80309, USA
e-mail: cai@cs.colorado.edu

mailto:haijianyang@gmail.com
mailto:cai@cs.colorado.edu

J Sci Comput (2011) 47: 258–280 259

problems on large scale supercomputers. One popular approach is the class of semismooth
methods which solves the complementarity problem by first reformulating it as a semi-
smooth system of equations and then applying a generalized Newton method to solve this
system. There are extensive theoretical and numerical results associated with this approach,
see, e.g., [7, 9, 16, 23]. However, all existing approaches have scalability problems in the
sense that when the degree of freedoms in the problem increases the number of nonlinear
or linear iterations increases drastically. This prevents the algorithms from being useful for
solving problems with large number of unknowns and on machines with large number of
processors.

In this paper, we develop a class of general purpose two-grid Newton-Krylov-Schwarz
(NKS) algorithms for complementarity problems associated with partial differential equa-
tions. The methods are based on an inexact semismooth Newton method, a smoothed grid
sequencing method and a two-level cascade restricted overlapping Schwarz precondition-
ing technique. As it turns out, with an appropriate grid sequencing, the convergence rate of
the semismooth Newton method can be made to be nearly independent of the number of
unknowns of the system using either the Fischer-Burmeister function or the minimum func-
tion. This is a tremendous improvement over the approaches developed in [24, 38], in which
the number of semismooth Newton iterations nearly doubles when the grid is refined by a
factor of 2. Using the two-level restricted Schwarz preconditioner with sufficient overlap,
the number of linear iterations also becomes nearly independent of the number of unknowns
of the system. More important, both the linear and nonlinear iterations are nearly indepen-
dent of the number of processors in our numerical experiments on machines with hundreds
of processors.

We briefly mention a few related publications that partially motivated our current work.
In [23], Kanzow developed an inexact semismooth Newton method and several algebraic
preconditioners, such as Jacobi, Gauss-Seidel, and ILU, were studied together with some
Krylov subspace methods for solving the Jacobian systems. Both the Fischer-Burmeister
function and the minimum function were used in the paper. The results were not quite satis-
factory, and the conclusion was that further research was necessary to identify suitable pre-
conditioners for complementarity problems. In [38], Zvan et al. introduced a penalty method
for complementarity problems, in which, the solution is obtained with an inexact Newton
method and the linear approximate Jacobian systems are solved with the incomplete LU
preconditioned CG method. The method was interesting, but the number of iterations is not
scalable with respect to the size of the problem.

Multigrid is another class of methods being investigated by researchers for complemen-
tarity problems. Due to the nonsmoothness of the problem, special modifications are nec-
essary. In [26], a monotone multigrid method was introduced to solve the obstacle problem
and Gauss-Seidel type relaxation is used as the smoother. In [30], a multigrid method called
the projected full approximation scheme was introduced to solve the linear complemen-
tarity problem. This multigrid method is used to accelerate the convergence of the basic
relaxation method. Although this is a promising technique, multigrid methods are usually
strongly coupled to the type of discretization used, and hence are complex to implement in
general purpose software, as mentioned in [17].

In [21], Hintermüller et al. investigated the connection between the primal-dual active
set method and the semismooth Newton method, and showed that the primal-dual active
set method is a specific semismooth Newton method. In this method, the basic iteration
consists of two steps: first, the domain is decomposed into active and inactive parts based
on a certain criterion, and then a reduced linear system associated with the inactive set is
solved. The main difficulty in this method is to find the active and inactive parts. In other

260 J Sci Comput (2011) 47: 258–280

words, if we can find the correct interface location of the active and inactive parts, then the
corresponding complementarity problems are much easier to solve. In order to produce an
estimate of the optimal active set, in [27] Morales et al. proposed a method that combines
a projective Gauss-Seidel iteration with a subspace minimization step for symmetric linear
complementarity problems. This method performs two types of iterations. First, the projec-
tive Gauss-Seidel method is used to generate an estimate of the active set, then with this
estimate a sequence of subspace minimization steps is performed. Although this technique
provides a good estimate of the active set after only a few iterations, but this method is not
easy to implement for nonlinear complementarity problems.

We focus on Newton-Krylov methods [2–4, 6, 11, 12] that are not strongly coupled to the
type of discretization used and are increasingly popular for the solution of nonlinear prob-
lems on large scale parallel computers. The nonlinear function derived from complementar-
ity problems is generally not differentiable in certain part of the computational domain. For
these components, some modified derivatives are used instead. To make the inexact Newton
scalable, i.e., the number of iterations is nearly independent of the number of unknowns, we
use a simple grid sequencing method which employs an interpolated coarse grid solution as
the initial guess for the fine grid system. This strategy is very simple and has been used in
many situations, but as far as we know, it has not been applied by others to complementarity
problems. Our experiments show that this strategy provides an extremely good estimate of
the active set. In terms of the total computing time, the most expensive part of the computa-
tion is in the solution of the Jacobian systems. To make the Jacobian solve scalable, we use
a cascade type two-level restricted overlapping Schwarz preconditioned GMRES method.
With this collection of algorithms, we are able to achieve good speedup on an IBM BG/L
with up to 512 processors and for problems with more than 4 millions unknowns.

The rest of the paper is organized as follows. In Sect. 2, we recall the properties of
some inexact semismooth Newton methods based on the Fischer-Burmeister function and
the minimum function, respectively, and then we describe the details of the algorithms in-
cluding grid sequencing and overlapping Schwarz preconditioning. Section 3 is devoted to
numerical experiments and parallel performance of the methods. Finally, we offer some
general remarks on the algorithms in Sect. 4.

2 Semismooth Function Approaches for Complementarity Problems

Let Ω ∈ R2 be a bounded open domain on which a linear or nonlinear differential operator
L(u) is defined. Many problems, including free boundary value problems, obstacle prob-
lems, minimal surface problems and optimal control problems [15], can be described as
finding a function u(x) defined in certain space such that

⎧
⎪⎨

⎪⎩

Lu(x) ≥ 0, x ∈ Ω

u(x) ≥ Φ, x ∈ Ω

(u(x) − Φ)Lu(x) = 0, x ∈ Ω

(2.1)

with some boundary conditions assumed for u(x), x ∈ ∂Ω . Here Φ is given and often called
an obstacle. We are only interested in discrete problems, therefore, we assume uh is a vector
in Rn representing the nodal values of u(x) and F(uh) is a discretized version of L(u).
In the numerical experiments section we show some examples of F(uh) obtained by finite
difference methods. Other methods, such as finite element or finite volume, can also be used.

J Sci Comput (2011) 47: 258–280 261

In this paper, we consider the following complementarity problem:

find uh ∈ Rn,

such that uh ≥ φ, F (uh) ≥ 0, (uh − φ)T F (uh) = 0,
(2.2)

where F = (F1, . . . ,Fn)
T : Rn → Rn denotes a continuously differentiable function from

the discretization of a partial differential equation, and φ ∈ Rn is a given vector. In this
paper, we focus on the nonlinear complementarity problem from the discretization of (2.1),
even though our method is not limited to the obstacle problem (2.1). We refer interested
readers to the survey papers [14, 20] on other problems.

2.1 Semismooth Newton Methods

The semismooth method is based on a reformulation of the complementarity problem (2.2)
as the following nonlinear system of equations

F (uh) = 0, (2.3)

where F : Rn → Rn is componentwise given by

Fi (uh) ≡ ϕ((uh − φ)i,Fi(uh)), i = 1,2, . . . , n (2.4)

for some function ϕ : R2 → R with the following property

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2.5)

Obviously, a vector u∗
h ∈ Rn is the solution of the complementarity problem (2.2) if and

only if u∗
h solves the system of (2.3). If we apply a Newton-type method with a generalized

Jacobian to the system (2.3), then it leads to the class of semismooth methods; see, e.g.,
[9, 13, 22, 23, 37]. In the following, we consider the reformulations (2.3) and (2.4) of the
complementarity problem (2.2) based on two different functions ϕ satisfying (2.5). One is
the Fischer-Burmeister function

ϕFB(a, b) := a + b −
√

a2 + b2 (2.6)

which was introduced in [16], and the other is the minimum function

ϕMIN(a, b) := min{a, b} (2.7)

from [23]. In fact, the Fischer-Burmeister function is differentiable everywhere except at
the point (a, b) = (0,0), while the minimum function is piecewise smooth with its non-
differentiable points forming the line {(a, b)T ∈ R2 : a = b}.

The semismooth function is a class of functions between smooth and Lipschitzian func-
tions. There are many functions that are semismooth such as convex functions, smooth func-
tions and piecewise smooth functions. The classical Newton method for a smooth system
f (uh) = 0 is an iterative process. Suppose u0

h is the initial guess, then at point uk
h, it solves

the Jacobian problem

f (uk
h) + f ′(uk

h)sk = 0

262 J Sci Comput (2011) 47: 258–280

to obtain the search direction sk , then the next point is set to be uk+1
h = uk

h + sk . The semi-
smooth Newton method is to solve a system of semismooth equations F (uh) = 0, where F
is semismooth, in which the Jacobian problem is replaced by

F (uk
h) + Jksk = 0, (2.8)

where Jk is a generalized Jacobian of F (uk
h) to be introduced below. It is proved (see [32])

that, under certain assumptions, the semismooth Newton method enjoys the same properties
as smooth equations, such as locally superlinear convergence. A major advantage of these
two reformulations is that the merit function

�(uh) := 1

2
F (uh)

T F (uh) (2.9)

turns out to be continuously differentiable although the equation operator itself is nonsmooth
[23]. Motivated by these observations, we next describe the structure of the Jacobian sys-
tem (2.8). For both the Fischer-Burmeister function and the minimum function, the general-
ized Jacobian matrix Jk is of the form

Jk = Dk
a + Dk

bF
′
(uk

h) (2.10)

with diagonal matrices (depending on the iteration index k)

Dk
a = diag(da1 , . . . , dan), Dk

b = diag(db1 , . . . , dbn) (2.11)

consisting of the partial derivatives of the mapping ϕ with respect to the first variable a and
the second variable b, respectively, or a suitable approximation to these partial derivatives
at those points where ϕ is not differentiable. Let ai = (uk

h − φ)i and bi = Fi(u
k
h), the values

of Dk
a and Dk

b in (2.11) corresponding to the Fischer-Burmeister function take the form

dai
:=

⎧
⎨

⎩

1 − ai/

√

a2
i + b2

i , if a2
i + b2

i
= 0,

1, if a2
i + b2

i = 0,

and

dbi
:=

⎧
⎨

⎩

1 − bi/

√

a2
i + b2

i , if a2
i + b2

i
= 0,

1, if a2
i + b2

i = 0.

Similarly, when using the minimum function F (uh) := min{(uh − φ),F (uh)}, the values of
Dk

a and Dk
b in (2.11) assume the form

dai
:=

{
1, ai < bi,

0, ai ≥ bi,

and

dbi
:=

{
0, ai < bi,

1, ai ≥ bi.

Instead of solving (2.8) exactly, we use the so-called inexact Newton method. The inex-
actness of Newton’s method is reflected in the fact that we do not solve the Jacobian systems

J Sci Comput (2011) 47: 258–280 263

exactly. The accuracy of the Jacobian solver is determined by a relative tolerance ηr ∈ [0,1),
an absolute tolerance ηa ∈ [0,1) and the condition

‖F (uk
h) + Jksk‖ ≤ max{ηr‖F (uk

h)‖, ηa}. (2.12)

Once we have the search direction sk , we obtain the next approximate solution by

uk+1
h = uk

h + αksk,

where the step length αk is calculated by a cubic backtracking method [10], based on the
merit function (2.9).

When using Newton’s method to solve complementarity problems associated with partial
differential equations discretized on a grid, one of the major problems is the deterioration
of the convergence rate when the grid is refined. In particular, we and others have observed
that when the grid is refined by a factor of 2, the number of Newton iterations increases
by a factor of 2. After many experiments, we find a solution to the problem that is “grid
sequencing” which is a popular approach for many problems but has not been used for
complementarity problems. The idea consists of two steps. First, compute the solution of
the problem on a coarse grid. Then interpolate the coarse solution to obtain the initial guess
for the fine grid Newton iteration.

In order to use the grid sequencing method, we assume there are two grids covering Ω ,
a coarse grid of size H and a fine grid of size h, and we assume there is a coarse to fine grid
interpolation operator Ih

H . Two nonlinear systems Fh(uh) = 0 and FH (uH) = 0 are obtained
by discretizing the continuous problem (2.1) on the two grids, respectively. In practice, it
may take some effort to determine the proper size of the coarse grid. On one hand, the size
of the coarse grid has to be small so that we can solve the coarse grid problem reasonably
fast, and on the other hand, the coarse grid has to be sufficiently large so that the solution
has certain accuracy. The idea can be used recursively, but we only study the two-grid case
in this paper.

Another technique we find very useful is the smoothing of the interpolated coarse grid
solution on the fine grid and the use of it as the fine grid initial guess. Suppose u∗

H is the final
solution of the coarse grid system. In the simple grid sequencing method, one obtains the
initial guess u0

h for the fine grid system using the interpolation Ih
H u∗

H . For many complemen-
tarity problems, the residual function Fh(uh) is not smooth and is sensitive to the change
of uh. In other words, some small nonsmoothness of uh may introduce large jumps in the
residual function Fh(uh). To overcome this problem, we propose to smooth the function
ũ0

h = Ih
H u∗

H using the following weights

1
16

1
8

1
16↘ ↓ ↙

1
8 → 1

4 ← 1
8↗ ↑ ↖

1
16

1
8

1
16

(2.13)

several times, and then take the smoothed ũ0
h as the initial guess u0

h for the fine grid Newton
iteration. In Fig. 1, we show the surface plots of Fh(I

h
H u∗

H) without smoothing (left figure),
and Fh(u

0
H) with one sweep of smoothing (right figure) for an obstacle problem. More

details of this example (Test 1) will be discussed in the numerical experiments section of
this paper.

264 J Sci Comput (2011) 47: 258–280

Fig. 1 The effect of smoothing of the interpolated coarse grid solution on the fine grid

2.2 Two-level preconditioning

The most expensive step in Newton type methods for solving complementarity problems
is the Jacobian solve (2.12). The scalability of the whole algorithm depends primarily on
how the Jacobian matrix is preconditioned. In stead of solving (2.12), we solve a right-
preconditioned problem

‖F (uk
h) + JkM

−1
k (Mksk)‖ ≤ max{ηr‖F (uk

h)‖, ηa},
where M−1

k is an overlapping Schwarz preconditioner [31, 35, 36].
To define the Schwarz preconditioner, we need to obtain an overlapping partition of Ω .

We first divide Ω into non-overlapping subdomains Ωi , i = 1, . . . ,Ns , and then expand
each Ωi to Ωδ

i , i.e., Ωi ⊂ Ωδ
i ⊂ Ω . The overlap δ > 0 is defined as the minimum distance

between ∂Ωδ
i and ∂Ωi , in the interior of Ωi . For boundary subdomains we simply cut off

the part outside Ω . Let HD > 0 denote the characteristic diameter of {Ωi}.
Let N and Ni denote the number of grid points associated to Ω and Ωδ

i , respectively. Let
J be the N × N sparse matrix of the Jacobian system

Jp = b. (2.14)

We define the Ni × N matrix Rδ
i as follows: its element (Rδ

i)l1,l2 is either 1 if the integer
indices 1 ≤ l1 ≤ Ni and 1 ≤ l2 ≤ N are related to the same grid point and this grid point
belongs to Ωδ

i or 0 otherwise. The multiplication of Rδ
i with a N × 1 vector generates a

shorter Ni × 1 vector by discarding all components corresponding to grid points outside
Ωδ

i . The Ni × N matrix R0
i is similarly defined, with the difference that its application to a

N × 1 vector also zeroes all those components corresponding to grid points on Ωδ
i \ Ωi . We

denote by Ji the Ni × Ni subdomain matrix given by

Ji = Rδ
i J (Rδ

i)
T .

J Sci Comput (2011) 47: 258–280 265

We assume Ji is nonsingular and denote by B−1
i either the inverse of or a preconditioner for

Ji . The one-level restricted additive Schwarz (RAS) preconditioner for J is defined as

M−1
RAS =

Ns∑

i=1

(R0
i)

T B−1
i Rδ

i . (2.15)

The one-level preconditioner works well when the number of processors is small, however,
for the case of large number of processors, a coarse preconditioner is often incorporated
into M−1

RAS to reduce the number of iterations. We refer to [5, 6, 18, 28] for further analysis
and examples of one-level restricted additive Schwarz preconditioning techniques. There are
several ways to include a coarse preconditioner to the one-level preconditioner M−1

RAS [35,
36]. We choose to use a method that is very similar to the grid sequencing technique just
discussed, and the same coarse grid is employed for the linear preconditioner. At each step of
Newton iteration, similar to the Jacobian matrix J , we calculate a coarse grid approximation
Jc by using (2.10) and IH

h uk
h, where IH

h is a restriction operator from the fine grid to the
coarse grid.

When the coarse grid is small, a sequential or parallel direct method is suitable for com-
puting J−1

c wc for any coarse vector wc , one can then define the coarse grid preconditioner
as

M−1
c = Ih

H J−1
c IH

h .

Then, the cascade type two-level Schwarz preconditioner can be defined as

M−1 = M−1
c + M−1

RAS − M−1
RASJM−1

c .

In many applications, the coarse grid has to be reasonably fine and this makes it not possible
to use any direct methods. In this case, which is the situation that we are interested in this
paper, a preconditioned iterative method has to be used to solve the coarse problem

xc = J−1
c wc or Jcxc = wc.

Similar to the one-level preconditioner on the fine grid, we introduce a one-level precon-
ditioner on the coarse grid

B−1
c =

Ns∑

i=1

(R0
c,i)

T B−1
c,i R

δc
c,i .

Here Bc,i is the restriction of Jc on the subdomain Ω
δc
i , and R

δc
c,i and R0

c,i are the restriction

operators on the coarse grids defined on Ω
δc
i and Ωi , respectively. xc = J−1

c wc is computed
by approximately solving the following problem

‖wc − JcB
−1
c x ′

c‖ ≤ max{ηc
r‖wc‖, ηc

a},
where ηc

r , η
c
a are pre-selected tolerances, and then set xc = B−1

c x ′
c . Depending on the toler-

ances, the coarse problem may be solved very accurately or less accurately. More discussion
will be given in the numerical experiments section of the paper. When an iterative method
is used for solving the coarse grid problem, the overall preconditioner is no longer is static
matrix; i.e., it is an iterative procedure. In other words, the preconditioner changes from
iteration to iteration. Depending on if the matrix is symmetric and positive definite, or if

266 J Sci Comput (2011) 47: 258–280

the preconditioner changes during the iteration, there are several choices of the outer it-
erative methods including CG, GMRES and FGMRES [34]. Because the coarse solve is
iterative, the two-level preconditioner changes during the outer iteration, therefore, in the-
ory, we should use FGMRES, which is more expensive in terms of floating point operations
and memory requirement. However, as we find out in our numerical experiments, the regular
GMRES converges with no problem. Therefore, in this paper, we simply use GMRES for
all cases.

3 Numerical Experiments

We report some results of our numerical experiments. The parallel software is developed
using the Portable, Extensible Toolkit for Scientific Computing (PETSc) library of Argonne
National Laboratory [1]. The numerical tests are carried out on an IBM BlueGene/L using
up to 512 compute node. Each node has 512 MB of memory.

3.1 Test cases

We study three model problems defined on Ω = (0,1) × (0,1). First, we consider an obsta-
cle problem (Test 1): find u(x) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u(x) + C ≥ 0, x ∈ Ω,

u(x) ≥ −d(x, ∂Ω), x ∈ Ω,

(u(x) + d(x, ∂Ω))(−�u(x) + C) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(3.1)

where the d(x, ∂Ω)-operator measures the distance from a point x to the domain boundary
∂Ω . The problem describes the elastoplastic torsion of a cylindrical bar with quadratical
cross section [24, 25, 30]. As the parameter C becomes smaller, the problem becomes more
difficult to solve. In [25], the problem was considered to be very difficult with the parameter
C = 20. In [30], Oosterlee presents level curves of the solution and the small region of “inac-
tive” points, where −�u(x)+C = 0 is valid. This region, whose size depends on parameter
C, represents the plastic region, whereas the active points, where the second constraint with
equality sign is valid, represents the elastic region (see [33] for more details).

Secondly, following Nochetto et al. [29], we consider the problem (Test 2):
⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) − g(x) ≥ 0, x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x)(−�u(x) − g(x)) = 0, x ∈ Ω,

(3.2)

where

g(x) =
{−4(2|x|2 + 2(|x|2 − r2)), |x| > r,

−8r2(1 − (|x|2 − r2)), |x| ≤ r.

Here r is a given constant which controls the region of “inactive” points. The problem has
the exact solution

u(x) = (
max{|x|2 − r2,0})2

.

J Sci Comput (2011) 47: 258–280 267

The boundary condition is defined by using the exact solution.
Finally, we study the obstacle Bratu problem from [13, 33] (Test 3):

⎧
⎪⎪⎨

⎪⎪⎩

−�u(x) + λe−u(x) ≥ 0, x ∈ Ω,

u(x) ≥ Φ, x ∈ Ω,

(u(x) − Φ)(−�u(x) + λe−u(x)) = 0, x ∈ Ω,

(3.3)

where the parameter λ ≥ 0 and the boundary condition u(x) = 0. Here we are interested in
the particular instance given by

Φ = −4, λ = 1

which are also used as a complementarity test problem in, for example, [13, 19, 23].
For the discretization we use the standard second-order five-point finite difference

method on a uniform grid. Taking Test 1 and the minimum function as an example, we
build the discrete semismooth function at a grid point, formally defined in (2.3), as

Fij (uh) = min
{
ui,j + d(x, ∂Ω),4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + Ch2

}
. (3.4)

Note that for better results, we scale the function with h2. We can define the semismooth
function corresponding to the Fischer-Burmeister function in a similar way.

The initial guess u0
h for the global Newton iteration is the obstacle φ in (2.2) for Test 1

and Test 2, and is −1.0 for Test 3. We stop the fine grid Newton iteration if

‖F (uk
h)‖ ≤ max{10−6‖F (u0

h)‖,10−10}.
The fine grid Jacobian system is solved with GMRES(30), and the iteration is stopped if the
tolerance

‖F (uk
h) + Jksk‖ ≤ max{10−4‖F (uk

h)‖,10−10}
is satisfied. The subdomain problems are solved with LU factorization. Throughout this
section,“np” stands for the number of processors which is the same as the number of sub-
domains, “INB’ the number of inexact Newton iterations, “RAS” the number of RAS pre-
conditioned GMRES iterations per Newton iteration, and “Time” the total compute time in
seconds.

3.2 One-Level Results

We first study the one-level method for Test 1 with C = 5 and overlap δ = 3. In Table 1,
we present the number of Newton iterations, the average number of GMRES iterations per
Newton, and the total computing time. On a fixed grid, the number of Newton iterations is
independent of the number of processors, but the number of GMRES iterations increases as
the number of processors increases for both the Fischer-Burmeister function and the min-
imum function. The major problem with the one-level method shows up, if we look at the
scalability for a fixed number of processors. For each row in the table, every time we refine
the grid by a factor of 2, the number of Newton iterations doubles. This problem prohibits
the use of the method for high resolution applications.

In Table 2, we show the effect of overlap on the performance of the algorithm. The grid is
512×512. We can see that in general the algorithm converges better as the overlap increases.
On the other hand, a larger overlap also increases the inter-processor communication and

268 J Sci Comput (2011) 47: 258–280

Table 1 Results for Test 1 using the one-level method with overlap δ = 3

Mesh 256 × 256 512 × 512 1024 × 1024 2048 × 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

64 82 11.4 3.3 162 14.7 32.5 320 19.1 384.1 639 24.4 4781.1

128 82 13.6 2.1 162 17.5 17.4 320 22.2 180.4 639 30.8 2236.3

256 82 14.4 1.5 162 18.9 10.2 320 24.3 95.9 639 34.1 1110.0

512 82 17.2 1.1 162 22.6 7.5 320 32.3 62.3 639 38.5 568.9

The minimum function

64 80 11.7 2.9 159 15.3 29.5 319 19.9 361.9 637 26.4 4673.0

128 80 14.0 1.9 159 18.3 16.1 319 23.7 173.5 637 33.7 2201.8

256 80 14.9 1.4 159 19.7 9.7 319 26.1 94.4 637 36.5 1104.8

512 80 17.7 1.3 159 23.8 7.3 319 34.5 62.0 637 41.1 567.5

Table 2 Effect of the overlapping size δ using the one-level method and the Fischer-Burmeister function for
Test 1 with the parameter C = 5. The grid is 512 × 512

δ 1 2 3 4

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

64 162 22.2 34.0 162 17.4 33.1 162 14.7 32.5 162 13.1 33.2

128 162 27.6 18.2 162 20.5 17.7 162 17.5 17.4 162 15.6 17.9

256 162 32.1 11.0 162 23.3 10.3 162 18.9 10.2 162 16.8 12.3

512 162 39.2 8.2 162 28.5 7.6 162 22.6 7.5 162 20.0 8.3

the overall computing time. A moderate overlap, δ = 3, provides the best result in terms of
timing.

The difficulty of Test 1 changes with the parameter C. In Table 3 we present results for
this test case using the one-level method with overlap δ = 3 for both the Fischer-Burmeister
function and the minimum function on a 512 × 512 grid. It is clear that as the parameter
C becomes smaller, both the iteration number and the execution time increase rapidly. In
Fig. 2, we present a comparison of the active/inactive sets with the different values of C.
The inactive sets are the colored regions and the active sets are the white regions.

Next we look at Test 2 with r = 0.7. The numerical results for this example are given
in Table 4. As r decreases, the size of the inactive set increases and the problem becomes
harder to solve. Similar to Test 1, every time we refine the grid by a factor of 2, the number
of Newton iterations doubles.

Finally, we test the one-level method for Test 3. As shown in Table 5, the performance
of the algorithm is quite different from the other two test cases. At the nonlinear level, the
number of Newton iterations is totally independent of the grid size. However, for the linear
solver, the number of GMRES iterations increases as the grid is refined. It is interesting to
note that the minimum function is now a much better choice than the Fischer-Burmeister
function since it requires only half the number of Newton iterations. In [23], for the same
test case, the linear systems are solved using a conjugate gradient method. The numerical
results in [23] indicate that the penalized Fischer-Burmeister function is much better than

J Sci Comput (2011) 47: 258–280 269

Table 3 Results for Test 1 with different values of C by using the one-level method with overlap δ = 3 on
512 × 512 grid

C 5 10 15 20

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

64 162 14.7 32.5 82 9.6 14.0 56 7.4 8.7 43 6.3 6.4

128 162 17.5 17.4 82 11.3 7.3 56 8.9 4.5 43 7.7 3.3

256 162 18.9 10.2 82 11.7 4.2 56 9.0 2.6 43 7.5 1.9

512 162 22.6 7.5 82 13.8 3.1 56 10.4 1.9 43 8.6 1.4

The minimum function

64 159 15.3 29.5 79 10.0 11.2 53 7.5 6.0 40 6.4 3.9

128 159 18.3 15.3 79 11.7 6.1 53 9.0 3.4 40 7.8 2.3

256 159 19.7 9.7 79 12.0 3.7 53 9.0 2.2 40 7.5 1.5

512 159 23.8 7.3 79 14.3 2.8 53 10.6 1.7 40 8.7 1.2

Table 4 Results for Test 2 using the one-level method with overlap δ = 3

Mesh 256 × 256 512 × 512 1024 × 1024 2048 × 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

64 130 12.7 5.5 258 16.2 53.4 512 20.6 640.1 1021 27.6 8120.8

128 130 15.1 3.6 258 19.4 29.1 512 26.0 310.4 1021 32.9 3716.9

256 130 16.2 2.6 258 21.3 17.3 512 29.0 165.9 1021 35.7 1819.8

512 130 19.4 2.3 258 27.1 13.1 512 34.3 102.7 1021 43.4 969.8

The minimum function

64 128 12.9 4.9 257 16.6 49.9 513 21.2 616.1 1024 28.7 7972.0

128 128 15.4 3.3 257 19.8 27.9 513 27.0 300.1 1024 34.0 3648.8

256 128 16.5 2.5 257 22.2 16.6 513 30.0 162.7 1024 37.0 1801.6

512 128 19.8 2.3 257 27.9 12.9 513 35.3 101.2 1024 45.3 972.0

the minimum function approach. Also, the number of CG iterations in [23] is very large.
This suggests that our RAS preconditioned GMRES is more suitable for this problem.

3.3 Two-Level Results

In this subsection, we present some numerical results using the two-level approach in which
a coarse grid is used in the nonlinear solver for generating a better initial guess and also
in the linear solver for generating part of the Schwarz preconditioner. We report results for
Test 1 and Test 2. In all tests, the initial guess for the global Newton iteration on the coarse
grid is the obstacle φ in (2.2), and the tolerance conditions on the fine grid are the same as
in the one-level method.

One aspect of the two-level NKS algorithm should be highlighted before we proceed to
the presentation of numerical experiments. In order to obtain a good initial guess for the fine
grid Newton iteration, we need to know how accurately the coarse nonlinear system should
be solved. In other words, one has to choose an appropriate stopping condition in order to

270 J Sci Comput (2011) 47: 258–280

Fig. 2 The active (colored) and inactive (white) sets with different C for Test 1 computed on a 128 × 128
grid

balance the number of Newton iterations on the fine grid and the total computing time. In
our experiments, we find that for Test 1 we should stop the coarse grid Newton iteration if

‖FH (uk
H)‖ ≤ max{10−4‖FH (u0

H)‖,10−10},

and for Test 2 we should stop the coarse grid Newton iteration if

‖FH (uk
H)‖ ≤ max{10−6‖FH (u0

H)‖,10−10}.

J Sci Comput (2011) 47: 258–280 271

Table 5 Results for Test 3 using the one-level method with overlap δ = 3

Mesh 256 × 256 512 × 512 1024 × 1024 2048 × 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

64 4 20.8 0.2 4 20.8 1.2 4 44.8 7.8 4 66.5 50.9

128 4 26.0 0.2 4 37.8 0.7 4 61.0 4.2 4 101.5 29.7

256 4 26.8 0.1 4 49.5 0.5 4 62.8 2.1 4 133.3 17.2

512 4 36.5 0.1 4 58.0 0.3 4 97.0 1.6 4 189.5 10.8

The minimum function

64 2 23.0 0.13 2 40.0 0.7 2 65.5 4.9 2 75.5 27.7

128 2 31.0 0.09 2 55.0 0.5 2 86.0 2.7 2 153.0 20.3

256 2 30.5 0.07 2 64.0 0.3 2 99.0 1.5 2 157.0 9.9

512 2 49.5 0.07 2 74.5 0.2 2 123.5 1.0 2 177.5 5.2

Table 6 Effect of the fine grid overlapping size δ for Test 1. The semismooth function is the Fischer-
Burmeister function. The fine grid is 512 × 512 and the coarse grid is 128 × 128. The coarse grid overlap is
δc = 3. The preconditioner is the two-level RAS

δ 2 4 6 8

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

64 7 23.6 7.1 7 17.9 6.4 7 15.3 6.2 7 13.7 6.7

128 7 29.0 5.9 7 21.4 4.9 7 18.4 4.8 7 16.6 4.9

256 7 36.6 4.9 7 23.9 3.9 7 20.3 3.6 7 18.0 3.5

512 7 46.1 6.9 7 28.1 4.9 7 23.9 4.3 7 21.6 4.3

In all tests, the Jacobian system on the coarse grid is solved with a one-level RAS precondi-
tioned GMRES(30) with the following stopping condition

‖FH (uk
H) + J k

H M−1
H,RAS(MH,RASsk)‖ ≤ max{10−4‖FH (uk

H)‖,10−10},

where M−1
H,RAS is defined similar to (2.15) on the coarse grid. The subdomain problems are

solved with LU factorization.
Consider Test 1 with C = 5. For the sake of brevity, we assume the coarse overlap δc = 3.

In Table 6, we show the number of iterations and the total computing time with different fine
grid overlap δ. The fine grid is 512 × 512 and the coarse grid is 128 × 128. We observe that,
in general, the algorithm converges better as the overlap increases. However, a larger overlap
also increases the inter-processor communication. Consequently, the best choice for the fine
grid overlap is δ = 6, which is the value we use for other tests in this subsection.

Using δ = 6 and δc = 3, we solve Test 1 on several different fine grids with the two-level
method and the results are summarized in Table 7, for both the Fischer-Burmeister function
and the minimum function. The main concern is the size of the coarse grid H , which is
taken as h/2, h/4 and h/8, where h is the size of the fine grid. In terms of the total number
of Newton iterations, H = h/2 is certainly the best, but H = h/8 offers the best results in
terms of the total computing time. Note that some cases, marked as “∗”, for the fine grid
256 × 256 are not available because the corresponding coarse grids are too coarse and the
discretization is no longer valid. The computing time includes the coarse grid calculation

272 J Sci Comput (2011) 47: 258–280

Table 7 Results for Test 1 with different fine and coarse grids. The overlapping sizes of the coarse grid and
the fine grid are δc = 3 and δ = 6, respectively. The preconditioner is the two-level RAS. h and H are the fine
and coarse grid sizes, respectively

Mesh 256 × 256 512 × 512 1024 × 1024 2048 × 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

H = h/2

64 6 10.8 2.4 5 15.8 11.5 4 21.8 76.0 4 26.3 848.5

128 6 13.0 2.2 5 18.8 8.5 4 26.3 49.0 4 35.8 536.1

256 6 13.8 1.8 5 20.8 6.0 4 30.0 33.6 4 37.8 291.9

512 6 19.3 2.8 5 24.4 5.9 4 34.6 32.9 4 43.0 206.5

H = h/4

64 ∗ 7 15.3 6.2 7 19.0 33.9 6 25.8 201.7

128 ∗ 7 18.4 4.8 7 22.6 21.9 6 32.7 120.8

256 ∗ 7 20.3 3.6 7 25.4 25.4 6 38.7 71.6

512 ∗ 7 23.9 4.3 7 33.9 12.1 6 43.7 56.6

H = h/8

64 ∗ 9 15.7 5.9 9 19.7 31.0 8 26.4 169.9

128 ∗ 9 19.1 4.6 9 23.7 18.8 8 33.9 99.2

256 ∗ 9 21.0 3.5 9 26.6 10.7 9 36.6 54.3

512 ∗ ∗ 9 34.3 10.8 8 45.3 34.4

The minimum function

H = h/2

64 2 14.0 1.3 3 14.3 8.3 3 17.7 60.4 2 31.5 777.7

128 2 16.5 1.2 3 16.7 6.0 3 21.7 40.6 2 39.0 446.3

256 2 17.5 1.0 3 18.3 4.3 3 26.3 26.3 2 49.5 260.6

512 2 25.0 1.5 3 20.0 3.9 3 29.7 22.2 2 57.0 178.5

H = h/4

64 ∗ 4 15.5 3.9 4 18.8 21.1 5 19.6 160.3

128 ∗ 4 18.8 2.9 4 24.8 14.6 5 23.2 93.1

256 ∗ 4 20.3 2.3 4 28.0 9.2 5 24.4 50.8

512 ∗ 4 24.5 2.8 4 33.0 7.7 5 30.6 39.7

H = h/8

64 ∗ 7 15.6 4.6 6 21.3 21.7 6 25.7 126.9

128 ∗ 7 18.6 3.5 6 24.8 13.1 6 33.3 74.2

256 ∗ 7 20.7 2.7 6 26.7 7.3 6 37.0 37.0

512 ∗ ∗ 6 34.8 7.4 6 42.5 25.4

of the initial guess, the smoothing of the coarse solution, and the solving of the fine grid
problem. Note the minimum function approach is always faster than the Fischer-Burmeister
function approach in terms of all measures.

In the tables, “INB” refers only to the number of Newton iterations on the fine grid.
Since the nonlinear system on the coarse grid is also solved with the semismooth Newton-
Krylov-Schwraz method, with a one-level preconditioner (the only difference is the Newton
stopping condition), the number of Newton iterations on the coarse grid is similar to the
one-level case with a similar grid size. Taking Test 1 with the Fischer-Burmeister function

J Sci Comput (2011) 47: 258–280 273

Fig. 3 Nonlinear residual
history for Test 1 with the
Fischer-Burmeister function on a
512 × 512 grid and 256
processors. In the case of
two-level, the overlapping sizes
of the coarse grid and the fine
grid are δc = 3 and δ = 6,
respectively. In the case of
one-level, the overlapping size is
δ = 3. h and H are the fine and
coarse grid sizes, respectively

approach and h/2 as an example, the number of Newton iterations on the coarse grid for the
2048 × 2048 fine grid (i.e., the coarse grid is 1024 × 1024) is 318.

If we compare the number of Newton iterations of the one-level method and the two-
level method for Test 1, it is clear the two-level method is tremendously better. In particular
the minimum function approach results in a very small number of Newton iterations and
the computing time. In Fig. 3, we show the nonlinear residual history for Test 1 using the
one-level and two-level methods with the Fischer-Burmeister function on a 512 × 512 grid
and 256 processors. From Fig. 3, one can see that the nonlinear system is extremely difficult
to solve by using the one-level method. In fact the one-level method converges after 162
Newton iterations. On the other hand, the two-level method converges easily for different
grids. The number of global Newton iterations does not change much for the different grids.
We mention that in these tests the coarse solution is smoothed before it is interpolated to
obtain the initial guess on the fine grid.

Similar results are reported in Table 8 for Test 2 with r = 0.7. From Table 8, we see
that when we fix the number of processors and refine the fine grid, the number of Newton
iterations increases in some cases. The reason is that the solution of the coarse nonlinear
system is not accurate enough for these cases. If we solve the coarse nonlinear systems
more accurately, then the number of Newton iterations can be reduced. Table 9 presents
some results with different stopping conditions for the coarse Newton iteration. It is clear
that the initial guess from the coarse grid solution has to be close enough to the desired
solution.

We next consider the parallel scalability issue of the one-level and two-level methods.
For a fixed grid, the speedup is defined as the ratio of the total computing time required
by using 64 processors and np processors. 64 is the smallest number of processors that the
problems can be solved.

The one-level results are shown in Fig. 4. The calculations are done for Test 1 on a
2048 × 2048 grid on 64, 128, 256, and 512 processors. In the left figure, the three speedup
curves are for the Fischer-Burmeister function, the minimum function and the idea case.
Here “ideal” means linear speedup. The corresponding computing times are given in the

274 J Sci Comput (2011) 47: 258–280

Table 8 Results for Test 2 with different fine and coarse grids. The overlapping sizes of the coarse grid and
the fine grid are δc = 3 and δ = 6, respectively. The preconditioner is the two-level RAS. h and H are the fine
and coarse grid sizes, respectively

Mesh 256 × 256 512 × 512 1024 × 1024 2048 × 2048

np INB RAS Time INB RAS Time INB RAS Time INB RAS Time

The Fischer-Burmeister function

H = h/2

64 5 13.6 3.0 4 18.5 14.4 4 21.3 110.1 9 23.9 1639.9

128 5 16.0 2.7 4 22.0 10.9 4 24.3 70.4 9 27.7 995.4

256 5 17.2 2.3 4 24.0 7.9 4 28.0 48.0 9 30.0 537.3

512 5 23.2 3.4 4 29.3 7.8 4 36.0 39.2 9 35.8 384.2

H = h/4

64 ∗ 7 17.0 7.2 6 22.3 36.0 5 28.0 216.4

128 ∗ 7 19.9 5.7 6 27.0 24.3 5 33.0 132.9

256 ∗ 7 21.7 4.4 6 29.3 15.1 6 32.5 85.2

512 ∗ 7 26.1 5.6 6 32.8 13.4 6 38.5 38.5

H = h/8

64 ∗ 9 18.0 6.7 8 22.5 30.6 8 25.0 173.7

128 ∗ 9 21.2 5.3 8 26.4 19.0 8 28.3 93.5

256 ∗ 9 23.3 4.1 8 30.1 11.2 8 32.4 47.5

512 ∗ ∗ 8 36.5 11.3 8 40.5 35.3

The minimum function

H = h/2

64 2 14.0 1.8 3 14.3 11.3 3 18.0 96.0 5 23.0 1390.0

128 2 17.0 1.7 3 17.3 8.5 3 21.7 61.1 5 27.0 788.3

256 2 17.0 1.4 3 19.0 6.2 3 25.3 40.9 5 28.4 421.7

512 2 23.5 1.9 3 23.7 6.1 3 30.3 31.3 5 33.2 280.7

H = h/4

64 ∗ 4 15.8 4.362 4 20.3 24.8 4 23.3 175.8

128 ∗ 4 19.8 3.603 4 25.0 17.4 4 26.3 103.7

256 ∗ 4 20.0 2.708 4 27.3 10.7 4 31.5 63.1

512 ∗ 4 25.5 3.589 4 30.8 9.6 4 42.0 50.6

H = h/8

64 ∗ 6 17.8 4.5 6 22.3 23.1 6 26.3 133.9

128 ∗ 6 20.7 3.5 6 26.5 14.3 6 31.7 75.4

256 ∗ 6 22.8 2.7 6 29.7 8.4 6 35.5 38.5

512 ∗ ∗ 6 37.5 8.8 6 41.7 27.6

right figure. The three curves are amazingly close to each other. This indicates that the one-
level methods are quite scalable at least for this range of number of processors. Of course,
good scalability doesn’t mean the algorithms are fast in terms of the total computing time,
which is often more important.

In Fig. 5, we show the speedup and computing time curves for solving the problem using
the two-level methods. The results are obtained for Test 1 using the minimum function on a
2048 × 2048 grid on 64, 128, 256, and 512 processors and the coarse grid is chosen as 1/2,
1/4 and 1/8 of the fine grid. In comparison with the one-level method, the two-level methods

J Sci Comput (2011) 47: 258–280 275

Table 9 Effect of different stopping conditions on the coarse grid. The semismooth function is the Fischer-
Burmeister function. The fine grid is 512 × 512 and the coarse grid is 256 × 256. The overlapping sizes of
the coarse grid and the fine grid are δc = 3 and δ = 6, respectively. ηc

a is the absolute convergence tolerance
and ηc

r is the relative convergence tolerance of the coarse Newton iteration

Convergence tolerance ηc
a = 10−10, ηc

r = 10−6 ηc
a = 10−10, ηc

r = 10−8

np INB RAS Time INB RAS Time

64 9 23.9 1639.9 3 30.0 1276.9

128 9 27.7 995.4 3 39.3 733.1

256 9 30.0 537.3 3 43.0 404.6

512 9 35.8 384.2 3 46.3 262.0

Fig. 4 The speedup and the total computing time of the one-level method with different semismooth func-
tions for Test 1. The grid is 2048 × 2048, and the overlapping size is δ = 3

are not as scalable, however, the total computing time is much lower. The computing time
curves also show that better timings are achieved when the coarse grid is not too fine.

We should also mention that the use of smoothed grid sequencing plays an important
role in the two-level methods. In Fig. 1, the surface plots of the residual function before
and after the smoothing are shown and they are quite different. The cost of the smooth-
ing step is very small and fewer number of Newton iterations is needed as a result of the
smoothing.

To see the major difference between the one-level and the two-level methods, we show
the surface plots of the residual function for the entire history of Newton iterations in Figs. 6
and 7 (some figures are skipped to save space). The calculations are obtained for Test 1
with C = 5 on a 128 × 128 grid. Through many experiments, we find that the most difficult
part of the computation is to correctly locate the interface of the elastic and plastic regions.
As Newton progresses, the approximate location of the interface shows up as the peak of
the surface plot of the residual function. For Test 1 with C = 5, the precise location of

276 J Sci Comput (2011) 47: 258–280

Fig. 5 The speedup and the total computing time of the two-level method with three different coarse grids
for Test 1. The fine grid is 2048 × 2048. The overlapping sizes of the coarse grid and the fine grid are δc = 3
and δ = 6, respectively. The semismooth function is the minimum function. h and H are the fine and coarse
grid sizes, respectively

the interface is given in the top-left figure of Fig. 2. In the one-level approach as shown in
Fig. 6, all the large components of the residual are located near the computed interface of the
elastic and plastic regions. From the top four figures, one can tell that the location is quite
wrong even after 10 iterations. The correct interface location begins to show up only after
30 Newton iterations. For this particular experiment, it takes 42 Newton iterations to finally
find the solution. In the two-level approach as shown in Fig. 7, because of the smoothed grid
sequencing, a reasonably accurate location of the interface appears in the zeroth Newton
iteration. With such a good initial guess, only 7 Newton iterations are required to satisfy the
desired stopping condition.

4 Some Final Remarks

We developed a family of parallel, highly scalable, two-grid algorithms for solving general
complementarity problems associated with linear and nonlinear partial differential equa-
tions. In addition to the fine grid, on which the PDE is discretized and the complemen-
tarity problem is solved, a coarse grid is introduced to accelerate the nonlinear conver-
gence, and to precondition the linear Jacobian solver in a semismooth Newton iteration.
With the help of a smoothed grid sequencing, a semismooth Newton method and a two-
level restricted Schwarz preconditioner, we showed numerically that the family of two-grid
Newton-Krylov-Schwarz algorithms has a fast and robust convergence and the rate of con-
vergence is nearly independent of the number of unknowns of the problem and the number
of processors. Surprisingly good results were obtained for solving some rather difficult ob-
stacle problems with millions of unknowns and on parallel machines with up to 512 proces-
sors.

J Sci Comput (2011) 47: 258–280 277

Fig. 6 The history for the residual surface of Test 1 by using the one-level method. The grid is 128 × 128.
The semismooth function is the Fischer-Burmeister function. In this case, 42 iterations are need to reach
convergence

278 J Sci Comput (2011) 47: 258–280

Fig. 7 The history for the residual surface of Test 1 by using the two-level method. The semismooth function
is the Fischer-Burmeister function. The fine grid is 128 × 128 and the coarse grid is 32 × 32. In this case, 7
iterations are need to reach convergence

J Sci Comput (2011) 47: 258–280 279

References

1. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang,
H.: PETSc Users Manual. Argonne National Laboratory (2009)

2. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat.
Comput. 11, 297–271 (1990)

3. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4,
297–330 (1994)

4. Cai, X.-C., Gropp, W.D., Keyes, D.E., Melvin, R.G., Young, D.P.: Parallel Newton-Krylov-Schwarz
algorithms for the transonic full potential equation. SIAM J. Sci. Comput. 19, 246–265 (1998)

5. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems.
SIAM J. Sci. Comput. 21, 792–797 (1999)

6. Cai, X.-C., Dryja, M., Sarkis, M.: Restricted additive Schwarz preconditioners with harmonic overlap
for symmetric positive definite linear systems. SIAM J. Numer. Anal. 41, 1209–1231 (2003)

7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
8. Cottle, R., Pang, J.-S., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)
9. Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear

complementarity problems. Math. Program. 75, 407–439 (1996)
10. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equa-

tions. SIAM, Philadelphia (1996)
11. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 392–422

(1994)
12. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci.

Comput. 17, 16–32 (1996)
13. Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear

complementarity problems. Math. Program. 76, 493–512 (1997)
14. Ferris, M.C., Kanzow, C.: Complementarity and related problems. In: Pardalos, P.M., Resende, M.G.C.

(eds.) Handbook of Applied Optimization, pp. 514–530. Oxford University Press, New York (2002)
15. Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM

Rev. 39, 669–713 (1997)
16. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
17. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method.

SIAM J. Sci. Comput. 23, 2095–2122 (2002)
18. Frommer, A., Szyld, D.B.: An algebraic convergence theory for restricted additive Schwarz methods

using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)
19. Gabriel, S.A., Pang, J.-S.: An inexact NE/SQP method for solving the nonlinear complementarity prob-

lem. Comput. Optim. Appl. 1, 67–91 (1992)
20. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity prob-

lems: A survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)
21. Hintermüller, M., Ito, K., Kunish, K.: The primal-dual active set strategy as a semismooth Newton

method. SIAM J. Optim. 13, 865–888 (2003)
22. Jiang, H., Qi, L.: A new nonsmooth equations approach to nonlinear complementarity problems. SIAM

J. Control Optim. 35, 178–193 (1997)
23. Kanzow, C.: Inexact semismooth Newton methods for large-scale complementarity problems. Optim.

Meth. Softw. 19, 309–325 (2004)
24. Kärkkäinen, T., Kunisch, K., Tarvainen, P.: Augmented Lagrangian active set methods for obstacle prob-

lems. J. Optim. Theory Appl. 119, 499–533 (2003)
25. Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69,

167–184 (1994)
26. Kornhuber, R.: On constrained Newton linearization and multigrid for variational inequalities. Numer.

Math. 91, 699–721 (2002)
27. Morales, J.L., Nocedal, J., Smelyanskiy, M.: An algorithm for the fast solution of symmetric linear

complementarity problems. Numer. Math. 111, 251–266 (2008)
28. Nabben, R., Szyld, D.B.: Convergence theory of restricted multiplicative Schwarz methods. SIAM J.

Numer. Anal. 40, 2318–2336 (2003)
29. Nochetto, R.H., Siebert, K.G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle prob-

lems. Numer. Math. 95, 631–658 (2003)
30. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style

options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)
31. Prudencio, E., Cai, X.-C.: Parallel multilevel restricted Schwarz preconditioners with pollution removing

for PDE-constrained optimization. SIAM J. Sci. Comput. 29, 964–985 (2007)

280 J Sci Comput (2011) 47: 258–280

32. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18,
227–244 (1993)

33. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987)
34. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
35. Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic

Partial Differential Equations. Cambridge University Press, Cambridge (1996)
36. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer, Berlin

(2005)
37. Ulbrich, M.: Nonmonotone trust-region methods for bound-constrained semismooth equations with ap-

plications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)
38. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility.

J. Comput. Appl. Math. 91, 199–218 (1998)

	Parallel Two-Grid Semismooth Newton-Krylov-Schwarz Method for Nonlinear Complementarity Problems
	Abstract
	Introduction
	Semismooth Function Approaches for Complementarity Problems
	Semismooth Newton Methods
	Two-level preconditioning

	Numerical Experiments
	Test cases
	One-Level Results
	Two-Level Results

	Some Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

