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Additive Schwarz Methods for Hyperbolic Equations

Yunhai Wu, Xiao-Chuan Cai, and David E. Keyes

1. Introduction

In recent years, there has been gratifying progress in the development of domain
decomposition algorithms for symmetric and nonsymmetric elliptic problems and
even some indefinite problems. Many methods possess the attractive property
that the convergence rate is optimal, i.e., independent of the size of the discrete
problem and of the number of subdomains, or within a polylog factor of optimal.
There is, in comparison, relatively little in the domain decomposition literature on
hyperbolic problems. Quarteroni [8, 9] used nonoverlapping domain decomposition
methods based on the spectral collocation approximation on systems of conservation
laws. Gastaldi and Gastaldi [5, 6] set up a nonoverlapping domain decomposition
scheme based on the finite element approximation for the transport equation. These
contributions establish the boundary operators that lead to well-posed decoupled
problems, which can then be discretized and solved by standard means.

Our interests in this paper are rather different. We examine overlapping domain
decomposition preconditioners, and leave the original global discretization fully in
tact. Rather than deriving interface conditions that lead to decomposed solutions
that are mathematically equivalent (to within some specified discretization toler-
ance) to the solutions of the undecomposed problem, we derive an approximate
inverse that can be applied in a concurrent manner, subdomain-by-subdomain, and
that effectively preconditions the original undecomposed operator, whose action is
already trivial to apply in the same concurrent manner. There seem to have been to
date no such additive or multiplicative Schwarz preconditioners leading to optimal
convergence rates for hyperbolic equations.

Based on the standard Galerkin method [4] an ASM algorithm is formulated.
The preconditioned problems are solved by the GMRES method. The convergence
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rate is shown to be asymptotically independent of the time and space mesh param-
eters and the number of subdomains, provided that the time step is fine enough,
namely of such a size as would be typical for temporal stability reasons in an ex-
plicit discretization. As these limits are exceeded, numerical experiments based on a
Galerkin discretization show a rapid deterioration in convergence rate. (Upwinded
discretizations permit explicit stability limits to be exceeded, in the sense that
the resulting preconditioned iterations on each time step can converge sufficiently
rapidly to be cost-effective in comparison with explicit methods, as discussed in a
forthcoming sequel.) Convergence rate is experimentally observed to be relatively
independent of overlap.

Just as in the parabolic case, but in contrast to the elliptic case, no coarse-level
mesh is required in forming an optimal preconditioner. Good speedups are available
on a distributed-memory machine, as would be expected of a problem with a purely
local preconditioner.

2. Model problem

We consider for convenience the constant-coefficient linear scalar hyperbolic
equation:

o === =0, in QxI,

together with proper boundary and initial conditions, where 2 is a bounded domain
in R? with boundary I and I = (0,7T) is a time interval.

All results in this paper extend without difficulty to the more general linear
hyperbolic problem:

%+div(bu)+cu=f, in(a,t) €%,

where ) is a bounded domain in R? (d = 2 or 3), the coefficients b = (b, -, by)
and ¢ depend smoothly on (z,t), and %divb +c¢>cp > 0in Q x I, for stability.
By implicit temporal finite differencing, we obtain the following problem:
(G + G fup = f,  in Q
U =9, on I'_

(2) }7k:1727"'7K7

where 73, is the k** time step, K is the number of steps, Ele =T, f =up_1,
and I'_ is the inflow boundary defined by

r.= {(m,y) el: n(m,y) 6 < 0}7
where n(z,y) is the outward unit normal to I' at the point (z,y) € T, and 8 =
(—Tk, —Tr). Any implicit multistep time-integration method leads to a system like
(2), in which f more generally contains a linear combination of the solution at
earlier time steps.
The following notation will be used throughout this chapter:
<u,v>_= [ wv(n-B)ds, <u,v>;= fFJr uv(n - ﬂl)ds,
< u,v >= [Luv(n - B)ds, lulg = ([ u?|n - Blds)z,
1
lull = llullLo(e), lu| = ([ u*ds)®,

where T'y =T\I'_ = {(z,y) € T : n(z,y) - 8 > 0}.



ADDITIVE SCHWARZ METHODS FOR HYPERBOLIC EQUATIONS 515

3. Standard Galerkin method

Let us consider the standard Galerkin method for the problem (2), which can
be given the following variational formulation: Find u € H'(Q), such that

(3) (ug +u,v)— < u,v >_= (f,v)— < g,v>_, Yve& H(Q),
where we omit the subscript &, and where ug = —T(% + g—‘;). By Green’s formula,

it is easy to show that
(ug,v) =< u,v > —(u,vg).
The stability of (3) is a consequence of the following property of the bilinear form
Bs(u,v) = (ug + u,v)— < u,v >_:
1
Bg(u,u) = [ull” + 5lul3.
The symmetric part of Bg(u,v) is

1
Ap(u,v) = (u,v) + §(< u,v >4 — < u,v>_),
and the skew-symmetric part is

1
Sg(u,v) = 5 <uv> —(u,v3).

Define the g-norm as || - || = v/ Bs(-,-)-

We choose V" ¢ H'(Q2) as a finite element space of continuous piecewise poly-
nomial functions of degree one or higher on a mesh of quasi-uniform element size
h. We discretize equation (3) in space by the Galerkin finite element method and
have the approximation: Find u" € V" at each time step k, such that

(4) Bs(u", v") = (f,0")— < g, >_, vl e VI
We require the following assumption for the theoretical analysis:
AssumPTION 1. The relation between 7 and h is
T < Ch'*?,
where s > 0.

In the case of velocity magnitudes different from unity in (1), Assumption 1
becomes a CFL condition, and the allowable time step must be reduced in inverse
proportion to the global maximum of the velocity.

We have some lemmas pertaining to Bg, Ag, and Sg as follows.

LEMMA 2. There exist positive constants c; and co, independent of T, such

that N
|Bg(u,v)] < ecillullg-llollg, Vu,v€VE(Q),

Bs(u,u) > callull3, Yu € VR(Q).

LEMMA 3. There exist positive constants cs and c4, independent of T, such

that N
|[Ag(u,v)] < esllullg-lvllg, Vu,ve€ VEQ),

Ap(u,u) > eqllull3, Yu € VR(Q).

LEMMA 4. There exists a constant c5 > 0, independent of T, such that

1 s
|95, )] < esm(Flulllloll + fulle]) < es(B[fulllloll + fullv]), Yu,v € V().
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An additive Schwarz algorithm for (4) is formulated following [2]. Let Q;,i =
1,---, N, be nonoverlapping subregions of  with quasi-uniform diameters H, such
that |JQ; = Q. The vertices of any ; not on dQ coincide with the fine-grid
mesh vertices. We define an overlapping decomposition of 2, denoted by {Q;,z =
1,---, N}, by extending each €; to a larger region Q;, which is cut off at the physical
boundary of 2. The overlap is generous in the sense that there exists a constant
a > 0 such that dist(dQ; Q2,00 N Q) > aH, Vi.

Corresponding to the domain decomposition, we decompose the finite element
space V" at each time step k in the customary manner [2], i.e., VF = Vi +- -+ V1,
where th is a discrete space whose support is confined to the extended subdomain
Q;.

The basic building blocks of the algorithm, projection operators @; : VF —
Vhi=1,--- N, are defined by

(5) Bg(Qiuh,vh) = Bg(uh,vh), Yol € Vih.

The subproblems have homogeneous Dirichlet boundary conditions for the inte-
rior boundary. We can introduce the operator T = @1 + --- + @Qn and form the
transformed linear system

(6) Tu" =,

where the right-hand side is defined by b = Tuh = YN Qu”, which can be
computed without the knowledge of u” by solving the subproblems (5).

If T is invertible, we show below that equation (6) has the same, unique solution
as (4). The operator T is inconvenient to obtain explicitly, but the action of T on a
function in V" is straightforward to compute, consisting of independent problems in
subdomains. Thus the preconditioned form (6) can be solved by a Krylov iterative
method, such as GMRES [10].

With Assumption 1 and the inverse inequalities
(7) e < Fllull

and (from [7])

(8) ul < CV/lull - [ulli,

we have
1
Jullz < IIUIIQ+§TC’IUI2
<l + Crllll rulls
< lull® + CRoJJul®
< Cllull®.

(assuming that A < 1). On the other hand, we obtain,
(9) lJull < Jlull3,
which leads to:

LeEMMA 5. The B-norm is equivalent to the Ly morm.

Therefore, following [2], we come to the conclusion that:
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LEMMA 6. There exists a constant Cy > 0, independent of h and H such that,
for all uh € V", there exist ul € V' with u* = Zi\il ul, and Zfil ||uf||%3 <
C§||uh||% Co generally depends upon the subdomain overlap o.

We give an estimate in the following lemma for the skew-symmetric part Sg(-, -),
which shows that the skew-symmetric part is a lower order term compared with
the symmetric part, and can therefore be controlled.

LEMMA 7. There exists a constant 6, 0 < § < 1, independent of T, h, and H,
such that

|Ss(ul, Tul)| < 6Bg(u, Tuh),vul € V.
PRrROOF. We use the inequalities (7) and (8) throughout the proof.
By the definition of Q;, i =1,..., N, we have
Bg(Quu, Qiu") = Ba(u", Qiu"),
and furthermore
||Qiuh||5(g);) < C“Uh“g(g);)-
Following Lemma 4, Lemma 5, and Assumption 1, we can show

153(Quu",u" = Quu")| < ChY[lu” ).

Using Lemma 2, Lemma 5, and the Cauchy-Schwarz inequality, we have

N
a3 < D Bs(Qiu",ul)
i=1
N
< o) N1Quls - llullls
i=1
<

N N

x| Do NQiu 1% | D [lubl?
i=1 i=1

< cCoy/Ba(uh, Tuh) - |lu"||,

lu"[|5 < CBg(u",Tu"),

which finally leads to the conclusion. O

and hence we obtain

We can summarize the following main result:

THEOREM 8. (a) There exist constants ¢ > 0 and C > 0, independent of T, h
and H, such that

Cllutllg > ITu"|ls > cllu”(s, Vu" € V"
(b) There exists a constant C(8) > 0, such that Vu" € V"
Ap(u", Tu) > C(8)|Ju"|[5.

Since the symmetric part of the preconditioned linear system is positive definite,
GMRES will converge at a rate that is asymptotically independent of h, H, and 7.
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TABLE 1. Convergence rate dependence on time-step exponent s

s It. Time
0.5 40| 16.71s
0.1 7.4 | 26.25s
0.0 || 10.0 | 33.95s
-0.1 || 44.1 | 146.95s

4. Numerical Results

The preceding theorems are useful in motivating effective algorithms but leave
unanswered quantitative questions about the magnitudes of constants in part (a) of
Theorem 8 about the extent of dependence of C'(d) on the size of the overlap in parts
(b) of the same theorems, and about the sensitivity of results to inexact solutions
in the subdomains. The latter is important since inexactness is usually a practical
requirement. For these reasons, we include some numerical experiments, whose
purpose is to quantify the dependence of the convergence rate on potentially “bad”
parameters, including time step exponent, subdomain overlap, inexactness, overall
problem size, and number of subdomains into which the problem is decomposed.

We first vary s between the very conservative s = %, down to the Courant
limit of s = 0, and a little beyond into negative values. We solve model problem
(1) with backward Euler time-stepping on a uniform grid with central-differencing,.
We hold the problem size fixed at h~™! = 512, implying approximately one-quarter
of a million degrees of freedom overall, and the the number of subdomains at p =
16, arranged in a 4 x 4 decomposition, with 128 x 128 grid cells owned by each
subdomain. The overlap between subdomains is one mesh cell. We demand a
reduction of 10~ in relative residual norm at each time step, accomplished by
linear subiterations of GMRES with a subdomain preconditioner of ILU(0).

In Table 1, we tabulate the number of linear iterations per time step, averaged
over 10 consecutive steps, and also the execution time for these ten time steps, as
measured on the Intel Paragon, with one processor per subdomain. It is evident
that the theoretical restriction on the time step to the Courant limit is necessary
for reasonable conditioning of the linear iterations.

In Table 2 we vary the subdomain overlap in the preceding example, using
two different subdomain preconditioners, exact solvers (indicated by “LU”), and
inexact solvers of zero-fill incomplete LU-type (“ILU”). For ILU, three different
values of s are tried, hovering around the Courant limit. Convergence criteria and
iteration counts are as before. The overlap is tabulated in terms of the thickness of
the overlap region in number of cells all around each subdomain, except where cut
off at the boundary. We observe that increasing overlap has a slightly beneficial
effect when it alone is the bottleneck to better convergence, as in the LU situation.
In the practical ILU case, overlap beyond a minimum of one has little to no effect
on the convergence rate, provided reasonable values of s are employed. In the
case of negative s, increasing the overlap actually causes the convergence rate to
deteriorate.

Comparing the first and third result columns, we see that inexactness has a
price of approximately a factor of two in convergence rate. In practice, this does not
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TABLE 2. Convergence rate dependence on subdomain overlap

overlap || LU,s =0 | ILU,s =0.1 | ILU,s =0 | ILU,s = —-0.1
1 5.0 74 10.0 44.1
2 3.0 7.7 10.0 45.2
4 3.0 74 10.0 48.5

TABLE 3. Convergence rate dependence on number of subdomains,
and fixed-size parallel scalability

p | per node It. Time | Time/It. || Rel. Sp. | Rel. Sp./It.
4 | 256 x 256 || 10.0 | 171.54s | 1.715s
16 | 128 x 128 || 10.0 | 33.95s | 0.339s 5.05 5.05
64 | 64 x 64 10.2 | 10.41s| 0.102s 16.48 16.81

translate into any advantage for exact solvers since the convergence criterion at each
time step would usually be commensurate with the temporal truncation error, and
looser than that employed here, and the cost for computing an exact factorization
of a coefficient matrix on each time step cannot be amortized in practical time-
dependent problems (though it could be in (1)).

For Table 3, we fix s = 0, the overlap at 1, and the subdomain preconditioner
as ILU(0). We perform a problem-size-fixed scaling analysis at h=! = 512 by
employing successively more subdomains, in going from 4 to 16 to 64 processors.
Note that the problem size on each processor decreases by a factor of 2 in each of
the  and y directions in this scaling. As before we tabulate the average number of
iterations per time step averaged over 10 steps, and the execution time for first ten
time steps. The execution time is also presented per iteration, and the speedups
(relative to four processors) are presented for both overall time and for time per
iteration. This allows for separate measurement of “numerical scalability” of the
algorithm and “implementation scalability” of the software/hardware system, with
any deterioration of convergence rate at highly granular decompositions factored
out.

Our main observations are the virtual independence of convergence rate on the
number of subdomains p, for s at the Courant limit, as predicted by the theory,
and the better than linear parallel scalability. The latter phenomenon is due to the
increasingly good reuse of data in the working set required by the subdomain solvers
as the problem-per-processor shrinks. This is a well-known effect in memory-limited
machines. Because of the insensitivity of the convergence rate to decomposition,
the two speedup measurements are nearly identical.

Table 4 is similar to Table 3; in fact, the last line of each tabulates the same
execution, and both run over the same number of processors, except that Table 4
runs a problem small enough to fit on one processor, which grows in size as the
number of processors grows. This is known as a Gustafson scaling analysis. It is a
practical scaling for large-scale applications and it has the advantage of keeping the
workingset per node constant over a range of problem size and processor number.
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TABLE 4. Convergence rate dependence on number of subdomains,
and Gustafson parallel scalability

p | k1] It.| Time | Time/It. || Rel. Eff. | Rel. Eff./It.
1| 64 8.0 6.60s | 0.083s

4 | 128 || 10.1 | 8.94s | 0.089s 0.74 0.93

16 | 256 || 10.2 | 10.00s | 0.098s 0.66 0.84

64 | 512 || 10.2 | 10.41s | 0.102s 0.63 0.81

The one-subdomain case is special (and would have converged in one iteration
had we employed an LU solver). In tabulating efficiency, we take the ratio of the
execution times on the successively scaled problems. The efficiency can be viewed
as the incremental efficiency of the last processor added, when loaded with the
same work per processor. Presenting the relative efficiency per iteration is more
important in this case, since the iteration count does degrade in going from one to
many subdomains.

Our main observation is that the efficiency remains very high, almost explicit-
like. There is no coarse grid to bottleneck this method. On the other hand the
frequent global inner products are minor bottlenecks.

We employed the Portable Extensible Toolkit for Scientific Computing (PETSc)
[1] from Argonne National Laboratory for the numerical studies.

5. Conclusions

We have used the standard Galerkin method and to formulate an optimal ad-
ditive Schwarz method for general scalar linear hyperbolic equations. The same
techniques leading to optimal convergence rates for the parabolic and elliptic cases
have been are used here, after identification of the proper norm. The method of
proof does not permit evaluation of the key constants in the theory.

The theoretical techniques employed here may be applicable to other equations,
e.g., linearized Euler equations and hyperbolic systems of conservation laws, after
transformation to canonical form and operator splitting. We are currently pursuing
such extensions.

Because of Assumption 1 limiting the size of 7, the implicit method described
herein might not appear to offer any advantage relative to the correspondingly
spatially discretized temporally explicit method, which has equally good or better
parallelization properties, and would not require iteration on each time step to
solve a linear system. On the other hand, temporal truncation accuracy limits
the algebraic accuracy required in the solution of the implicit system to just a
few matrix-vector products, and the implicit form may be thought of as a defect-
correction solver. Two practical applications of the results of this paper may be to:
(1) problems with multiple scales, with some scales finer than the explicit stability
limit, all of which could be treated implicitly with this method, and (2) problems
with embedded hyperbolic regions, for which a uniform Schwarz preconditioned
framework is desired. We mention [3] as an example.
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