
A FULLY IMPLICIT DOMAIN DECOMPOSITION ALGORITHM
FOR SHALLOW WATER EQUATIONS ON THE CUBED-SPHERE∗

CHAO YANG† , JIANWEN CAO‡ , AND XIAO-CHUAN CAI§

Abstract. Popular approaches for solving the shallow water equations (SWE) for climate mod-
eling are explicit and semi-implicit methods, both have certain constraints on the time step size. In
this paper, we propose and study a fully implicit method which imposes no limit on the time step
size, but requires the solution of a large sparse nonlinear system of equations at every time step.
The focus of the paper is a parallel, fully coupled, Newton-Krylov-RAS algorithm with a Jacobian
matrix explicitly calculated on a weakly non-matching cubed-sphere mesh. Here RAS is a restricted
additive Schwarz method. We show numerically that with such a preconditioned nonlinearly implicit
method the time step size is no longer constrained by the CFL condition and report superlinear
speedup of the algorithm on machines with thousands of processors, and for problems with smooth
and non-smooth solutions.

Key words. Shallow water equations, cubed-sphere, fully implicit method, domain decomposi-
tion, Newton-Krylov-Schwarz, parallel scalability

1. Introduction. Computer simulations based on the shallow water equations
(SWE) play a very important role in many areas of science and engineering including
the study of the earth’s climate, the understanding of flood, etc. SWE is difficult to
solve because its solution admits waves traveling at vastly different speeds. To obtain
high resolution numerical solutions, supercomputers with large number of processors
are necessary. When designing algorithms for solving SWE on massively parallel
computers, the two key factors are (1) the robustness, which means the convergence
is achieved for a wide range of physical parameters, wave speeds, mesh and time
step sizes; and (2) the parallel scalability, which means as the number of processors
increases the overall computing time decreases proportionally.

Popular approaches for solving the shallow water equations for climate modeling
are explicit and semi-implicit methods. In semi-implicit schemes the linear terms
responsible for the gravity wave are treated implicitly. These schemes allow a larger
time step than explicit methods since the stability no longer depends on the gravity
waves. When Eulerian methods are used, these semi-implicit schemes are limited
by a Courant-Friedrichs-Lewy (CFL) condition based on the local advection speed.
When very fine spacial meshes are used in the simulation, the time step size has to
be very small in order to satisfy the CFL condition. On the other hand, when using
fully implicit schemes, the CFL requirement can be completely relaxed. The scheme
is unconditionally stable and the time step selection is based only on the desired
solution accuracy [29]. The price to pay for using a fully implicit method is that a
large sparse nonlinear system of equations has to be solved at every time step. Some
comparisons between fully implicit method and other time integration schemes for
other applications can be found in, e.g., [28, 32].

Each of the three techniques (explicit, semi-implicit, and fully implicit) has some

∗The research was supported in part by DOE under DE-FC02-04ER25595, and in part by NSF
under grants ACI-0305666, CNS-0420873, CCF-0634894, and CNS-0722023.

†Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China
(yang@mail.rdcps.ac.cn)

‡Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China
(caojianwen@gmail.com)

§Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309
(cai@cs.colorado.edu)

1

2 C. YANG, J. CAO, AND X.-C. CAI

advantages and disadvantages and in an ideal simulation framework one may want to
switch between the three techniques on the fly depending on if a really small time step
is needed in order to capture some critical changes of the solution in time or a large
time step is needed in order to study long time behavior of the solution which may
not be sensitive to small scale changes of the solution. In certain situations, such as
commercial weather forecast, large time steps have to be used so that the simulation
can be completed by a given time and the accuracy is a secondary issue. In this paper,
we do not address the issue of when to use which one of the techniques and how to
switch between them. There are many publications devoted to explicit (e.g., [21])
and semi-implicit (e.g., [8, 42]) approaches for SWE, we focus only on the less well-
understood fully implicit method, in particular, we study a parallel, fully coupled,
Newton-Krylov-Schwarz algorithm with a Jacobian matrix calculated on a weakly
non-matching cubed-sphere mesh for solving such sparse nonlinear system of equa-
tions. More precisely speaking, we first apply a third-order implicit time integration
scheme, and then, to guarantee the nonlinear consistency, we use a Newton-Krylov-
Schwarz algorithm to solve the large sparse nonlinear system of algebraic equations
containing all physical variables at every time step. In a Newton-Krylov algorithm,
a system is solved by applying outer Newton iterations, whose Jacobian systems are
solved with a preconditioned Krylov subspace method. The success of the overall
approach depends heavily on the preconditioner. SWE has three components and is
mostly hyperbolic. Algebraic preconditioners, such as ILU and AMG, often do not
work well for coupled systems that are not strongly elliptic. Multigrid precondition-
ers work well if the problem is diffusion dominant, and for non-diffusion dominant
problem, some type of splitting (such as physics-based splitting, or Schur complement
based splitting) may be necessary to single out the diffusion components [3, 39]. We
use an overlapping restricted additive Schwarz preconditioner which does not require
any splitting of the multi-component system. The restricted version of Schwarz meth-
ods requires much less communication than the classical additive Schwarz method,
and is therefore more efficient on machines with a large number of processors.

We would like to point out that fully implicit approaches have recently been
successfully applied to several classes of important applications in multi-physics simu-
lations [3, 17, 18, 22, 23, 35, 40, 46], but very little work has been done for SWE on the
cubed-sphere, as far as we know. Schwarz type preconditioning techniques were used
by a number of authors [10, 12, 13, 14, 30, 31, 48] for solving the elliptic (Helmholtz
type operators) component of SWE, and excellent scalability results were reported
for large scale calculations on computers with many processors. In [37], a Schwarz
type domain decomposition method was used, without the Krylov acceleration, for
solving the Poisson equation in SWE discretized on a Yin-Yang grid. Our work is
the first attempt to use overlapping Schwarz methods for the whole system without
splitting out the elliptic-like subsystem. The whole system approach has the potential
to allow more physics to be added easily to the system without changing much of the
algorithmic and software framework.

For the purpose of comparison, we also implemented an explicit algorithm and we
used it to compare the results obtained with the implicit approach. Both implementa-
tions are based on the PETSc (Portable Extensible Toolkit for Scientific computation
[2]) library thus providing a convenient test bed for investigations of parallel proper-
ties of the algorithms. We report scalability studies on fine meshes and on machines
with thousands of processors.

The remainder of this paper is organized as follows. In Section 2, we discuss the

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 3

model SWE problem and provide some useful definitions. The spatial discretization
on the cubed-sphere is covered in Section 3. The details of algorithms are described
in Sections 4, and numerical results are reported in Section 5. The paper is concluded
in Section 6.

2. Shallow water equations. The shallow water equations on a rotating sphere
can be written in the following flux form ([52]):





∂h

∂t
+∇ · (hv) = 0,

∂(hv)
∂t

+∇ · (hvv) = ΨC + ΨG,

(2.1)

where h is the depth of the fluid, v is the velocity, ΨC and ΨG are the source terms
due to the Coriolis force and the gravity force, respectively. The Coriolis force term
can be written as

ΨC = −fh(k̂× v),

where k̂ is the outward unit normal vector on the sphere and f = 2ω sin θ is the
Coriolis parameter with the angular velocity ω. Throughout the paper, the spherical
coordinates of a point on the sphere is denoted as (λ, θ), λ ∈ [−π, π), θ ∈ [−π/2, π/2].
The source term due to the gravity force can be written as

ΨG = −gh∇(h + hs),

where g is the gravitational constant and hs is the height of the spherical surface
describing a variable bottom topography (e.g., mountains).

When dealing with non-orthogonal curvilinear meshes, such as the cubed-sphere
mesh [45], we denote (ξ, η) as the curvilinear coordinates, and rewrite (2.1) as

∂Q

∂t
+A(Q) = 0, (2.2)

with Q = (q1, q2, q3)T = (h, hu, hv)T and A(Q) = (A1(Q),A2(Q),A3(Q))T , where

A1(Q) =
1

Λ

[
∂

∂ξ
(Λq2) +

∂

∂η
(Λq3)

]
, (2.3)

A2(Q) =
1

Λ

{
∂

∂ξ

[
Λ(

q2q2

q1
+

1

2
gg11q1q1)

]
+

∂

∂η

[
Λ(

q2q3

q1
+

1

2
gg12q1q1)

]}

+

[
Γ1

11(
q2q2

q1
+

1

2
gg11q1q1) + 2Γ1

12(
q2q3

q1
+

1

2
gg12q1q1) + Γ1

22(
q3q3

q1
+

1

2
gg22q1q1)

]

+fΛ
(
g12q2 − g11q3

)
+ g

(
g11 ∂hs

∂ξ
+ g12 ∂hs

∂η

)
q1, (2.4)

A3(Q) =
1

Λ

{
∂

∂ξ

[
Λ(

q2q3

q1
+

1

2
gg12q1q1)

]
+

∂

∂η

[
Λ(

q3q3

q1
+

1

2
gg22q1q1)

]}

+

[
Γ2

11(
q2q2

q1
+

1

2
gg11q1q1) + 2Γ2

12(
q2q3

q1
+

1

2
gg12q1q1) + Γ2

22(
q3q3

q1
+

1

2
gg22q1q1)

]

+fΛ
(
g22q2 − g12q3

)
+ g

(
g12 ∂hs

∂ξ
+ g22 ∂hs

∂η

)
q1, (2.5)

4 C. YANG, J. CAO, AND X.-C. CAI

I II IIIIV

V

VI

Fig. 2.1. The cubed-sphere mesh can be obtained by mapping the six faces of an inscribed cube
covered with uniform meshes to the sphere surface.

where gij is the ij-th component of the inverse metric tensor for the curvilinear
coordinates, Λ is the square root of the determinant of the metric tensor and Γm

ij is
the mij-th Christoffel symbol.

The cubed-sphere mesh was originally introduced in [45] and further developed in
[41]. Using the cubed-sphere mesh, the spherical surface is divided into six identical
patches. Each patch is assigned one local curvilinear coordinates system via a mapping
from the surface of an inscribed cube to the sphere, see Fig. 2.1. There are mainly
two different mappings to define a cubed-sphere mesh, the original gnomonic mapping
[45] and the conformal mapping [38] (see also in [1] for a modified version). Some
other mappings can be found in [36] and references therein. In the present study
we use the gnomonic cubed-sphere mesh which is highly non-orthogonal but more
uniform than the conformal one. The local gnomonic coordinates are defined as
angles (ξ, η) ∈ [−π/4, π/4]2. More details on gnomonic cubed-sphere can be found in
[9, 30, 41]. For all six patches, the corresponding inverse metric tensors are equal and
can be written as

G−1 =
(

g11 g12

g12 g22

)
=

1 + tan2 ξ + tan2 η

(a sec ξ sec η)2

(
sec2 η tan ξ tan η

tan ξ tan η sec2 ξ

)
,

and thus Λ =
√

detG = (a sec ξ sec η)2/
√

(1 + tan2 ξ + tan2 η)3, where a is the radius
of the sphere. The Christoffel symbols are

Γ1
11 =

2 tan ξ tan2 η

1 + tan2 ξ + tan2 η
, Γ1

12 = − tan η sec2 η

1 + tan2 ξ + tan2 η
, Γ1

22 = 0,

Γ2
22 =

2 tan2 ξ tan η

1 + tan2 ξ + tan2 η
, Γ2

12 = − tan ξ sec2 ξ

1 + tan2 ξ + tan2 η
, Γ2

11 = 0.

3. Discretization of SWE on the cubed-sphere. Special considerations are
necessary in order to discretize a differential equation on the cubed-sphere. Several
schemes are available for scalar transport equations [10, 26, 30, 36]. For the multi-
component SWE, there are also a few schemes such as the finite volume method
[9, 43], the spectral element method [13, 49], and the discontinuous Galerkin method
[12, 14, 31], among others. Since our interests are mainly on the parallel solvers
we decide to use a relatively simple finite volume method based on Osher’s scheme
[33, 34]. This method is similar to that used in [25], which is specially designed for a
reduced latitude-longitude mesh and a stereographic mesh, with a modified κ scheme

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 5

to determine the constant states. Most other discretizations can be applied to our
parallel solvers.

3.1. Spatial discretization. Suppose each of the six patches of the cubed-
sphere is covered by a logically rectangular N×N mesh, which is equally spaced in the
computational domain {(ξ, η) ∈ [−π/4, π/4]2} with mesh size h̄ = π/2N . Denote the
center point of the (i, j)-th mesh cell on patch k as P k

ij , i, j = 1, · · · , N , k = 1, · · · , 6.
We use a fixed time step ∆t for the implicit method. At the n-th time step, we denote
the values of any function f(ξ, η, k, t) at point P k

ij as f
k,(n)
ij . Sometimes we ignore the

superscript k or (n) or both of them if no misunderstanding is introduced.
Let the discretization of the nonlinear spatial operator A in (2.2)-(2.5) at a point

Pij be Aij = ((A1)ij , (A2)ij , (A3)ij)T which is defined as

(A1)ij =
1

Λij
[δξ(Λq̃2)ij + δη(Λq̃3)ij] , (3.1)

(A2)ij =
1

Λij

{
δξ

[
Λ(

q̃2q̃2

q̃1
+

1

2
gg11q̃1q̃1)

]

ij

+ δη

[
Λ(

q̃2q̃3

q̃1
+

1

2
gg12q̃1q̃1)

]

ij

}

+

[
Γ1

11(
q2q2

q1
+

1

2
gg11q1q1) + 2Γ1

12(
q2q3

q1
+

1

2
gg12q1q1) + Γ1

22(
q3q3

q1
+

1

2
gg22q1q1)

]

ij

+
[
fΛ

(
g12q2 − g11q3

)]
ij

+ g
[
(g11)ijδξ(hs)ij + (g12)ijδη(hs)ij

]
(q1)ij , (3.2)

(A3)ij =
1

Λij

{
δξ

[
Λ(

q̃2q̃3

q̃1
+

1

2
gg12q̃1q̃1)

]

ij

+ δη

[
Λ(

q̃3q̃3

q̃1
+

1

2
gg22q̃1q̃1)

]

ij

}

+

[
Γ2

11(
q2q2

q1
+

1

2
gg11q1q1) + 2Γ2

12(
q2q3

q1
+

1

2
gg12q1q1) + Γ2

22(
q3q3

q1
+

1

2
gg22q1q1)

]

ij

+
[
fΛ

(
g22q2 − g12q3

)]
ij

+ g
[
(g12)ijδξ(hs)ij + (g22)ijδη(hs)ij

]
(q1)ij , (3.3)

where δξ(·)ij and δη(·)ij are the standard second-order central difference operators
with respect to ξ and η directions respectively

δξ(·)ij =
(·)i+ 1

2 ,j − (·)i− 1
2 ,j

h̄
, δη(·)ij =

(·)i,j+ 1
2
− (·)i,j− 1

2

h̄
.

The cell boundary value Q̃ = (q̃1, q̃2, q̃3)T is the properly interpolated value of
Q and defined on the four cell boundaries as Q̃i+ 1

2 ,j , Q̃i− 1
2 ,j , Q̃i,j+ 1

2
, and Q̃i,j− 1

2
. On

each cell boundary Q̃ is connected to Q via the “left” and “right” constant states QL

and QR. Throughout this paper, we use Osher’s method [33, 34] to obtain Q̃. On the
left or right cell boundary, Q̃ is defined through

q̃1(QL, QR) =
1

4gg11

[
1
2

(
qL
2

qL
1

− qR
2

qR
1

)
+

√
gg11qL

1 +
√

gg11qR
1

]2

,

q̃2(QL, QR)
q̃1(QL, QR)

=
1
2

(
qL
2

qL
1

+
qR
2

qR
1

)
+

√
gg11qL

1 −
√

gg11qR
1 , (3.4)

q̃3(QL, QR)
q̃1(QL, QR)

=





qL
3

qL
1

+ g12

g11

[
1
2

(
qR
2

qR
1
− qL

2
qL
1

)
+

√
gg11qL

1 −
√

gg11qR
1

]
, if q̃2 ≥ 0

qR
3

qR
1

+ g12

g11

[
1
2

(
qL
2

qL
1
− qR

2
qR
1

)
+

√
gg11qL

1 −
√

gg11qR
1

]
, otherwise.

6 C. YANG, J. CAO, AND X.-C. CAI

While on the bottom and top boundaries, the subscripts 2 and 3 in the definition of
Q̃ in (3.4) should be swapped in the following way

q̃1(QL, QR) =
1

4gg22

[
1
2

(
qL
3

qL
1

− qR
3

qR
1

)
+

√
gg22qL

1 +
√

gg22qR
1

]2

,

q̃3(QL, QR)
q̃1(QL, QR)

=
1
2

(
qL
3

qL
1

+
qR
3

qR
1

)
+

√
gg22qL

1 −
√

gg22qR
1 , (3.5)

q̃2(QL, QR)
q̃1(QL, QR)

=





qL
2

qL
1

+ g12

g22

[
1
2

(
qR
3

qR
1
− qL

3
qL
1

)
+

√
gg22qL

1 −
√

gg22qR
1

]
, if q̃3 ≥ 0

qR
2

qR
1

+ g12

g22

[
1
2

(
qL
3

qL
1
− qR

3
qR
1

)
+

√
gg22qL

1 −
√

gg22qR
1

]
, otherwise.

It should be noticed that (3.4) and (3.5) are defined under the assumptions |q2/q1| <√
gg11q1 and |q3/q1| <

√
gg22q1, respectively. If these conditions are not satisfied, the

definition of Q̃ should be changed accordingly (refer to [25] for more details) to avoid
negative q̃1 which is nonphysical. For the reconstruction of the left and right constant
states QL and QR the following two approaches are implemented in our code.
1. Centered method (second order):

QL
i+ 1

2 ,j
= QR

i+ 1
2 ,j

= 1
2

(
Qij + Qi+ 1

2 ,j

)
,

QL
i− 1

2 ,j
= QR

i− 1
2 ,j

= 1
2

(
Qij + Qi− 1

2 ,j

)
,

QL
i,j+ 1

2
= QR

i,j+ 1
2

= 1
2

(
Qij + Qi,j+ 1

2

)
,

QL
i,j− 1

2
= QR

i,j− 1
2

= 1
2

(
Qij + Qi,j− 1

2

)
.

(3.6)

2. One-sided method (first order):

QL
i+ 1

2 ,j
= Qij , QR

i+ 1
2 ,j

= Qi+1,j ,

QL
i− 1

2 ,j
= Qi−1,j , QR

i− 1
2 ,j

= Qij ,

QL
i,j+ 1

2
= Qij , QR

i,j+ 1
2

= Qi,j+1,

QL
i,j− 1

2
= Qi,j−1, QR

i,j− 1
2

= Qij .

(3.7)

For the centered method (3.6), we always have Q̃ = QL = QR on each cell
boundary and this scheme is used when the solution is smooth, such as the steady-
state zonal flow problem in Section 5. The one-sided method is utilized to handle
possible sharp gradients in the solution, such as the dam-break case to be presented
later. In general, one can obtain better accuracy by using more sophisticated methods
such as the κ = 1/3 scheme ([51], see also [20]) together with a TVD limiter.

3.2. Patch interface conditions. Each patch of the cubed-sphere mesh is cov-
ered by a logically rectangular mesh and can be treated separately. Values of a func-
tion should be correctly passed between patches so that the whole mesh can be coupled
together properly. For that purpose, ghost cells extended from the mesh boundaries
are used on each patch. One method for passing information is directly copying the
solution values from the mesh cells in the neighboring patch to the ghosted cells. This
method is cheap but not accurate, especially for the case with a vector-valued field
such as the velocity.

Another patch interface condition is based on certain interpolation (see [41]). An
useful observation is that the center points of ghost cells lie on the same line as the

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 7

center points of the mesh cells in the neighboring patch. So only a one-dimensional
interpolation is needed. In the paper, we use a linear interpolation to obtain the
ghost values, as illustrated in Fig. 3.1. It should be noticed that for a vector-valued
field, one should first transform the values into the spherical coordinates form or the
cartesian coordinates form before performing the interpolation and then transform
them back into the cubed-sphere coordinates form, because the coordinate bases are
not the same from one patch to another on the cubed-sphere.

Patch 2
Patch 1

Fig. 3.1. Patch interface treatment for the cubed-sphere. Patch 1 is a neighbor patch of patch
2. All interior mesh points together with one layer of ghost points located in Patch 2 are drawn in
red. Several layers of interior mesh points of Patch 1 is drawn in green. One can see that the ghost
points lie on the same line as the nearest layer of mesh points in the neighboring patch.

Whether for scalar-valued or vector-valued functions, e.g., for Q = (h, hu, hv)T in
SWE, the patch interface interpolation depends only on the cubed-sphere geometry.
For example, see Fig. 3.1, if we want to obtain one layer of the ghost values defined
at points {P̄j}N

j=1 belonging to patch 2 interpolated from the values defined at points
{Pj}N

j=1 in patch 1, the interpolation takes the form

h̄j = αjhj + (1− αj)hj̃ (3.8)
(

ūj

v̄j

)
= (J2)−1

j

[
αj(J1)j

(
uj

vj

)
+ (1− αj)(J1)j̃

(
uj̃

vj̃

)]
. (3.9)

Here for simplicity, we denote f(Pj) by fj and f(P j) by f j for any function f . In
(3.8)-(3.9), j̃ is the neighboring index of j (along the first layer of ghost points) and
can be obtained by

j̃ =

{
j + 1, j < bN

2 c+ 1,

j − 1, otherwise,

αj is the linear interpolation coefficient determined by αj = dist(P̄j , Pj̃)/dist(Pj , Pj̃),
and Jk serves as the Jacobian that maps a point on patch k from its cubed-sphere
coordinates to the corresponding latitude-longitude coordinates. For example, J1 is

8 C. YANG, J. CAO, AND X.-C. CAI

given by

J1 = J1(ξ1, η1) =

(
∂λ
∂ξ1

∂λ
∂η1

∂θ
∂ξ1

∂θ
∂η1

)
,

where (ξ1, η1) is the cubed-sphere coordinates on patch 1. In summary the patch
interface interpolation can be written as




q1

q2/q1

q3/q1




j

= T
(1)
j




q1

q2/q1

q3/q1




j

+ T
(2)
j




q1

q2/q1

q3/q1




j̃

, (3.10)

where

T
(1)
j = αj

(
1 0
0 (J2)−1

j (J1)j

)
, T

(2)
j = (1− αj)

(
1 0
0 (J2)−1

j (J1)j̃

)
. (3.11)

Since the mesh geometry is fixed, the interpolation coefficients T
(1)
j and T

(2)
j are

computed at the beginning of the calculation and stored for repeated use at later
time steps.

4. A parallel fully implicit domain decomposition algorithm. Our tem-
poral discretization is based on the following backward differentiation formulas of
orders 1, 2 and 3 (BDF-1,2,3):

G(m+1) =
1

∆t

(
Q(m+1) −Q(m)

)
+ A(m+1), (4.1)

G(m+1) =
1

2∆t

(
3Q(m+1) − 4Q(m) + Q(m−1)

)
+ A(m+1), (4.2)

G(m+1) =
1

6∆t

(
11Q(m+1) − 18Q(m) + 9Q(m−1) − 2Q(m−2)

)
+ A(m+1), (4.3)

with G being the nonlinear residual of the discretized SWE. After enough initial
solutions become available, the calculation uses the third order scheme (4.3). At
each time step, we need to solve a system of nonlinear algebraic equations, which is
obtained by putting the finite difference equations (4.3) in a certain order. For some
algorithms, the orderings of the unknowns and the finite difference equations are not
important, but for our algorithm the ordering is important. We use a point-wise
ordering, in other words, all unknowns associated with a mesh point stay together.
More precisely, we define

X = ((q1)111, (q2)111, (q3)111, (q1)121, (q2)121, (q3)121, · · ·)T .

The non-zero structure of the Jacobian matrix would look very different if a field-
wise ordering is used; i.e., X = ((q1)111, (q1)121, (q1)131, · · · , (q2)111, (q2)121, (q2)131, · · ·)T .
Similarly, we use a point-wise ordering for G as

G = ((G1)111, (G2)111, (G3)111, (G1)121, (G2)121, (G3)121, · · ·)T .

The point-wise ordering is important because it helps in keeping the coupling in each
3× 3 block, which is essential for our fully coupled implicit method.

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 9

The system

G(X) = 0

is solved with a one-level Newton-Krylov-Schwarz (NKS) [5, 6], which is briefly de-
scribed here. Let the initial guess X0 be the solution of the previous time step, and
Xn be the current approximate solution, we find the next solution Xn+1 as

Xn+1 = Xn + λnSn, n = 0, 1, ... (4.4)

where λn is the steplength and Sn is the search direction. The search direction Sn

is obtained by solving the Jacobian system approximately using a Krylov subspace
iterative method

‖M−1
n [G′(Xn)Sn + G(Xn)]‖ ≤ max{ζr‖M−1

n G(Xn)‖, ζa},

where M−1
n is an additive Schwarz type preconditioner to be defined shortly. The

accuracy of the Jacobian solver is determined by the two linear tolerances ζr, ζa ≥ 0.
The steplength λn is determined by a backtracking linesearch procedure (see, e.g.,
section 6.3 in [15]). In practice, the algorithm is insensitive to the details of the
method used to determine λn. The stopping condition for the nonlinear iteration
(4.4) is

||G(Xn+1)|| ≤ max{εr||G(X0)||, εa},

where εr, εa ≥ 0 are nonlinear tolerances.
Newton methods can be implemented with or without the Jacobian matrix. [24]

provides a framework for implementing Newton methods without using the explicit
form of the Jacobian. In this paper, we do not take the matrix-free approach since the
explicit form of the Jacobian is required to construct the preconditioner. Because of
the simplicity of our discretization scheme, we are able to calculate the Jacobian ma-
trix explicitly. A few techniques are available when an explicit Jacobian calculation is
not possible (or not preferred), such as Automatic Differentiation [19], or multi-colored
finite difference methods (MC-FD) [11]. These methods offer some kind of approxi-
mations of the Jacobian. Later in the paper, we present a performance comparison of
the explicitly calculated Jacobian and the MC-FD calculated Jacobian.

Here we show briefly how the Jacobian matrix is calculated. The Jacobian can
be written as G′ = γI + ∂A/∂Q, where γ is a constant from the temporal discretiza-
tions (4.1)-(4.3). The contribution from the spatial discretization is ∂A/∂Q. Sup-
pose a simple five point spatial discretization is used for SWE. Then we have Aij =
A(Qij , Q̃i−1/2,j , Q̃i+1/2,j , Q̃i,j−1/2, Q̃i,j+1/2) for any given point Pij . The (block) di-
agonal entry ∂(Ar)ij/∂(qs)ij = ∂Ar(Qij , Q̃i−1/2,j , · · ·)/∂(qs)ij is easy to obtain since
Q̃ is explicitly dependent on Q. The calculation of off-diagonal entries can be straight-
forwardly done using chain rules if the dependency between Q̃, Q̄ and Q is clear. For
example if i 6= 1, then Q̃i−1/2,j is dependent on Qij and Qi−1,j ; thus we have

∂(Ar)ij

∂(qs)i−1,j
=

3∑
α=1

∂(Ar)ij

∂(q̃α)i− 1
2 ,j

×
∂(q̃α)i− 1

2 ,j

∂(qs)i−1,j
.

10 C. YANG, J. CAO, AND X.-C. CAI

If i = 1, then Q̃i−1/2,j is dependent on Qij and Q̄i−1,j while Q̄i−1,j is dependent on
Q(1) and Q(2) because of the interpolation from the points in the left neighboring
patch; thus we have

∂(Ar)ij

∂q
(l)
s

=
3∑

α,β=1

∂(Ar)ij

∂(q̃α)i− 1
2 ,j

×
∂(q̃α)i− 1

2 ,j

∂(q̄β)i−1,j
× ∂(q̄β)i−1,j

∂q
(l)
s

, l = 1, 2.

To formally define the preconditioner M−1
n , we first decompose each of the six

patches, Ωk, k = 1, . . . , 6, of the cubed-sphere into Np non-overlapping rectangular
subdomains, Ωk

j , j = 1, . . . , Np. Here Np is the number of processors. The subdomains
in each patch is then mapped onto the processors. The same map is used for all six
patches; i.e., each processor has six subdomains. As seen in Fig. 4.1, all subdomains
with the same color are assigned to the same processor.

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3

I II IIIIV

V

V I

Fig. 4.1. Map subdomains onto processors. The six patches of the cubed-sphere are indicated
by Roman letters. Each patch is divided into subdomains in the same way. All subdomains with the
same color go to the same processor. This is an example for 4 processors (24 subdomains), denoted
as P0, P1, P2, and P3.

To obtain an overlapping decomposition of the domain, we extend each subdomain
Ωk

j to a larger subdomain (Ωk
j)′, as shown in Fig. 4.2. Note that the overlapping pieces

may not be on the same processor or neighboring processors. We assume the size of
Ωk

j is Hξ ×Hη and the size of (Ωk
j)′ is H ′

ξ ×H ′
η. The overlapping size δ is defined as

(H ′
ξ −Hξ)/2 (or (H ′

η −Hη)/2).
For each of the overlapping subdomain we define Bk

j as the restriction of G′

to the overlapping subdomain (Ωk
j)′. This is equivalent to taking the derivative of

the nonlinear function G over the subdomain with homogeneous Dirichlet boundary
conditions. Here M−1

n is chosen as a left restricted additive Schwarz preconditioner
(RAS) [7, 50] defined as

M−1
n =

6∑

k=1

Np∑

j=1

(Rk
j,0)

T (Bk
j)−1Rk

j,δ. (4.5)

Let m be the total number of cells and (mk
j)′ the total number of cells in (Ωk

j)′.
Then, Rk

j,δ is an (mk
j)′ ×m block matrix that is defined as: its 3 × 3 block element

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 11

P0 P0 P0P0

P0

P0

I II IIIIV

V

V I

Hη

δ

Hξ δ

Fig. 4.2. Decomposition of the domain into overlapping subdomains.

(Rk
j,δ)p1,p2 is an identity block if the integer indices 1 ≤ p1 ≤ (mk

j)′ and 1 ≤ p2 ≤ m

belong to a cell in (Ωk
j)′, or a block of zeros otherwise. The Rk

j,δ serves as a restriction
matrix because its multiplication by a block m×1 vector results in a smaller (mk

j)′×1
block vector by dropping the components corresponding to cells outside (Ωk

j)′. Various
inexact additive Schwarz preconditioners can be constructed by replacing the matrices
Bk

j with convenient and inexpensive to compute matrices, such as those obtained with
incomplete factorizations. In this paper we employ the LU factorization. Note that
in (4.5) Rk

j,0 is a restriction to the non-overlapping subdomain.
The optimal convergence theory of RAS is still not available, even for elliptic

equations. If the closely related classical additive Schwarz preconditioner is applied
to a matrix resulting from the discretization of an elliptical problem, the condition
number of the preconditioned system satisfies

κ ≤ C(1 + H/δ)/H2 (4.6)

for the one-level method and κ ≤ C(1 + H/δ) for the two-level method, where H is
of order Hξ (or Hη) and the constant C is independent of H, δ, and the mesh size
[47, 50]. The factor 1/H2, which is proportional to the number of subdomains, in the
one-level method indicates an increase in the number of iterations with the increase of
the number of processors. The two-level method is often preferred in order to remove
the dependency of the number of iterations on the number of processors. However,
in our case, the Jacobian system from SWE is not elliptic and the above mentioned
condition number estimate does not apply. Our numerical experiments suggest that,
with the one-level RAS method, the condition number growth is slower than that
in the elliptic case. Similar observations were made before for other time dependent
problems [4, 53] with the additive Schwarz method.

5. Numerical results. We implemented the algorithms described in the pre-
vious sections using PETSc [2]. The six patches of the cubed-sphere are handled
by one PETSc DA (Distributed Array) with modified boundary operations to reflect
the weakly non-matching patch interface conditions. The numerical tests are carried
out on an IBM BlueGene/L with 1024 dual-processor compute nodes (2048 CPUs).

12 C. YANG, J. CAO, AND X.-C. CAI

Each node has two IBM PowerPC 440 processors running at 700 MHz and 512 MB
of memory. For our 2048-processor tests, the BG/L works under virtual-node mode
and the available memory for each processor is reduced to 256 MB.

The stopping conditions for the nonlinear and linear iterative processes are:
• The relative tolerance for linear solver: ζr ≤ 10−4,
• The absolute tolerance for linear solver: ζa ≤ 10−14,
• The relative tolerance for nonlinear solver: εr ≤ 10−6,
• The absolute tolerance for nonlinear solver: εa ≤ 10−9.

On each subdomain, we use LU factorization as our subdomain solver and set the
overlapping size between subdomains to be δ = 0, h̄, 2h̄. GMRES(30), restarted at
every 30 iterations, is used to solve the Jacobian system at each Newton step. For
the problem with an analytical solution, the relative errors are measured using the
following measures

l1 =
I(|h− h̃|)

I(|h̃|) , l2 =


I

(
(h− h̃)2

)

I
(
h̃2

)



1
2

, l∞ =
max
i,j,k

|hk
ij − h̃k

ij |
max
i,j,k

|h̃k
ij |

,

where h is the numerical solution, h̃ is the exact solution, and I is the discrete sum-
mation over all cell centers of the cubed-sphere mesh defined as

I(h) =
6∑

k=1

N∑

i=1

N∑

j=1

(
Λijh

k
ij

)
,

where (i, j) is the mesh cell index on patch k.
We also implemented an explicit method to compare with the fully implicit

method. For the shallow water equations (2.3)-(2.5), the CFL number can be ob-
tained via

CFL =
∆t

h̄
max{|u|+

√
gg11h, |v|+

√
gg22h}.

In the computation, we fix the maximum allowable CFL number to be 0.3 and cal-
culate ∆t adaptively in each time step to insure the stability of the explicit method.
The same spatial discretization methods as described in Section 3 are implemented
in the explicit code. We use forward Euler at the beginning of the time integration.
And then the following second order Adams formula is used

Q(m+1) = Q(m) + ∆t(m+1)

(
A(m) +

∆t(m+1)

2∆t(m)
(A(m) −A(m−1))

)
,

where ∆t(m) = t(m) − t(m−1) is the time step size for step m.

5.1. A steady-state nonlinear zonal geostrophic flow. Our first test case
(test two in [52]) describes a zonal geostrophic flow which exactly balances the geopo-
tential of the fluid and the influence coming from the rotation of the sphere (i.e.,
the Coriolis force). Since this is a test case with an exact solution, we use it to
verify the correctness and measure the error of our discretization. We take the char-
acteristic time scale and length scale as τ = 86400s (one day) and ρ = 6371220m
(the radius of the Earth), respectively, and use the non-dimensional parameters
a = 1.0ρ, ω = 6.300288τ−1, g = 11489.57ρτ−2. Suppose that there is an angle α

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 13

between the polar axis and the axis of the solid body rotation, then the Coriolis
parameter is

f = 2ω(cos α sin θ − sin α cosλ cos θ).

The velocity field is initially (and for all time) set as

uλ = u0(cos α + sin α cos λ tan θ)/a
uθ = −u0 sin α sin λ/a,

where the reference wind velocity is u0 = (π/6)ρτ−1 which means that a full rotation
around the earth finishes every 12 days (approximately equal to 40 m s−1). It is
worth pointing out that our definitions of u and v differ from that of [52] by a factor
of a cos θ and a, respectively. This is due to the fact that the velocity components in
this paper are taken as coordinates components, which are different from the physical
components defined in [52]. The exact solution of this test case is a steady state flow

gh = gh0 −
(

aωu0 +
u2

0

2

)
(cosα sin θ − sinα cos λ cos θ)2,

where gh0 = 5.4066669ρ2τ−2.
In the tests, the flow orientation angle α is chosen to be α = π/4, which is

challenging for the cubed-sphere. For this example, we use the centered scheme (3.6)
for spatial discretization since the solution is smooth. The mesh size for the calculation
is 40× 40× 6 and the time step size is ∆t = 0.05τ = 4320s. The implicit code needs
100 time steps to obtain the results for day 5 (t = 5.0τ). Fig. 5.1 shows the contour
plots of the h field and the relative error after five days on the six patches of the
cubed-sphere. The second order accuracy of the scheme is shown in Table 5.1 using
N from 20 to 160.

Table 5.1
Order of accuracy of the h field with respect to the mesh size N for the steady-state zonal flow

at day 5 with 8 processors, ∆t = 0.05τ .

N l1 Order l2 Order l∞ Order

20 3.068× 10−3 − 3.951× 10−3 − 1.584× 10−2 −
40 6.478× 10−4 2.24 8.278× 10−4 2.25 2.481× 10−3 2.67
80 1.634× 10−4 1.99 2.047× 10−4 2.02 5.736× 10−4 2.11
160 4.176× 10−5 1.97 5.172× 10−5 1.98 1.433× 10−4 2.00

Since the time step size is no longer constrained by the CFL condition in the fully
implicit method, we can use very large time step in the experiments, e.g., ∆t = 1.0τ
corresponding to a CFL number around 100.6. Table 5.2 gives a comparison of the
number of iterations and the total compute time using different time step sizes ∆t with
8 processors. We can see that ∆t has very little impact on the nonlinear convergence.
Although GMRES convergence suffers as ∆t becomes larger, the total compute time
still decreases.

5.2. A dam-break problem. Our second test case is a dam break problem
featuring an unsteady solution with a sharp front moving through the sphere. Similar
test cases can be found in [27, 44]. Because of the non-smoothness of the solution, we
discretize SWE using the one-sided scheme as discussed in Section 3.1. We discuss

14 C. YANG, J. CAO, AND X.-C. CAI

Fig. 5.1. The contour plot of the numerical solution (top) and the relative error of the h field
(bottom) for the geostrophic flow on a 40 × 40 × 6 cubed-sphere mesh. The relative error of the h
field varies from −4.1× 10−3 to 3.9× 10−3.

Table 5.2
Number of iterations and total compute time for the steady-state zonal flow at day 5 on a

40× 40× 6 mesh using different time step sizes with 8 processors, overlap δ = 2h̄.

∆t CFL Steps Newton (avg.) GMRES/Newton Compute time (s)

0.2τ 20.1 25 2.0 11.4 18.49
0.5τ 50.3 10 2.0 24.7 9.67
1.0τ 100.6 5 2.0 62.6 8.08

several issues in this section including the scalability issue with up to 2048 processors,
a comparison of the explicitly calculated Jacobian with the MC-FD calculated Jaco-
bian, a comparison with an explicit method and a comparison with an approximate
subdomain solver.

We set the radius of the sphere a = 1.0 and the gravitational constant g = 1.0.

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 15

The initial velocity of the flow is zero and the height field is

h =

{
1.0, dist {(λ, θ), (λ?, θ?)} < π/5,

0.5, otherwise,

where dist{·, ·} is the great circle distance on the surface of the sphere and (λ?, θ?) is
chosen to be the center point of the first patch.

To show the parallel scalability of the implicit method, we consider two meshes
512 × 512 × 6 and 1024 × 1024 × 6. We use a fixed time step size ∆t = 0.2 and run
the code for 10 time steps, although the method converges well with much larger ∆t
with decreased accuracy. We run the tests using three overlapping factors δ = 0, h̄, 2h̄
with different number of processors. Tables 5.3 and 5.4 exhibit the number of linear
and nonlinear iterations and the compute time results with respect to the number of
processors. It is clear that the number of nonlinear iterations per time step is almost
independent of both the number of processors and the overlapping size. But the
number of linear iterations grows slowly with the increase of the number of processors,
which suggests that the condition number of the preconditioned linear system in the
case follows a better estimation than (4.6). From Tables 5.3 and 5.4, we can see that
larger overlap can reduce the number of linear iterations. However, larger overlap also
requires larger amount of extra memory to store matrix elements corresponding to
ghost points from the overlapping regions, leading to larger amount of communication
and computation per iteration. Thus, as indicated in Tables 5.3 and 5.4, the best
compute time is obtained with overlapping factor δ = 0 with any given number of
processors. The case of zero overlap is particularly interesting because, in theory, it
corresponds to the smallest possible overlap (half mesh size) and a special condition
number estimate is available for elliptic equations [16] and, in practice, it corresponds
to the case that the communication cost is exactly zero during the preconditioning
step of the algorithm.

From the compute time results listed in Tables 5.3 and 5.4, we see that superlinear
speedups are obtained for any tested overlapping factors from 64 processors all the
way to 2048 processors, except that the 2048-processor run is slower than the 1024-
processor run in Table 5.3, which is because both the available memory and the
available L3 cache are reduced by half for the 2048-processor tests. Some tests with
Np = 128 and Np = 2048 are not carried out for Tables 5.3 and 5.4, because of the
lack of memory.

Table 5.3
Test results using different overlapping factors with respect to the number of processors, the

dam-break problem, 512× 512× 6 mesh (# of unknowns = 4,718,592), time step size ∆t = 0.2, 10
time steps.

Np Newton (avg.) GMRES/Newton Compute time (s)
δ = 0 h̄ 2h̄ δ = 0 h̄ 2h̄ δ = 0 h̄ 2h̄

64 3.3 3.2 3.2 12.03 10.13 9.30 436.4 461.1 509.7
128 3.3 3.2 3.2 14.07 12.55 12.09 154.4 170.7 202.5
256 3.4 3.2 3.2 16.18 14.85 14.21 67.5 82.5 97.0
512 3.2 3.2 3.2 22.93 21.50 20.52 26.3 39.2 49.2
1024 3.2 3.2 3.2 28.53 25.95 24.11 11.9 23.5 28.6
2048 3.2 3.2 3.2 42.83 38.55 35.97 6.4 25.1 34.3

16 C. YANG, J. CAO, AND X.-C. CAI

Table 5.4
Test results using different overlapping factors with respect to the number of processors, the

dam-break problem, 1024 × 1024 × 6 mesh (# of unknowns=18,874,368), time step size ∆t = 0.2,
10 time steps.

Np Newton (avg.) GMRES/Newton Compute time (s)
δ = 0 h̄ 2h̄ δ = 0 h̄ 2h̄ δ = 0 h̄ 2h̄

128 3.6 − − 16.08 − − 1219.7 − −
256 3.6 3.5 3.6 17.06 15.49 14.73 507.2 558.7 634.3
512 3.6 3.5 3.5 22.99 21.71 21.08 191.8 232.8 276.2
1024 3.6 3.5 3.5 28.43 26.76 25.50 86.5 127.2 145.3
2048 3.5 − − 42.24 − − 42.2 − −

To compare with the explicitly calculated exact Jacobian as discussed in Section 4,
we run the test using the approximate Jacobian calculated by the multi-colored finite
difference method (MC-FD) [2, 11]. The results are shown in Table 5.5, where the
mesh size is 510 × 510 × 6 instead of 512 × 512 × 6 because of an implementation
limitation of the MC-FD software. From Table 5.5, we can see that the number of
nonlinear and linear iterations barely suffers from the approximation of the MC-FD
calculated Jacobian. However, it is clear that the exact Jacobian is far better than
the approximate one in terms of the total compute time and scalability.

Table 5.5
Comparisons between using the MC-FD Jacobian and using the exact Jacobian, the dam-break

problem, 510× 510× 6 mesh, time step size ∆t = 0.2, 10 time steps, overlapping size δ = 0.

Np Newton (avg.) GMRES/Newton Compute time (s) Speedup
FD Exact FD Exact FD Exact FD Exact

64 3.4 3.3 12.34 12.31 847.0 433.5 1.00 1.00
128 3.4 3.3 14.14 14.14 366.8 153.2 2.31 2.83
256 3.4 3.4 16.21 16.21 174.4 66.3 4.86 6.54
512 3.2 3.2 22.96 22.96 82.9 26.3 10.22 16.47
1024 3.3 3.2 28.50 28.58 45.3 11.8 18.52 36.80
2048 3.2 3.2 42.86 42.86 25.6 6.4 32.47 67.98

We next compare the fully implicit method with an explicit method. The time
step size of the explicit method is adaptively selected so that the CFL number is
always fixed to 0.3. As a result, the average time step size is around 0.01 for the
overall simulation. The time step size of the implicit method is fixed at 0.2. The
numerical solutions of the h field on an 36 × 36 × 6 mesh are given in Fig. 5.2 for
t = 0.2, 0.4, 0.6, 0.8, 1.0, respectively. The left column is for the explicit method and
the right column is for the implicit method. They look similar for the first few snap
shots, but some differences are shown in later steps. Because of the much smaller
time step sizes used in the explicit method, we believe the explicit results are more
accurate.

A compute time comparison is shown in the top figure of Fig. 5.3 for two meshes
512 × 512 × 6 and 1024 × 1024 × 6. The implicit method is always faster for both
meshes and for any number of processors. The corresponding speedup curves are given
in the bottom figures of Fig. 5.3. Both the explicit method and the implicit method
have good speedups, while the implicit method exhibits a superlinear speedup due to

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 17

its better cache performance and the explicit method shows a speedup curve slightly
below the ideal linear speedup.

Fig. 5.2. Numerical solution of the h field for the dam-break problem on 36 × 36 × 6 mesh.
The figures show the surface plots of the height field on the six patches of the cubed-sphere at time
t = 0.2, 0.4, 0.6, 0.8, 1.0, respectively. The figures on the left column are the results from the explicit
method with adaptive time stepping and the right column is from the fully implicit method with a
fixed time step.

18 C. YANG, J. CAO, AND X.-C. CAI

64 128 256 512 1024 2048

10
1

10
2

10
3

10
4

Number of processors

C
om

pu
te

 T
im

e
(s

ec
)

Implicit: 512x512x6
Explicit: 512x512x6
Implicit: 1024x1024x6
Explicit: 1024x1024x6

64 128 256 512 1024 2048
1

2

4

8

16

32

64

Number of processors

S
pe

ed
up

Speedup curve on 512x512x6 mesh

Implicit
Explicit
Ideal

128 256 512 1024 2048
1

2

4

8

16

32

Number of processors

S
pe

ed
up

Speedup curve on 1024x1024x6 mesh

Implicit
Explicit
Ideal

Fig. 5.3. Compute time and speedup comparison for the dam-break problem on 512 × 512 × 6
and 1024× 1024× 6 meshes with 64, 128, 256, 512, 1024, and 2048 processors. Final simulation time
t = 2.0. Implicit method: 10 time steps with a fixed time step size ∆t = 0.2. Explicit method:
2988 and 6002 time steps with a fixed CFL = 0.3 on 512 × 512 × 6 and 1024 × 1024 × 6 meshes,
respectively.

5.3. Comments on ILU-based subdomain solver. In this subsection we
replace the LU subdomain solver with a point-block ILU(`) solver and compare the
results. Here ` is the fill-in level for the incomplete LU factorization. The point-block
size is 3× 3 which is essential since block coupling will be destroyed if using a general
point ILU solver. We set the overlapping factors δ = 0, h̄, 2h̄ and set the fill-in levels
` = 0, 1, 2, 3, 4. Larger overlap or larger fill-in helps in reducing the total number of
linear iterations as the number of processors increases. However, memory complexity
and work amount are both increased at every linear iteration.

For the zonal flow problem, ILU subdomain solver works well for small time
steps such as ∆t = 0.01τ . However when we use a larger time step as those listed
in Table 5.2, the Jacobian solver fails to converge. For the dam-break problem, as
numerical experiments suggest, best compute times can be obtained with fill-in level
` = 3 and overlapping size δ = 0, with any number of processors. In Fig. 5.4, we show
compute time results using ILU(`), ` = 0, 1, 2, 3, 4, compared with the results using
LU, both with overlapping size δ = 0. From the figure we see that ILU is faster in
terms of compute time, but LU shows a better scalability.

6. Some final remarks. In this paper, we developed an overlapping domain
decomposition method on the cubed-sphere for the fully implicit and fully coupled

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 19

64 128 256 512 1024 2048

10
1

10
2

Number of processors

C
om

pu
te

 ti
m

e

Compute time comparison on 512x512x6 mesh

LU
ILU(0)
ILU(1)
ILU(2)
ILU(3)
ILU(4)

Fig. 5.4. Compute time comparison of LU and point-block ILU subdomain solvers, dam-break
problem on 512× 512× 6 mesh, running for 10 implicit time steps with step size ∆t = 0.2.

solution of the shallow water equations. The Newton-Krylov-RAS method presented
in the paper converges well for coupled nonlinear systems in both test cases, one with
a steady-state smooth solution and the other with an unsteady sharp moving front. A
comparison of the implicit method with a fixed time step size with an explicit method
with adaptive time step sizes was performed, and the explicit solution is slightly more
accurate due to the much smaller time step sizes, but the implicit method is faster
in terms of the overall compute time. The number of nonlinear iterations is nearly
independent of the number of subdomains, and the number of linear iterations grows
slowly as the number of subdomains increases. The sub-optimal linear scalability, in
terms of number of iterations, does not degenerate the scalability of the algorithm in
terms of the actual compute time. In fact, both the explicit method and the implicit
method offer excellent fixed problem size speedup, while the implicit method exhibits
a superlinear speedup and the explicit method shows a speedup curve slightly below
the ideal linear speedup for tests with up to 18 millions unknowns running on an IBM
BG/L with up to 2048 processors.

REFERENCES

[1] A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, Implementation of an atmosphere-
ocean general circulation model on expanded spherical cube, Mon. Wea. Rev., 132 (2004),
pp. 2845–2863.

[2] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, 2007.

[3] P. N. Brown, D. E. Shumaker, and C. S. Woodward, Fully implicit solution of large-scale
non-equilibrium radiation diffusion with high order time integration, J. Comput. Phys.,
204 (2005), pp. 760–783.

[4] X.-C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer.
Math., 60 (1990), pp. 41–62.

[5] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, Parallel Newton-
Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Com-
put., 19 (1998), pp. 246–265.

[6] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-Schwarz methods
in CFD, in Proceedings of the International Workshop on the Navier-Stokes Equations,
Notes in Numerical Fluid Mechanics, R. Rannacher, eds. Vieweg Verlag, Braunschweig,

20 C. YANG, J. CAO, AND X.-C. CAI

1994.
[7] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse

linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792–797.
[8] V. Casulli, Semi-implicit finite difference methods for the two-dimensional shallow water

equation, J. Comput. Phys., 86 (1990), pp. 56–74.
[9] C. Chen and F. Xiao, Shallow water model on cubed-sphere by multi-moment finite volume

method, J. Comput. Phys., 227 (2008), pp. 5019–5044.
[10] V. Cheruvu, R. D. Nair, and H. M. Tufo, A spectral finite volume transport scheme on the

cubed-sphere, Appl. Numer. Math., 57 (2007), pp. 1021–1032.
[11] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and graph coloring

problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.
[12] J. M. Dennis, R. D. Nair, H. M Tufo, M. Levy, and T. Voran, Development of a scalable

global discontinuous Galerkin atmospheric model, Int. J. Comput. Sci. Eng., in press.
[13] J. M. Dennis, A. Fournier, W. F. Spotz, A. St.-Cyr, M. A. Taylor, S. J. Thomas, and H.

Tufo, High resolution mesh convergence properties and parallel efficiency of a spectral
element atmospheric dynamical core, Int. J. High Perf. Comput. Appl., 19 (2005), pp.
225–235.

[14] J. M. Dennis, M. Levy, R. D. Nair, H. M. Tufo, and T. Voran, Towards an efficient
and scalable discontinuous Galerkin atmospheric model, in Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05), Workshop 13,
Volume 14, 2005.

[15] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, SIAM, Philadelphia, 1996.

[16] M. Dryja and O. Widlund, Domain decomposition algorithms with small overlap, SIAM J.
Sci. Comp., 15 (1994), pp. 604–620.

[17] K. J. Evans and D. A. Knoll, Temporal accuracy of phase change convection simulations
using the JFNK-SIMPLE algorithm, Int. J. Num. Meth. Fluids., 55 (2007), pp. 637–655.

[18] K. J. Evans, D. A. Knoll, and M. Pernice, Enhanced algorithm efficiency for phase change
convection using a multigrid preconditioner with a SIMPLE smoother, J. Comput. Phys.,
223 (2007), pp. 121–126.

[19] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differenti-
ation, SIAM, Philadelphia, 2000.

[20] W. Hundsdorfer, B. Koren, M. van Loon and J. G. Verwer, A Positive Finite-Difference
Advection Scheme, J. Comput. Phys., 117 (1995), pp. 35–46.

[21] K. Kashiyama, H. Ito, M. Behr, and T. Tezduyar, Three-step explicit finite element com-
putation of shallow water flows on a massively parallel computer, Int. J. Num. Meth.
Fluids., 21 (1995), pp. 885–900.

[22] D. E. Keyes, D. R. Reynolds, and C. S. Woodward, Implicit solvers for large-scale non-
linear problems, J. Phys.: Conf. Series, 46 (2006), pp. 433–442.

[23] D. A. Knoll, L. Chacon, L. G. Margolin, and V. A. Mousseau, On balanced approxima-
tions for time integration of multiple time scale systems, J. Comput. Phys., 185 (2003),
pp. 583–611.

[24] D. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[25] D. Lanser, J. G. Blom, and J. G. Verwer, Spatial discretization of the shallow water
equations in spherical geometry using Osher’s scheme, J. Comput. Phys., 165 (2000), pp.
542–565.

[26] M. N. Levy, R. D. Nair, and H. M. Tufo, High-order Galerkin methods for scalable global
atmospheric models, Comp. & Geosci., 33 (2007), pp. 1022–1035.

[27] R. Liska and B. Wendroff, Shallow water conservation laws on a sphere, International
series of numerical mathematics, H. Freistühler and G. Warnecke (eds), 141 (2001), pp.
673–682.

[28] R. B. Lowrie, A comparison of implicit time integration methods for nonlinear relaxation
and diffusion, J. Comput. Phys., 196 (2004), pp. 566–590.

[29] V. A. Mousseau, D. A. Knoll, and J. M. Reisner, An implicit nonlinearly consistent
method for the two-dimensional shallow-water equations with Coriolis force, Mon. Wea.
Rev., 130 (2002), pp. 2611–2625.

[30] R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin transport scheme on
the cubed sphere, Mon. Wea. Rev., 133 (2005), pp. 814–828.

[31] R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin global shallow water
model, Mon. Wea. Rev., 133 (2005), pp. 876–888.

[32] C. C. Ober and J. N. Shadid, Studies on the accuracy of time-integration methods for the

DOMAIN DECOMPOSITION FOR SHALLOW WATER EQUATIONS 21

radiation–diffusion equations, J. Comput. Phys., 195 (2004), pp. 743–772.
[33] S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation

laws, Math. Comp., 38 (1982), pp. 339–374.
[34] S. Osher and S. Chakravarthy, Upwind schemes and boundary conditions with applications

to Euler equations in general geometries, J. Comput. Phys., 50 (1983), pp. 447–481.
[35] S. Ovtchinnikov, F. Dobrian, X.-C. Cai, and D.E. Keyes, Additive Schwarz-based fully

coupled implicit methods for resistive Hall magnetohydrodynamic problems, J. Comput.
Phys., 225 (2007), pp. 1919–1936.

[36] W. M. Putman and S.-J. Lin, Finite-volumn transport on various cubed-sphere grids, J.
Comput. Phys., 227 (2007), pp. 55–78.

[37] A. Qaddouri, L. Laayouni, J. Cote, and M. Gander, Optimized Schwarz methods with an
overset grid for the shallow-water equations: Preliminary results, Applied Numer. Math.,
58 (2008), pp. 459–471.

[38] M. R. Rancic, J. Purser, and F. Mesinger, A global-shallow water model using an expanded
spherical cube: Gnomonic versus conformal coordinates, Quart. J. Roy. Meteor. Soc., 122
(1996), pp. 959–982.

[39] J. Reisner, A. Wyszogrodzki, V. Mousseau, and D. Knoll, An efficient physics-based
preconditioner for the fully implicit solution of small-scale thermally driven atmospheric
flows, J. Comput. Phys., 189 (2003), pp. 30–44.

[40] D. R. Reynolds, R. Samtaney, and C. S. Woodward, A fully implicit numerical method for
single-fluid resistive magnetohydrodynamics, J. Comput. Phys., 219 (2006), pp. 144–162.

[41] C. Ronchi, R. Iacono, and P. Paolucci, The cubed sphere: A new method for the solution
of partial differential equations in spherical geometry, J. Comput. Phys., 124 (1996), pp.
93–114.

[42] J. Ruge, S. McCormick, and S. Yee, Multilevel adaptive methods for semi-implicit solution
of shallow-water equations on a sphere, Mon. Wea. Rev., 123 (1995), pp. 2197–2205.

[43] J. A. Rossmanith, A wave propagation method for hyperbolic systems on the sphere, J. Com-
put. Phys., 213 (2006), pp. 629–658.

[44] J. A. Rossmanith, A Wave Propagation Method with Constrained Transport for Ideal and
Shallow Water Magnetohydrodynamics, PhD thesis, University of Washington, 2002.

[45] R. Sadourny, Conservative finite-difference approximations of the primitive equations on
quasi-uniform spherical grids, Mon. Wea. Rev., 100 (1972), pp. 211–224.

[46] J. N. Shadid, R. S. Tuminaro, K. D. Devine, G. L. Hennigan, and P.T. Lin, Perfor-
mance of fully coupled domain decomposition preconditioners for finite element trans-
port/reaction simulations, J. Comput. Phys., 205 (2005), pp. 24–47.

[47] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition. Parallel Multilevel Methods
for Eliptic Partial Differential Equations, Cambridge University Press, New York, 1996.

[48] S. J. Thomas, J. Dennis, H. Tufo, and P. Fischer, A Schwarz preconditioner for the cubed-
sphere, SIAM J. Sci. Comp., 25 (2003), pp. 442–453.

[49] S. J. Thomas and R. D. Loft, Semi-implicit spectral element atmospheric model, J. Sci.
Comput., 17 (2002), pp. 339–350.

[50] A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory,
Springer-Verlag, Berlin, 2005.

[51] B. van Leer, Towards the ultimate conservative difference scheme III: Upstream-centered
finite-difference schemes for ideal compressible flow, J. Comput. Phys., 23 (1977), pp.
263–275.

[52] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swartztrauber, A
standard test set for numerical approximations to the shallow water equations in spherical
geometry, J. Comput. Phys., 102 (1992), pp. 211–224.

[53] Y. Wu, X.-C. Cai, and D. E. Keyes, Additive Schwarz methods for hyperbolic equations, in
Proceedings of the 10th Intl. Conf. on Domain Decomposition Methods, J. Mandel, C.
Farhat and X.-C. Cai, eds., AMS, 1998, pp. 513–521.

