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TWO-LEVEL NEWTON AND HYBRID SCHWARZ
PRECONDITIONERS FOR FLUID-STRUCTURE INTERACTION∗

ANDREW T. BARKER† AND XIAO-CHUAN CAI‡

Abstract. We introduce and study numerically a two-level Schwarz preconditioner for Newton–
Krylov methods for fluid-structure interaction, with special consideration of the application area of
simulating blood flow. Our approach monolithically couples the fluid to the structure on both fine
and coarse grids and in the subdomain solves, insuring that there is multiphysics coupling during all
aspects of the algorithm. The fluid-structure system is discretized on unstructured nonnested meshes,
with an overlapping additive domain decomposition on both coarse and fine levels and multiplicative
Schwarz preconditioning between levels. We investigate the effect of different coarse discretization
sizes, solver stopping criteria, and overlap size, and we demonstrate that the method is robust to
physical parameters including the structure’s Young’s modulus and the timestep size. Finally, we
show effective preconditioning of the complicated coupled system, with nearly perfect weak scaling
to a thousand processors and millions of unknowns.
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1. Introduction. Fluid-structure interaction problems are difficult enough that
simulations of realistic phenomena often require parallel processing. In this paper
we consider scalable and efficient two-level Newton–Krylov–Schwarz algorithms for
monolithic coupling in fluid-structure interaction. The target application is blood flow
in arteries, which is a computationally difficult and practically important application
area [15, 36]. In particular, the similar densities of blood and artery wall make the
coupling between fluid and structure strong in both directions, so that partitioned
or iterative procedures have difficulties due to the added-mass effect [1, 8]. Instead
of a partitioned procedure, we adopt a monolithic computational approach, coupling
fluid to structure in one large system that is solved all at once. This tight coupling
allows for robustness to parameters and makes our method immune to the added-
mass effect. The resulting system is difficult to solve, but we show here that it can
be solved efficiently with effective preconditioning strategies. For more on monolithic
coupling, see [5, 16, 21]. Though we focus on the blood-flow problem, our algorithm
could be used for more general fluid-structure interaction problems, including ones
with deformable structures inside the fluid domain [25].

Besides monolithic coupling in all aspects of the numerical algorithm, the other
emphasis of our approach is parallel scalability. Fluid-structure interaction prob-
lems in general, and the blood-flow problem in particular, are very computationally
demanding and require parallel computing in order to achieve useful resolution and ac-
curacy. In order to use large supercomputers for large problems, we need innovative
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algorithms, especially preconditioners. Schwarz preconditioning for fluid dynamics
problems can be found in [17, 18, 22]. Recent detailed scalability studies of multilevel
preconditioners can be found in [18, 28], but as far as we know this kind of study has
not been done for the combined fluid-structure interaction system.

In [5], we developed a one-level Newton–Krylov–Schwarzmethod for fluid-structure
interaction that featured monolithic coupling between fluid and structure and good
parallel performance. However, for the most physically realistic problems and for
large processor counts the scalability of the method deteriorated, because the one-
level method does not keep the linear iteration count bounded as we scale the prob-
lem. We demonstrate here that adding a coarse grid to the Newton solver and to
the additive Schwarz preconditioner to make a two-level method can cause a very
large decrease in the number of linear iterations and a corresponding improvement in
parallel scalability.

Two-level domain decomposition methods have a long and successful history for
preconditioning of various problems. We offer here a very brief survey of some recent
developments, especially as they relate to the interest of this paper in incompressible
fluid and incompressible elasticity problems. Nonoverlapping domain decomposition
theory has been developed for incompressible Stokes equations in [26] and [27], which
are related to our problem because they involve domain decomposition methods for
saddle-point problems, but in these papers there is no multiphysics coupling and the
particular domain decomposition methods are quite different. More closely related
is the Schwarz theory for saddle-point elasticity problems developed in [24], which
are extended to the incompressible case in [10] and to the time-dependent case in
[30]. This last reference is closely related to the present work, in that it presents an
analysis of a saddle-point velocity-pressure system preconditioned with an indefinite
preconditioner of the same form; that is, smaller saddle-point problems are solved on
subdomains and on the coarse level. That is also our approach here, although our
problem is nonlinear and couples two saddle-point problems together, while [30] only
looks at one, which could be interpreted as either an elasticity problem or a Stokes
fluid problem. There is also a careful comparison of different choices of boundary
conditions for the subdomain problems in [30].

Two-level Schwarz domain decomposition methods are well understood for elliptic
problems. However, it is not as clear how the methods work for coupled problems
of mixed type like the fluid-structure interaction system. A complicated coupled
problem, different from ours in particulars but similar in terms of coupling, is discussed
in [31] and [33]. Here a very ill-conditioned multicomponent time-dependent problem
is solved with a multilevel additive Schwarz method, with proofs in [31] of scalability
and optimality of the method. Though the equations and application in this study
are very different from ours, the results show that we can expect very good results
from overlapping two-level Schwarz methods even when the underlying problem is
quite complicated. Reference [33] also uses a hybrid preconditioner like ours that is
multiplicative between levels and additive within levels, with good numerical results.
These studies use static, logically structured meshes for which it is straightforward to
find a good coarse mesh and interpolation operators—in contrast, our approach uses
moving, completely unstructured meshes.

There are other ways other than Schwarz preconditioners to include a coarse
space to speed up solving a linear system, including algebraic multigrid methods [35]
and agglomeration methods. Some of these methods show promise, but in this paper
we confine ourselves to domain decomposition and particularly Schwarz methods for
preconditioning.
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In this paper, we investigate numerically several important issues related to the
Schwarz preconditioner. One difficulty is how to construct a coarse mesh for a problem
on a complicated moving domain, and determining how coarse that mesh should be
in order to balance computational cost with preconditioning quality. Other questions
include how accurately the coarse problem needs to be solved at each step for a
given fine-grid tolerance, what boundary conditions to impose on the subdomain
problems, how to interpolate between nonnested unstructured meshes on the different
levels, and what effect the overlap parameter has on the fine and coarse grids. We
approach our subject by first discussing the equations that we solve and their finite
element discretization in section 2, then discussing the two-level Newton and Schwarz
methods that give us scalability in section 3, and finally presenting numerical results
in section 4. We end the paper with some concluding remarks.

2. Mathematical model and discretization. We solve the fully coupled and
nonlinear equations for fluid-structure interaction with monolithic coupling of the
three components: the fluid, the elastic wall structure, and the moving mesh. For
the artery wall, we use an incompressible visco-elastic model. We account for the
moving fluid domain by using a time-dependent computational mesh in the arbitrary
Lagrangian–Eulerian (ALE) framework [11, 14], and we restrict our attention to large
blood vessels, where the fluid properties are approximately Newtonian [15], and we
model the fluid with the incompressible Navier–Stokes equations. In this section, we
present the mathematical formulation of this three-field system.

2.1. A fully coupled model. Our incompressible linear visco-elastic model
for the structure is a very simplistic model for the target application of an artery
wall—more sophisticated and realistic models are discussed in [20]. However, it is a
fairly reasonable approximation in cases where structural stresses and deformations
are quite small.

In their strong form, the equations governing linear elasticity are

ρs
∂2

∂t2
xs = ∇ · σs,(2.1)

∇ · xs = 0.(2.2)

The stress tensor σs is given by

(2.3) σs = −psI + (2/3)Es(∇xs +∇xT
s ),

where xs and ps are the solution variables for the structure—the displacement and
pressure, respectively—and Es is the Young’s modulus of the incompressible solid.
Note that (2.1) can also be written as

(2.4) ρs
∂2

∂t2
xs = −∇ps + (1/3)EsΔxs.

In practice, we include terms so that (2.1) becomes

(2.5) ρs
∂2

∂t2
xs = ∇ · σs + β

∂

∂t
(Δxs)− γxs,

where β is a visco-elastic parameter. The γ term is included so that we can re-
produce a standard fluid-structure test problem as in [2, 29], which uses a reduced
one-dimensional structural model of the form

(2.6) ρs
∂2η

∂t2
− a

∂2η

∂z2
+ bη − c

∂3η

∂z2∂t
= f,
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where η is the radial displacement of the artery wall, z is the axial coordinate, and
a, b, c are parameters.

To specify the grid displacements xf , we simply use the Laplace equation

(2.7) Δxf = 0

on the interior of the domain, following the practice in [38]. In our numerical simu-
lations, this simple mesh movement scheme performs well, allowing fairly large grid
deformations without leading to ill-conditioned elements or adding error to the sim-
ulations, but of course many more sophisticated mesh movement schemes can be
considered (see [19]).

We model the fluid as a viscous incompressible Newtonian fluid, using the Navier–
Stokes equations

∂uf

∂t
+ (uf · ∇)uf +

1

ρf
∇pf = νfΔuf ,(2.8)

∇ · uf = 0.(2.9)

Here uf is the fluid velocity vector and pf is the pressure. The given data include the
fluid density ρf and the kinematic viscosity νf = μf/ρf . The above fluid equations
are in Eulerian coordinates which, since our domain is moving, need to be modified
for the ALE frame. We get

∂uf

∂t

∣∣∣∣
Y

+ [(uf − ωg) · ∇]uf +
1

ρf
∇pf = νfΔuf ,(2.10)

∇ · uf = 0,(2.11)

where ωg = ∂xf/∂t is the velocity of the moving mesh and Y indicates that the time
derivative is to be taken in the ALE frame.

Boundary conditions for the fluid equations typically consist of a Dirichlet condi-
tion, where uf takes a given profile at the inlet Γi, and a zero traction condition

(2.12) σf · nf = μf (∇uf · nf )− pfnf = 0

on the outlet Γo, where nf is the unit outward normal, though we will occasionally
use traction inflow conditions as well. Here we have used

(2.13) σf = −pfI + μf (∇uf ),

which is the appropriate variational form for a Neumann boundary condition for the
form of the Navier–Stokes equation that we use, even though it is not the physical
stress.

The physical system, as well as our model and discretization, has strong coupling
between the three fields. At the fluid-structure boundary, we require that structure
velocity match fluid velocity,

(2.14) uf =
∂xs

∂t
,

which is a generalization of a no-slip, no penetration condition in the case of an
unmoving interface. We also enforce that the moving mesh must follow the solid
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displacement, so that the structure can maintain a Lagrangian description. This
condition takes the form

(2.15) xf = xs.

Again, this reduces to a homogeneous Dirichlet condition in the case of a rigid wall,
which in turn would imply by (2.7) that the ALE mesh is in fact an unmoving Eulerian
grid.

The most interesting part of the fluid coupling is the continuity of traction forces
at the boundary. This can be written as

(2.16) σs · ns = −σf · nf ,

where ns,nf are the unit outward normal vectors for the solid and fluid domains,
respectively, and σs and σf are the Cauchy stress tensors for the solid and fluid
defined in (2.3) and (2.13), respectively. The condition (2.16) can be thought of as a
Neumann-type condition on the structure model.

It is important to emphasize that these coupling conditions are enforced implicitly
as part of the monolithic system—they are never enforced as boundary conditions with
given data from subproblems, as in the iterative coupling approach.

2.2. A fully coupled finite element discretization. We use the finite ele-
ment method to discretize the coupled fluid-structure problem in space, using mixed
Q2−Q1 finite elements for both fluid and structure. As the first step to finite element
discretization, we present the weak form of (2.5), (2.2), (2.7), (2.10), (2.11) together
with the coupling conditions (2.14), (2.15), (2.16). Find uf , pf ,xf ,xs, ps such that

∫
Ωf (t)

∂uf

∂t

∣∣∣∣
Y

· φf +

∫
Ωf (t)

[(uf − ωg) · ∇]uf · φf

+ νf

∫
Ωf (t)

∇uf : ∇φf −
∫
Ωf (t)

pf (∇ · φf ) =
∫
Γt

tf · φf ,

(2.17)

∫
Ωf (t)

ψf (∇ · uf ) = 0,

∫
Ω0

∇ξ : ∇xf = 0,(2.18)

ρs
∂2

∂t2

∫
Ωs

xs · φs +
∫
Ωs

∇φs : σs =
∫
Γ

φs · (σf · n),(2.19)

∫
Ωs

ψ(∇ · xs) = 0(2.20)

hold for all test functions φf , ψf , ξ, φs, ψs in suitable spaces. For more details about
the derivation of this weak form and the precise definition of the function spaces
involved, see [4].
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Discretizing the above weak form in space, we arrive at the semidiscrete form

Mf
duf
dt

+N(uf)uf +Kfuf −QT
f pf = 0,(2.21)

Qfuf = 0,(2.22)

dxs
dt

= ẋs,(2.23)

Ms
dẋs
dt

+ βKsẋs +Ksxs + γMsxs +QT
s ps = Auu+Appf ,(2.24)

Qsxs = 0,(2.25)

Kmxf = 0.(2.26)

Here we represent the solution variables as discrete vectors uf , pf , xf , xs, ẋs, and we
have also reduced the structure equations from second order in time to first order by
introducing a structure velocity ẋs, in addition to the structure displacement xs, in
preparation for the time discretization. The matrices Au and Ap are introduced to
account for the traction matching in fluid-structure interaction; that is, they represent
(2.16) and correspond to the boundary term in (2.19). The other coupling conditions
are included in the monolithic system but are not reflected in the system as written
above—they simply identify certain solution variables with each other.

We discretize in time with the second order implicit trapezoid rule yn+1 = yn +
(Δt/2)(Fn+1 + Fn). At each timestep we solve a nonlinear system of the form

(2.27) (M̃ − (Δt/2)K̃)yn+1 = (M̃ + (Δt/2)K̃)yn,

where

(2.28) yn =

⎛
⎜⎜⎜⎜⎜⎜⎝

uf
pf
xs
ẋs
ps
xf

⎞
⎟⎟⎟⎟⎟⎟⎠

n

, M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Mf 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 ρsMs 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and

(2.29) K̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

N(uf)− νfKf −QT
f 0 0 0 0

Qf 0 0 0 0 0
0 0 0 I 0 0
Au Ap Ks + γMs βKs −QT

s 0
0 0 Qs 0 0 0
0 0 0 0 0 Km

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Since most of the operators above are linear, the Jacobian is just a modification
of M̃ − (Δt/2)K̃. In particular, we can write the Jacobian as

(2.30) J = M̃ − (Δt/2)K̃ + Z̃,

where

(2.31) Z̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Jf 0 0 0 0 Zm

0 0 0 0 0 Zc

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Here Jf is the derivative from the nonlinear convective term in the momentum equa-
tion, while the Z terms represent additional nonlinearity coming from the moving
mesh. In the ALE framework, the momentum and continuity equations (2.10), (2.11)
depend in a nonlinear way on the fluid mesh displacements xf . The Z terms in (2.31)
above represent the derivatives of this nonlinear dependence.

The M̃ matrix in J is well-conditioned, and K̃ is highly ill-conditioned, but this
ill-conditioning is somewhat moderated by the timestep Δt [6]. The Z terms are
quite small when Δt is small, but for moderate timestep values, including them is
important.

This large, monolithically coupled nonlinear system is solved in one piece by a
two-level Newton–Krylov–Schwarz algorithm, which is the key part of this work for
insuring parallel scalability, and which we now go on to describe.

3. Two-level Newton and Schwarz methods. At each timestep (indexed by
n) we have to solve the nonlinear system (2.27). We can write it more abstractly as

(3.1) Gn+1
h (xn+1

h ) = 0, n = 0, 1, . . . .

We solve this nonlinear system with a two-level Newton–Krylov–Schwarz algorithm—
it is this algorithm that is the heart of this paper and the key to achieving parallel
scalability and performance.

3.1. Two-level Newton method. The nonlinear solver is two-level Newton,
which simply means that we use our coarse grid to get a good initial guess for solving
(3.1). Since Newton’s method can be quite sensitive to the initial guess, this is an
important part of the algorithm, often reducing the number of Newton solves per
timestep significantly. Also, and more interesting, it can in some cases significantly
reduce the number of linear iterations needed inside the Newton steps—see section 4.3.

To use the coarse grid to get a good initial guess for (3.1), we first construct an
analogous system

(3.2) Gn+1
H (xn+1

H ) = 0

on the coarse grid, with the initial guess for this system given by xn+1,0
H = IHh (xnh),

which is a restriction of the fine-grid solution from the previous timestep—the form
and construction of IHh will be discussed in section 3.4. Since the fine grid is not in
general a refinement of the coarse grid, the nonlinear functional GH is not a simple
restriction of Gh. To solve (3.2) we use an inexact Newton method, so that each
Newton step takes the form

(3.3) xk+1
H = xkH + skH , k = 0, 1, . . . .

Here we have dropped the timestep superscripts n + 1 from the solution vectors
for clarity, and instead use k superscripts to identify which Newton step the vector
corresponds to. The Newton correction sH is an inexact solution to a linear system
satisfying

(3.4)
∥∥GH(xkH) +GH(xkH)′(Mk

H)−1Mk
Hs

k
H

∥∥ ≤ max
{
ηrH‖Gk

H(xkH)‖, ηaH
}
,

where GH(xkH)′ is the Jacobian matrix for the nonlinear system GH evaluated at xkH
(the n + 1 time level superscripts on GH have been dropped), (Mk

H)−1 is a precon-
ditioner for this linear system (which is reconstructed at every Newton step), and ηr
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and ηa are relative and absolute tolerances for the linear solver. Occasionally, instead
of (3.4) we will use the preconditioned Richardson iteration

(3.5) xj+1
H = xjH + (Mk

H)−1(GH(xkH)−GH(xkH)′xjH),

where j indexes the step of the iteration. This iteration is applied a fixed number of
times in place of solving the linear system (3.4) to the specified tolerance. The details
of the preconditioner (Mk

H)−1 here and its analogue in the fine-grid algorithm make
up a key part of our numerical algorithm and will be discussed in detail in section 3.3.

We continue the iteration (3.3) until the convergence criterion given by

(3.6) ‖GH(xkH)‖ ≤ max
{
εrH‖GH(x0H)‖, εaH

}
is satisfied, where εr and εa are relative and absolute solver tolerances for the Newton
method.

To solve the fine-grid nonlinear problem (3.2), we use a similar inexact Newton
method with an initial guess given by

(3.7) xn+1,0
h = IhH(xn+1

H ), n = 0, 1, . . . ,

and then (dropping the n+ 1 time level superscripts again) use the Newton iteration

(3.8) xk+1
h = xkh + skh, k = 0, 1, . . . ,

where skh is the Newton correction for the kth Newton step and is determined by
solving the inexact linear system

(3.9)
∥∥Gh(x

k
h) +Gh(x

k
h)

′(Mk
h )

−1Mk
hs

k
h

∥∥ ≤ max
{
ηrh‖Gk

h(x
k
h)‖, ηah

}
,

and we continue the iteration (3.8) until

(3.10) ‖Gh(x
k
h)‖ ≤ max

{
εrh‖Gh(x

0
h)‖, εah

}
is satisfied.

In the next section, we describe the preconditionersM−1
H andM−1

h in turn. M−1
H

will be a one-level restricted additive Schwarz preconditioner, while M−1
h will be a

hybrid two-level preconditioner that uses something very much like M−1
H as one of its

components.

3.2. One-level restricted additive Schwarz. To define the additive Schwarz
method, we first partition the finite element mesh on Ω into several meshes on sub-
domains Ω�, each one corresponding to a processor in the parallel machine. Then we
extend each subdomain Ω� to overlap its neighbors by a user-specified amount δ, and
we denote the overlapping domain by Ω′

�. All of the partitioning, and the overlap
extension, are done with respect to elements—since each element contains the same
number of unknowns, this procedure balances the load fairly well for the parallel solve.

On each subdomain Ω′
� we construct a subdomain operator B̃�, which is a restric-

tion of the matrix G′
H in (3.4), that is, it contains entries from G′

H corresponding
to degrees of freedom contained in the corresponding subdomain Ω′

�. The main work

of the preconditioner is doing local solves of the form B̃�z� = g�, where z� and g�
are restrictions of the solution x and the right-hand side G(x) to a subdomain. The
restricted additive Schwarz preconditioner can then be written as

(3.11) M−1
H = (R̃0

1)
T B̃−1

1 R̃δ
1 + · · ·+ (R̃0

N )T B̃−1
N R̃δ

N .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO-LEVEL PRECONDITIONERS FOR FLUID-STRUCTURE INTERACTION 2403

The R̃� operators map a vector defined on the whole space to a vector defined on the
subdomain Ω� or Ω

′
� by injection without weighting. Here R̃0

� is a restriction operator

that does not include overlap, while R̃δ
� includes the overlap, so in the formulation

above the subdomain solve uses information from the overlap region but then does
not contribute the computed solution in the overlap region to the global solve [7,
12]. The choice of subdomain solves and restriction and interpolation operators leads
to different kinds of Schwarz preconditioners with different properties [37]. In our
algorithm the B̃−1

� solves are done with LU factorization, which is expensive, but
since the subdomain solve is local to a single processor, the preconditioner is scalable.
We follow [30] in imposing Dirichlet boundary conditions to the pressure as well
as the velocity in the subdomain solves—this approach shows good scalability and
effectiveness and is easy to implement.

3.3. Two-level hybrid preconditioning. Once the coarse nonlinear problem
(3.2) has been solved to our satisfaction, we turn to the solution of the fine nonlinear
problem (3.1), which is what we need a solution for in order to advance to the next
time level. Again, we use a Newton method to solve this, so again we have to solve a
linear Jacobian system at each timestep. This linear system, given by (3.9), is solved
with flexible GMRES, preconditioned with a two-level hybrid Schwarz preconditioner.
Flexible GMRES is a standard iterative method (see, for example, [32]), and is chosen
here to give us more flexibility with the various solves inside the preconditioner. In
particular, we do not solve the coarse problem exactly, so the effective preconditioner is
different at each linear iteration, which leads us to use fGMRES rather than GMRES.

Using two-level Schwarz methods is a well-established domain decomposition pre-
conditioning technique [34, 37]. The basic idea is to facilitate exchange of informa-
tion between different subdomains, or, equivalently, to efficiently account for smooth
components of the error. This is done by including an additional component in the
preconditioner, a coarse grid, where computations are cheap but where the smooth
global structure of the solution (or of the error) can be represented well. In a one-level
approach, if you have N subdomains between subdomain i and subdomain j, then it
takes at least N iterations for information to get from i to j. Including a coarse space
in the preconditioner can in principle allow the transfer of this information in a single
iteration. For some results on multilevel Schwarz preconditioners being applied to
fluid dynamics problems, see [18, 22], and for recent work in semiconductor modeling,
see [28].

The domain decomposition portion, or fine-grid portion, of the two-level pre-
conditioner is implemented as in [5], and similarly to the coarse solver described in
section 3.2. Again, we partition the mesh into mesh subdomains, extend the subdo-
mains so they overlap, and do coarse solves on the mesh subdomains. In analogy to
(3.11), this part of the preconditioner can be written

(3.12) M−1
1 =

N∑
j=1

(R0
j )

TB−1
j Rδ

j ,

where again the B−1
j are subdomain solves and the Rj are restriction and interpolation

operators for the subdomains. The subdomains here are geometrically very similar
to the subdomains described in section 3.2, but they contain many more degrees of
freedom because here we are partitioning the fine grid—see Figures 3.2 and 3.3.

To include a coarse level in an additive two-level preconditioning approach, we
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write

(3.13) M−1
ad = IhHB

−1
0 IHh +

N∑
j=1

(R0
j )

TB−1
j Rδ

j ,

where IHh is a restriction from the fine grid to the coarse grid, IhH = (IHh )T is the cor-
responding interpolation operator from coarse grid to fine grid, and B−1

0 is a solve on
the coarse grid. Different Schwarz algorithms can be devised by different approximate
coarse solves, which implies different forms of B−1

0 . We will discuss these choices, and
also the choices for restriction and interpolation, in sections 3.4 and 3.5.

In our implementation, we combine the coarse-level and fine-level preconditioners
multiplicatively, while continuing to use additive Schwarz within the fine level. We
can write the application of this hybrid preconditionerM−1

h to a vector x in two steps:

z = IhHB
−1
0 IHh x,(3.14)

M−1
h x = z +M−1

1 (x −G′
hz) = z +

N∑
j=1

(R0
j )

TB−1
j Rδ

j(x−G′
hz).(3.15)

In this hybrid preconditioner, the additive one-level component (3.15) means we can
do the local subdomain solves in parallel, while we do the coarse and fine levels
sequentially.

The other main considerations in designing a two-level algorithm are formulating
the interpolation between the fine and coarse grids, and solving the coarse problem.
We now discuss each of these issues in turn.

3.4. Nonnested interpolation and restriction. For interpolation and restric-
tion we construct an interpolation matrix IhH which has dimension nf ×nc, where nf

and nc are the number of degrees of freedom in the fine and coarse meshes, respec-
tively. We use finite element interpolation—that is,

(3.16) (IhH)ij = φj(xi),

where φj is the finite element basis function associated with the jth degree of freedom
on the coarse grid and xi = (x1i , x

2
i ) is the location of the ith degree of freedom on

the fine grid. In practice the value φj(xi) is also interpolated, since we do not have
explicit access to the basis function φj on an unstructured grid. The matrix IhH is
considered constant for all three fields, even though the fluid mesh points move—it is
expected that the coarse grid moves roughly in the same way as the fine grid, so the
same interpolation is still appropriate.

With an unstructured grid, it may occasionally happen that a fine grid point
xf is not contained within any coarse element; see Figure 3.1. In this situation, we
do the interpolation for the coarse element that is closest to xf . This amounts to
doing extrapolation and is not very accurate if xf is far outside the coarse element.
However, this occurs rarely (for less than 5 percent of the points in a mesh), and even
then xf is very close to the coarse element. In any case this extrapolation does not
degrade the performance of the overall algorithm [9].

3.5. Parallel solution of the coarse linear problem. Both (3.4) and (3.14)
are linear problems on the coarse grid, employing the same grid, with the same number
of variables, but with different solution operators in general. We use the following
method to solve both coarse linear problems.
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Γc

Γ
f

Γ

Fig. 3.1. When meshing a curved physical boundary Γ, it may happen that a point on the fine
mesh boundary (Γf ) is outside all the elements of the coarse mesh whose boundary is given by Γc.
Our finite elements are quadratic, while the ones pictured here are linear, but the same principle
applies.

What we mean by B−1
0 in (3.14) is normally parallel restarted GMRES, pre-

conditioned with a one-level additive Schwarz method, using the same number of
subdomains (and therefore processors) as the fine grid. We solve both (3.14) and
(3.4) using the one-level algorithm described in section 3.2. However, in order for the
coarse grid correction to be helpful we can solve the coarse problem with a much larger
error tolerance than the fine problem, saving computational cost while still being an
effective preconditioner for (3.14).

Using the same basic algorithm for the one-level method on the coarse grid as on
the fine grid has two advantages. First, it is simpler to implement and allows us to
reuse some data structures. And second, since we are using the full parallel collective
to solve the coarse problem, it allows us to apply the preconditioner multiplicatively,
since the coarse solve is done before the fine solve needs any data from it and vice
versa. One potential disadvantage is the large number of subdomains on the coarse
space, which could lead to the same ill-conditioning problem that drove us to use a
two-level method in the first place. In practice, the coarse problem is easy enough to
solve and the overlap (which is less costly to increase on the coarse grid) can be made
sufficiently large to overcome this difficulty, though for very large simulations we may
want to consider additional levels.

The fine and coarse grids in our implementation do not have any necessary
connection to each other—they can be generated completely independently by mesh-
generating software, and the interpolation and restriction between them is calculated
when the simulation runs. In particular, the fine grid is not a refinement of the coarse
grid. The fine grid is partitioned for the domain decomposition and parallel process-
ing by Parmetis [23], and the coarse grid inherits that partition—the elements of the
coarse grid are assigned to processors that contain nearby fine-grid elements. See
Figures 3.2 and 3.3.

The Jacobian matrix G′
H ≈ B0 used for linear solves on the coarse grid is not in

general a submatrix of the fine-grid Jacobian G′
h, but is instead generated indepen-

dently on the coarse mesh in precisely the same way as the Jacobian is generated on
the fine mesh, and the coarse Jacobian G′

H is assembled for the coarse-grid Newton
solve.

4. Numerical results. In this section we explore the implications of using a
two-level Newton–Krylov–Schwarz method and the interplay of various parameters in
that method, comparing to the one-level implementation as we go. We do simulations
on a straight tube model, where we can verify results found in the literature and
more carefully control the mesh size and number of unknowns, and also consider a
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Fig. 3.2. A portion of the branched artery geometry, with the different subdomains indicated
by different shades. A partition of the fine grid is on the left, and a corresponding partition of the
coarse grid is on the right. Note that the two partitions are nearly the same. The portions marked
with a black box are shown in greater detail in Figure 3.3.

Fig. 3.3. A portion of the unstructured mesh, where we can see the relative size of the fine
(left) and coarse (right) meshes. Note that the fine mesh is not a refinement of the coarse mesh—in
our method we can choose a coarse mesh of any size. Note also that the partitions into subdomains
are similar for both meshes. A larger portion of this mesh is visible in Figure 3.2.

more realistic branching artery model derived from clinical data. See [5] for a detailed
verification of the same method with a less efficient preconditioner against published
data. The solver is implemented using the PETSc libraries [3] and all tests were
done on an IBM BlueGene/L supercomputer at the National Center for Atmospheric
Research.

In the numerical results in this section, unless otherwise specified, we use an
incompressible structure, the fluid density is 1000. kg/m3, the damping parameter is
β = 0.01, and the kinematic viscosity of the fluid is νf = 0.0035 kg/m s.

For the solver parameters, we consider the Newton solver on the fine level to have
converged if the (absolute) residual εah is less than 10−6, while for the coarse Newton
solver we use a relative tolerance εrH = 10−5. For fGMRES on the fine level, we have
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a (mostly never reached) absolute tolerance of ηah = 10−14 and a relative tolerance
ηrh set by the Eisenstat–Walker method that changes at each iteration, based on the
current residual of the nonlinear solve [13]. We restart flexible GMRES every 100
iterations. For the coarse linear solve, we use (nonflexible) GMRES with an absolute
tolerance of ηaH = 10−10 and a relative tolerance of ηrH = 10−3. The coarse linear
solver typically converges to its relative tolerance in a few iterations and does not
restart.

4.1. Straight tube. The setup of the straight tube problem is taken from [2].
We have a two-dimensional tube 6 cm by 1 cm, with flexible walls at top and bottom
of thickness 0.1 cm. A traction condition is applied at the left boundary to induce
a pressure pulse, which then travels to the right, deforming the structure as it goes.
In this example the Young’s modulus Es = 7.5 · 104 kg/m s2, the structure is in-
compressible and has a density of 1100 kg/m3, and the inlet pressure pulse takes the
form

(4.1) σf · nf =
−P0

2

[
1− cos

(
πt

0.0025 s

)]
,

where P0 = 2.0 · 105 kg/m s2. The timestep size is Δt = 0.0001 s.

The primary motivation for the two-level preconditioner is to improve scalabil-
ity for the most physically realistic cases, and we demonstrate that scalability in
Figures 4.1 and 4.2, which show weak scaling for the straight tube example in the
two-grid case, and where the scalability looks very good out to 1024 processors. The
linear iterations are kept very nearly constant for the two-level case in sharp contrast
to the one-level preconditioner, and the total solution time behaves similarly. The
amount of time spent per unknown may seem high, but it is worth emphasizing that
this is a computationally expensive problem—each timestep requires several Newton
steps, each Newton step contains several GMRES iterations on fine and coarse levels,
and the ALE framework requires us to reassemble our matrices at each timestep. Nev-
ertheless, the time spent is reasonable, and in any case the key feature is the parallel
scalability, which is very good.

One difficulty in our current approach is that the coarse mesh is solved on the
same parallel collective, and by the same method, as the fine mesh. This means that
in principle the coarse solver could be subject to the same problem of ill-conditioning
as the number of subdomains increases. In most of our simulations, though, the
coarse problem is just easy enough that this is not a great consideration. But as
we consider scaling our method to larger problems and larger machines, this may
be problematic. See Figure 4.3, which shows the increase in coarse solver time for
increasing subdomains, which is a result of increasing linear iterations on the coarse
level, where we are in effect using a one-level Schwarz method. One possible fix is to
simply reduce the number of processors used to solve the coarse problem and let the
rest of the processors sit idle during the coarse solve, but this is not the most efficient
use of the parallel machine.

A more sophisticated solution would be to add a third or more levels to the
preconditioner. This solution would make our approach, which already has much in
common with geometric multigrid preconditioners, more like the multigrid method.
It might also be possible to use algebraic multigrid to solve the Jacobian systems, but
these are complicated coupled systems of mixed type, and standard algebraic multigrid
techniques do not work. We note that the kind of weak scaling and performance we
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Fig. 4.1. Weak scaling of the linear solver for a straight tube test problem. The vertical axis
shows average number of linear iterations per timestep as we increase the number of subdomains.
The addition of a coarse level improves scalability. The number of unknowns increases with the
number of processors—1024 processors is 7.1 · 106 unknowns, 256 is 1.8 · 106, and so on.

Fig. 4.2. Weak scaling of total time for a straight tube test problem. The vertical axis shows
average walltime in seconds per timestep of the simulation. The addition of a coarse level improves
scalability. Again, the number of unknowns increases with the number of processors—1024 processors
is 7.1 · 106 unknowns, 256 is 1.8 · 106, and so on.

get is very similar to multilevel methods recently used for the different application of
semiconductor modeling [28].

Perhaps the most important implementation detail to consider in designing a
two-level method is to choose the size of the coarse grid in order to balance the
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Fig. 4.3. Weak scaling of the coarse-level solver for the grids and processor counts as in
Figures 4.1 and 4.2. This plot shows the fraction of total compute time spent on the coarse grid—
though it is less than a quarter of the time even in the extreme case, it is growing rapidly as the
number of subdomains increases.

improvement in conditioning that comes from using a relatively fine coarse grid with
the cost of solving the problem on the coarse grid. In Table 4.1, we present some
comparisons of performance and linear iterations for different coarse-grid sizes, while
in Table 4.2 we consider the effect of some solver parameters on the computational
cost of the coarse solve. In Figure 4.4, the deformation of the straight tube and the
corresponding mesh is visible. The deformation, though not very large, is significant,
and the good performance of our simple mesh movement scheme is visible.

4.2. Realistic geometry. In this subsection we use a pulmonary artery model
taken from clinical data. The geometry for this branching model is visible in Figure

Table 4.1

Effect of the coarse grid size on the solver behavior for the straight tube case. The heading
“coarse size” reports the number of unknowns on the coarse grid as a fraction of the number on the
fine grid, and “coarse time” is the fraction of total compute time spent on the coarse grid.

Unknowns np Coarse size Levels fGMRES Coarse time Walltime

4.51 · 105 64 0.0 one 74.6 0.00 46.21
4.51 · 105 64 0.03 two 53.1 0.04 46.33
4.51 · 105 64 0.12 two 43.0 0.13 46.84

7.97 · 105 128 0.0 one 123.2 0.00 41.08
7.97 · 105 128 0.02 two 86.9 0.06 42.87
7.97 · 105 128 0.07 two 68.7 0.11 43.49

1.78 · 106 256 0.0 one 313.0 0.00 66.07
1.78 · 106 256 0.01 two 205.5 0.06 67.74
1.78 · 106 256 0.03 two 209.5 0.12 71.16

3.16 · 106 512 0.0 one 882.7 0.00 78.27
3.16 · 106 512 0.004 two 1.52 · 103 0.15 143.82
3.16 · 106 512 0.02 two 325.6 0.15 66.38
3.16 · 106 512 0.04 two 485.8 0.24 83.74

7.09 · 106 1024 0.0 one 5.55 · 103 0.00 426.07
7.09 · 106 1024 0.02 two 522.3 0.15 131.13
7.09 · 106 1024 0.03 two 4.17 · 103 0.38 548.94
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Table 4.2

Performance of two-level method for straight tube problem with various parameter values for
the Eisenstat–Walker linear tolerances and coarse tolerances. ηr,0h is the initial tolerance for the
linear relative residual in the Eisenstat–Walker method, and “coarse time” is the fraction of total
compute time spent on the coarse grid. For 512 processors we have 3.16 · 106 unknowns, while for
1024 we have 7.09 · 106 unknowns.

np ηr,0h ηrH Coarse time fGMRES Walltime

512 10−3 10−3 0.14 335.1 71.01
512 10−3 10−4 0.19 332.9 75.19
512 10−3 10−6 0.29 333.9 85.31

512 10−4 10−3 0.15 326.6 66.81
512 10−4 10−4 0.2 328.0 70.64
512 10−4 10−6 0.3 329.3 79.97

512 10−6 10−3 0.16 387.3 70.73
512 10−6 10−4 0.22 379.2 74.8
512 10−6 10−6 0.33 377.2 85.36

1024 10−3 10−3 0.14 471.1 126.72
1024 10−3 10−4 0.2 469.6 136.68
1024 10−3 10−6 0.32 472.6 158.28

1024 10−4 10−3 0.16 522.3 130.29
1024 10−4 10−4 0.22 515.3 138.26
1024 10−4 10−6 0.35 517.2 161.42

1024 10−6 10−3 0.16 555.0 134.88
1024 10−6 10−4 0.23 554.3 145.36
1024 10−6 10−6 0.35 559.1 172.4

Fig. 4.4. A plot of fluid and structure pressure for the straight tube case, with the top half of
the tube visible in the top figure (the solution is vertically symmetric) and a zoomed-in portion of
the same solution below, with the mesh outlined in black. For this smooth geometry and smooth
deformation, we get a good result with a fairly coarse mesh.

4.5. Here we use a Young’s modulus of Es = 3.0 · 104 kg/m s2, and the structure is
again incompressible and has a density of 1000 kg/m3. We start the simulation from
rest, with an impulsive Dirichlet inlet velocity condition of 0.05 m/s, and we restart
flexible GMRES every 50 iterations.

In this more physically realistic and computationally challenging example using a
branching artery geometry, the difference in linear iteration counts between one- and
two-level methods is even more marked. In Table 4.3, which shows average results for
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Fig. 4.5. Results of a simulation done on a realistic, clinically acquired geometry. In the larger
image the fluid is shaded by pressure and the structure is a solid shade, and in the inset image the
fluid is shaded by norm of velocity and the structure mesh is shown shaded by norm of displacement.

several computations, the two-level method results in a very sharp reduction in linear
iterations and a good reduction in compute time for these problems and is much more
effective than the one-level preconditioner. The two-level method is more robust to
a variety of physical parameters. In particular, in Figure 4.6, we show the dramatic
difference in total number of linear iterations per timestep between the one-level and
two-level methods for varying timestep sizes. As the timestep size Δt is increased,
the number of iterations for the one-level method increases dramatically, while those
for the two-level method are fairly stable.

The overlap parameter δ in the Schwarz domain decomposition method is one
way to adjust the strength of the preconditioner—a higher δ means more information
transfer between subdomains, and therefore a faster convergence. This information
transfer is expensive and results in larger local problems, so of course there is a
tradeoff. Another way to exchange information between subdomains is with a coarse
grid, and in Tables 4.4 and 4.5 it is clear that in the two-level method, the need to
use overlap is greatly reduced. It also seems to be the case that the two-level method
is less sensitive to the choice of overlap parameter δ.

Table 4.3

Solver characteristics for increasing number of subdomains, with fixed problem size (1.63 million
unknowns) and fixed overlap parameter (δ = 0 for the two-level method, δ = 3 for the one-level
method), with comparisons of fGMRES iterations and walltime per timestep for the one-level method
against the two-level method.

fGMRES iterations Walltime
Subdomains One-level Two-level One-level Two-level

96 442 237 270 184
112 514 245 277 182
128 487 286 216 163
160 697 282 201 105
192 899 485 168 109
224 1040 349 152 91.1
256 1020 382 127 79.9



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2412 ANDREW T. BARKER AND XIAO-CHUAN CAI

Fig. 4.6. Linear iterations per timestep for various sizes of Δt, with comparison between the
one-level and two-level methods. This is for a grid with 2.40 · 106 unknowns on 256 processors.

One difficulty in the simulation of blood flow under realistic conditions is that, for
an incompressible structure, as the Young’s modulus Es increases, the difficulty of the
linear Jacobian solves and the number of linear iterations increase correspondingly.
This difficulty, in fact, was one of the primary motivators for adding a two-level
preconditioner to the method proposed in [5]. That difficulty remains for the two-
level method, but because the two-level linear solver performs so much better, we are
able to perform simulations more easily for more realistic values of Es. See Table 4.6,
where the two-level solver performs fairly well for a wide range of Es values.

One drawback of the proposed two-level method is that we have a very large
number of solver parameters to consider, all of which may have some effect on the
performance of the method. These include the linear solver tolerances on the fine

Table 4.4

Overlap parameter comparisons for one-level and two-level methods on a branching grid. Be-
cause of the global exchange of information that the coarse grid provides, the optimal overlap is lower
in the two-level case than in the one-level case. Also note that the one-level case fails to converge
at all in the case of zero overlap, while the two-level method performs well. Each case above has
1.63 · 106 unknowns.

One-level method Two-level method
np δ fGMRES Walltime fGMRES Walltime
128 0 — — 241.2 137.86

1 2.35 · 103 406.32 261.4 186.48
2 820.6 270.19 225.2 210.11
3 487.4 214.43 201.4 193.15
4 356.6 225.61 180.2 210.68

256 0 — — 360.4 59.24
1 3.84 · 103 324.88 417.2 83.18
2 2.39 · 103 254.42 376.0 129.83
3 1.02 · 103 127.86 329.4 95.16
4 696.2 137.46 295.6 123.36
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Table 4.5

More overlap parameter comparisons for one-level and two-level methods on a branching grid—
see Table 4.4. Each case below has 2.40 · 106 unknowns.

One-level method Two-level method
np δ fGMRES Walltime fGMRES Walltime
256 0 — — 423.2 114.98

1 — — 413.4 135.23
2 3.16 · 103 340.23 338.2 148.22
4 1.02 · 103 207.86 433.2 194.31

512 0 — — 1.10 · 103 108.04
1 — — 879.0 108.26
2 — — 1.17 · 103 128.1
4 5.94 · 103 471.48 737.0 121.41

Table 4.6

Comparison of the methods for various values of the structure Young’s modulus Es, which can
be thought of as representing the stiffness of the structure. A stiffer structure is more difficult to
represent in terms of linear iterations, but the two-level method performs well for a wide range of
μs. The heading “coarse time” is the fraction of total compute time spent on the coarse grid.

Unknowns np Type Es fGMRES Coarse time Walltime

1.63 · 106 128 two 7.50 · 103 143.0 0.04 403.2
128 two 7.50 · 104 322.0 0.12 292.72
128 two 7.50 · 105 816.0 0.37 410.74
128 one 7.50 · 103 314.5 0.0 325.05
128 one 7.50 · 104 1.57 · 103 0.0 418.73

1.63 · 106 256 two 7.50 · 103 229.5 0.1 145.55
256 two 7.50 · 104 487.0 0.27 125.13
256 two 7.50 · 105 1.03 · 103 0.68 203.63
256 one 7.50 · 103 525.0 0.0 120.26
256 one 7.50 · 104 3.53 · 103 0.0 273.12

2.40 · 106 128 two 7.50 · 103 214.0 0.04 679.21
128 two 7.50 · 104 445.0 0.1 509.28
128 two 7.50 · 105 1.05 · 103 0.31 693.27
128 one 7.50 · 103 449.0 0.0 561.32
128 one 7.50 · 104 2.27 · 103 0.0 788.01

2.40 · 106 256 two 7.50 · 103 276.0 0.08 212.36
256 two 7.50 · 104 627.5 0.23 187.55
256 two 7.50 · 105 1.39 · 103 0.56 306.3
256 one 7.50 · 103 710.0 0.0 191.19
256 one 7.50 · 104 4.38 · 103 0.0 445.22

and coarse levels, the nonlinear tolerances on the coarse level, the fGMRES restart
parameters, the overlap parameters, the discretization size on the coarse level, and
whether we choose left or right preconditioning. The choices of these parameters
can have strong effects on the efficiency and parallel scaling of the method, and the
different parameters can interact with each other in complex and difficult-to-predict
ways. As an example, we present in Tables 4.2 and 4.7 some results for varying linear
solver tolerances for the two-level method. We choose our parameters based on many
such results, but these are difficult and sometimes expensive to obtain and cannot
always give the best parameter choice for a given situation. A more systematic way
of selecting parameters, based on some predictive theory, would be a useful avenue
for future research.

4.3. Two-level Newton results. Our primary motivation for introducing a
coarse mesh and associated interpolation and restriction operators was to reduce the
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Table 4.7

Comparison of different stopping criteria for the two-level method on a branching grid. The
entries marked with asterisks indicate the best choice of parameters for reducing total compute time.

np Unknowns ηrh ηrH Newton fGMRES Walltime

128 8.33 · 105 10−4 10−4 3.6 243.0 142.49
128* 8.33 · 105 10−4 10−3 3.6 323.4 124.87*
128 8.33 · 105 10−3 10−4 3.6 190.2 125.74
128 8.33 · 105 10−3 10−3 3.6 266.8 113.65
128 8.33 · 105 10−6 10−4 3.6 369.6 191.8
128 8.33 · 105 10−6 10−3 3.6 480.4 161.36

128 1.63 · 106 10−4 10−4 3.0 346.8 312.56
128* 1.63 · 106 10−4 10−3 3.0 490.4 289.58*
128 1.63 · 106 10−3 10−4 3.4 293.8 320.84
128 1.63 · 106 10−3 10−3 3.4 436.2 308.15
128 1.63 · 106 10−6 10−4 3.0 487.2 373.47
128 1.63 · 106 10−6 10−3 3.0 658.4 338.4

128* 2.40 · 106 10−4 10−4 3.0 428.0 359.5*
128 2.40 · 106 10−3 10−4 3.6 408.6 400.91
128 2.40 · 106 10−3 10−3 3.6 552.4 377.43
128 2.40 · 106 10−6 10−4 3.0 626.6 455.05
128 2.40 · 106 10−6 10−3 3.0 791.6 407.15

256 8.33 · 105 10−4 10−4 3.0 310.8 90.94
256* 8.33 · 105 10−4 10−3 3.0 484.8 71.41*
256 8.33 · 105 10−3 10−4 3.8 292.8 96.27
256 8.33 · 105 10−3 10−3 3.8 467.0 79.31
256 8.33 · 105 10−6 10−4 3.0 436.0 119.81
256 8.33 · 105 10−6 10−3 3.0 647.2 91.93

256 1.63 · 106 10−4 10−4 3.0 452.2 220.51
256* 1.63 · 106 10−4 10−3 3.0 640.6 191.32*
256 1.63 · 106 10−3 10−4 3.6 429.2 238.53
256 1.63 · 106 10−3 10−3 3.6 573.0 206.99
256 1.63 · 106 10−6 10−4 3.0 660.0 290.27
256 1.63 · 106 10−6 10−3 3.0 834.0 229.17

256 2.40 · 106 10−4 10−4 3.6 742.0 330.55
256 2.40 · 106 10−4 10−3 3.6 978.2 284.64
256 2.40 · 106 10−3 10−4 3.6 553.4 270.07
256* 2.40 · 106 10−3 10−3 3.6 760.2 241.45*
256 2.40 · 106 10−6 10−4 3.6 1.07 · 103 447.3
256 2.40 · 106 10−6 10−3 3.6 1.42 · 103 369.23

number of linear iterations for problems with a large number of subdomains by using
a coarse solve as a preconditioner for the linear solver. But once the data structure
and the interpolation are developed, it only makes sense to use the coarse mesh as
much as possible, and one simple way to use it is to do a nonlinear solve on the
coarse grid to provide a better initial guess for the Newton solve on the fine grid. In
Table 4.8, we show the modest but certainly noticeable effect of this two-level Newton
approach, even when used without any two-level linear preconditioning. Its effect in
reducing the number of nonlinear and also, interestingly, linear iterations is visible.
For practical computational purposes it is usually advantageous to use a very coarse
coarse grid, to minimize computational cost, but there is some benefit in iteration
counts for using a relatively fine coarse grid—see Table 4.9.
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Table 4.8

Comparison of one-level algorithm to two-level Newton method with only a one-level linear
solver—in both cases we use a one-level preconditioner for the linear solver. Modest improvements
in nonlinear iterations counts, walltimes, and, interestingly, linear iterations, are seen from using a
coarse nonlinear solver. The first two lines (with 4.51 · 105 unknowns) are for a straight tube, while
the other results are for the branching model geometry.

One-level Newton Two-level Newton
Unknowns np Newton fGMRES Walltime Newton fGMRES Walltime

4.51 · 105 256 3.8 153.1 10.59 3.4 117.8 10.17
4.51 · 105 512 3.5 258.42 5.94 3.4 197.9 6.45

2.40 · 106 128 3.0 2910 756.8 2.67 2570 722.4
2.40 · 106 256 3.0 8970 686.3 2.67 7190 621.7

3.67 · 106 256 3.0 12000 1530 3.0 9510 1320

Table 4.9

Effect of different coarse-grid sizes on the two-level Newton method. These results are for the
straight tube test problem—“coarse size” is the number of unknowns on the coarse mesh as fraction
of unknowns on the fine level, and “coarse time” is the fraction of total compute time spent on the
coarse grid.

Unknowns np Coarse size Levels Newton fGMRES Coarse time Walltime

4.51 · 105 64 0.0 one 3.8 74.6 0.00 46.24
64 0.03 two 3.7 64.2 0.02 45.98
64 0.12 two 3.4 58.9 0.07 43.24

7.97 · 105 128 0.0 one 3.6 123.2 0.00 41.58
128 0.02 two 3.6 103.1 0.01 41.04
128 0.07 two 3.4 97.9 0.05 40.12
128 0.14 two 3.5 102.4 0.09 42.96

1.78 · 106 256 0.0 one 3.4 313.5 0.00 65.22
256 0.01 two 3.5 243.8 0.01 63.49
256 0.03 two 3.5 247.2 0.02 64.51
256 0.06 two 3.5 256.2 0.03 65.52

4.4. Different coarse-grid solves. In the above, we have used one-level ad-
ditive Schwarz preconditioned GMRES as the solver on the coarse level. There are
of course many other options for this solver—more so than on the fine grid, because
the coarse grid can still be quite effective as a preconditioner even if the solver is not
very accurate. It is especially useful to be able to control costs on the coarse grid,
since the coarse solve becomes the scalability bottleneck—see Figure 4.3. Here we
consider some other strategies—for a more thorough study using similar algorithms
for a different application, see [28].

One possibility is to use a simpler solver, rather than GMRES, on the coarse
level. Applying a few Richardson sweeps preconditioned with one-level RAS (re-
stricted additive Schwarz) to get a rough coarse-grid correction rather than solving
to a specified tolerance with GMRES may save some computational effort, since
Richardson sweeps are cheaper than GMRES. On the other hand, we can set the
residual tolerance for GMRES in order to control costs. In Table 4.10, you can see
the effect of a fixed number of Richardson iterations on the coarse level compared
to our standard GMRES method—though the Richardson methods show some
potential for improving the algorithm, especially for large problems, the GMRES
method also performs well and is easier to implement.
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Table 4.10

Comparison of different coarse-grid solvers. Though fine-tuning the exact number of Richardson
iterations might be cost-effective in some cases, our choice of GMRES is robust and compares well
with the Richardson options. The heading “coarse time” is the fraction of total compute time spent
on the coarse grid.

Unknowns np Type fGMRES Coarse time Walltime
4.51 · 105 64 GMRES 73.5 0.04 42.82

64 Rich(1) 89.0 0.01 45.09
64 Rich(3) 73.2 0.04 43.03
64 Rich(10) 72.3 0.21 50.4

7.97 · 105 128 GMRES 116.2 0.05 36.91
128 Rich(1) 130.2 0.02 36.71
128 Rich(3) 116.2 0.04 36.99
128 Rich(10) 115.5 0.23 44.66

1.78 · 106 256 GMRES 242.2 0.07 59.91
256 Rich(1) 285.0 0.03 60.99
256 Rich(3) 255.2 0.04 58.9
256 Rich(10) 241.9 0.06 59.55

3.16 · 106 512 GMRES 441.2 0.13 63.04
512 Rich(1) 707.0 0.06 73.22
512 Rich(3) 478.3 0.06 62.51
512 Rich(10) 441.5 0.10 63.76

5. Conclusion. In this paper we have developed and studied two-level Newton–
Krylov–Schwarzmethods for fluid-structure interaction, which is a difficult and impor-
tant problem. In this framework there are a large number of choices and interacting
solvers, which we have examined. We have demonstrated effective, scalable precondi-
tioners for the fully coupled monolithic problem that allow us to efficiently simulate
blood flow on complicated realistic geometries and within realistic parameter regimes.
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