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Abstract

We present a fully parallel nonlinearly implicit algorithm for the numerical simulation of some branching
blood flow problems, which require efficient and robust solver technologies in order to handle the high
nonlinearity and the complex geometry. Parallel processing is necessary because of the large number
of mesh points needed to accurately discretize the system of differential equations. In this paper we
introduce a parallel Newton-Krylov-Schwarz based implicit method, and software for distributed memory
parallel computers, for solving the nonlinear algebraic systems arising from a Q2-Q1 finite element
discretization of the incompressible Navier-Stokes equations that we use to model the blood flow in the
left anterior descending coronary artery.
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1. Introduction

In recent years there is growing interest in parallel computational techniques for the study of blood
flow dynamics in vascular systems. Numerous computational models have been developed to describe the
local blood flow field and to simulate the response of the vessel walls under certain hemodynamic con-
ditions. The blood characteristics of interests are often abnormal local flow structures such as vortices,
flow separations, recirculation and stagnation areas; blood pressure drop; high shear stress regions and
system total energy dissipation[4, 5]. These characteristics play critical roles in the formation of serious
vascular diseases such as atherosclerotic lesions and thrombus formation. The goal of the computational
biofluid research is to provide reliable tools to illustrate the hemodynamic properties under specific con-
ditions and to predict their changes when certain disturbances arise. Good simulation results can be
used clinically to help physicians to understand vascular diseases. To resolve the detailed changes of the
hemodynamic equations in complex and delicate vascular systems the use of highly refined unstructured
finite element meshes is essential. This implies that the computational time would be increased dra-
matically when CPU computer is used. The large amount of required computational time makes some
simulations infeasible. Consequently, a fast parallel computational algorithm and unstructured mesh
generation techniques are needed to overcome such limitations.

The purpose of this paper is to develop a numerical software system for the simulation of complex
biofluid problems. A parallel Newton-Krylov-Schwarz(NKS) based nonlinearly implicit algorithm is
presented to solve the unsteady incompressible Navier-Stokes equations. An ANSYS and C++ based
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unstructured mesh generation technique is introduced to discretize the multi-branched numerical models.
The numerical examples presented here demonstrated the good scalability and the robustness of the
proposed algorithm.

The rest of this paper is organized as follows. In the next section, we briefly mention the incom-
pressible Navier-Stokes equations, followed by a description of a Newton-Krylov nonlinear solver and
a parallel Schwarz preconditioner for the saddle-point type Jacobian system. In Section 3, numerical
results on a branching flow problem are presented. Concluding remarks are given in Section 4.

2. Blood Flow Model and Parallel Solution Algorithm

Under some certain assumptions, blood flows in large arteries can be described by the unsteady
incompressible Navier-Stokes equations [6]:

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u +∇p = 0 in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
u = 0 on Γwall × (0, T ),
u = g on Γin × (0, T ),

−pn + µ
∂u

∂n
= 0 on Γout × (0, T ),

u = u0 in Ω at t = 0,

(1)

where u = (u1, u2)
T is the velocity, p is the pressure, ρ is the fluid density, and µ is the viscosity.

Here, we impose a periodic velocity profile on the inflow boundary, Γin, an artificial free condition on
the outflow boundary, Γout, and the no-slip condition on the wall, Γwall. For u0, we assume that the
flow is steady-state at the beginning of computation. To discretize (1), we use an implicit backward
Euler finite difference method in the time domain and a Q2-Q1 mixed finite element method in the
spatial domain on a given unstructured quadrilateral mesh, Th = {K}. Let Vh and Ph be a pair of finite
element spaces for the velocity and pressure: Vh = {v ∈ (C0(Ω) ∩H1(Ω))2 : v |K ∈ Q2(K)2, K ∈ Th }
and Ph = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ Th}. The weighting and trial velocity function
spaces V 0

h and V g
h are V 0

h = {v ∈ Vh : v = 0 on Γin ∪ Γwall} and V g
h = {v(·, t) ∈ Vh, t ∈ [0, T ] : v =

g on Γin and v = 0 on Γwall}. Similarly, Ph is used for both the weighting and trial pressure function
spaces. A fully nonlinear implicit mixed finite element method takes the form: Find un+1

h ∈ V g
h and

pn+1
h ∈ Ph, such that

B(un+1
h , pn+1

h ; v , q) = 0 ∀(v , q) ∈ V 0
h × Ph (2)

with

B(u , p; v , q) =

(
ρ

(
u − un

∆t

)
, v

)
+ ((ρ∇u) · u , v) + (µ∇u ,∇v)− (∇ · v , p)− (∇ · u , q),

where un is the velocity at the current time step, and un+1 and pn+1 are unknown velocity and pressure,
respectively, at the next time step. Or, equivalently, at each time step, one needs to solve a large, sparse,
nonlinear algebraic system F (x) = 0, where the vector x corresponds to the nodal values of uh = (u1

h, u
2
h)

and ph at time t = (n + 1)∆t. In this paper, we employ a Newton-Krylov-Schwarz algorithm(NKS [2])
to solve the nonlinear system. NKS has three main components: an inexact Newton with backtracking
method (INB) as the nonlinear solver, a Krylov subspace method as the linear solver, and a Schwarz-type



method as the preconditioner. INB can be described as follows: Let x(0) be any given initial guess, and
x(k) be the current approximate solution. Then a new approximate solution x(k+1) can be computed by
the following steps: First find the inexact Newton direction s(k) such that

||F (x(k))− J(x(k))s(k)||2 ≤ ηk||F (x(k))||2.

Then compute the new approximate solution x(k+1) = x(k) − λ(k)s(k), by selecting a step length λ using
line search to satisfies f(x(k) − λ(k)s(k)) ≤ f(x(k)) − αλ(k)∇f(x(k))T s(k), where the merit function f is
defined as ||F (x)||22/2. The parameter α is chosen to be 10−4 throughout the computation. In INB,
the scalar ηk is often called the “forcing term”, which is used to determine how accurately the Jacobian
system needs to be solved by some iterative methods, such as a Krylov subspace type method GMRES.
In the paper, we compute s(k) by approximately solving a preconditioned linear system

M−1Js(k) = M−1F (x(k)),

where the Jacobian J is a large, sparse, nonsymmetric, and indefinite matrix. Our preconditioner is an
extension of the one-level additive Schwarz preconditioner [7] defined as follows. Let Ωi, i = 1, ...., N be
an non-overlapping partition of Ω, and Ω′

i an overlapping extension of Ωi with the boundary ∂Ω′
i. Here

N is the number of processors of the parallel computer. We define the associated subdomain velocity
space as V i

h = V 0
h ∩ (H1

0 (Ω′
i))

2
, and the associated subdomain pressure space as P i

h = {qh ∈ L2(Ω′
i) : qh =

0 on ∂Ω′
i/∂Ω}.

Let Ri : V g
h × Ph → V i

h × P i
h be a global-to-local restriction operator associated with Ω′

i, and Ri

returns all degrees of freedom (both velocity and pressure) associated with the subspaces V i
h ×P i

h. Then,
the local-to-global interpolation operator RT

i can be defined as the transpose of Ri. The multiplication
of Ri and RT

i with a vector does not involve any arithmetic operation, but does involve communication
in a distributed parallel implementation. The restriction operator Ri collects the data from neighboring
subdomains, and the prolongation operator RT

i sends a partial solution to neighboring subdomains.
Using the restriction matrix, we write the one-level additive Schwarz preconditioner in the matrix form
as M−1 =

∑N
i=1 RT

i J−1
i Ri, where Ji = RiJRT

i .

3. Numerical Experiments

We apply our parallel NKS technique to the simulation of pulsatile blood flows in the left anterior
descending coronary artery. Our main focus is the effect of the inlet velocity fluctuation on the flow
hemodynamic properties. The flow shear stress and local flow structures such as stagnation, recirculation,
separation and reversal regions are investigated. Our parallel simulation system consists of several
elements including (1) An ANSYS and C++ based finite element mesh generator; (2) A mesh partitioner
implemented via Parmetis[3]; (3) A scalable parallel linear and nonlinear solver implemented through
PETSc[1]; and (4) A Tecplot based scientific visualization system.

Figure 1 (A) shows the model geometry provided by the Cardiovascular Flow Research Laboratory at
The Children’s Hospital of University of Colorado Health Science Center. It has one inlet with diameter
of 4.62mm and a total of 8 outlets. The minimum outlet diameter is 1.65mm. The model is discretized
with 17783 quadrilateral finite elements with 73281 mesh points. Two cases with different inlet boundary
velocity are simulated. Figure 1 (B) shows the time history of the input velocity at the center of the
inlet. The inlet flow mass rate for both cases are set to be positive during the whole simulation time.
The analysis was performed for two cardiac cycles with time step size ∆t = 0.05(sec).



0 2 4 6 8 10 12
0.22

0.21

0.2

0.19

0.18

0.17

0.16

0.15

0.14

0.13

time (s )

inlet velocity (m/s)

Case 1 ( U2  )

Case 2 ( U2 )

-

-

-

-

-

-

-

 -

-

-

C ase 1 ( U1 )

C ase 2 ( U1 )

inlet (Dia = 4.62mm)

  Dia_1 = 1.81 mm

outlets :

 Dia_2 = 1.65 mm

Dia_3 = 1.57 mm
Dia_4 = 1.81 mm
Dia_5 = 1.65 mm
Dia_6 = 1.65 mm
Dia_7 = 1.65 mm
Dia_8 = 2.64 mm

1

2

3

4

5 6

7

8

(  A ) ( B )

Figure 1: (A) Model Geometry (B) Inlet Velocity

Figure 2 describes the local flow structure evolvement along time for Case 1 and cCase 2. It is shown
that Case 1 has larger recirculation and stagnation regions at most time. The local flow structure in Case
1 evolves more dramatically than Case 2. For example, the flow going through outlet 1 in Case 1 decreases
very fast with time. When time approaches to 3.78 second, reverse flow occurs. This is very different
from Case 2, which shows no reverse flow during the entire simulation. The shear stress at every mesh
point is computed using τij = −pδij + µ (∂ui/∂xj + ∂uj/∂xi), i, j = 1, 2, where δij is the Kronecker
delta. The maximum shear stress at each mesh point is derived as: τmax = (((τ11 − τ22)/2)2 + τ 2

12)
1/2.

Table 1 lists the maximum shear stress at different time for the two cases. The maximum shear stress
for both cases occurs in the same element, which is on the wall in the confluence area of outlet 2 to the
main vessel. Case 2 has higher shear stress than Case 1 at all time instants. One explanation is that
Case 2 has a higher transverse velocity component close to the vessel wall where the recirculation area
is smaller than that of Case 1.

Our parallel software is developed using the Portable, Extensible Toolkit for Scientific Computing
(PETSc) library [1], from Argonne National Laboratory and all tests are performed on a cluster of
distributed memory Linux PCs, with MPI as the communication language. Our main concern is the
scalability of the algorithm in terms of the total computing time which includes both the CPU time and
the communication time. The number of the processors and the corresponding computing time required
to reach the converged solution for both cases are listed in Table 2. In both cases, the computing
time drops dramatically when the number of processors is increased. A closer look shows that if we
increase the number of processors by a factor of 2, the computing time is cut by a factor close to 1/2
which demonstrates the near ideal linear scalability of the proposed nonlinear parallel algorithm and our
parallel implementation.

4. Concluding Remarks

In this paper, a fully parallel finite element algorithm and its corresponding distributed memory
software implementation are presented for the numerical simulation of branching blood flows. The



τmax t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Case 1 5.0815 4.8061 4.2693 3.7069 3.2770 3.1623 3.4172 3.9313 4.4889 4.9358
Case 2 5.1092 4.9937 4.7472 4.4637 4.2642 4.2172 4.3218 4.5606 4.8443 5.0535

Table 1: Comparison of maximum shear stress(N/m2)

number of processors 1 2 4 8 16
computing time (Case 1) 8124.3 4793.5 2213.4 1326.7 886.2
computing time (Case 2) 7868.2 4643.4 1982.7 1283.5 842.1

Table 2: The number of processors vs. the total computing time in second

unsteady incompressible Navier-Stokes equations are solved using a parallel Newton-Krylov-Schwarz
based nonlinearly implicit domain decomposition method. It was found that the inlet velocity fluctuation
plays crucial role in determining the flow hemodynamic properties. The numerical experiments also
verified the scalability and robustness of the nonlinear parallel algorithm developed in this paper. It
showed a large reduction of computational time when we increase the number of processors, which
reveals one of the potentials of the proposed computational framework for solving large scale simulation
problems.
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Figure 2: Streamline contour plots


