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Abstract

In this paper, we develop a new class of overlapping Schwarz type algorithms for solving
scalar steady and unsteady convection-diffusion equations discretized by finite element, or finite
difference, methods. The preconditioners consist of two components, namely, the usual additive
Schwarz preconditioner and the sum of some second order terms constructed by using products of
ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners
is determined by considering the direction of the flow. For the steady case, we prove that the
algorithms are optimal in the sense that the convergence rates are independent of the mesh
size, as well as the number of subdomains. For the unsteady case, we show the algorithms are
optimal without having a coarse space, as long as the time step and the subdomain size satisfy
a certain condition. We show by numerical examples that the new algorithms are less sensitive
to the direction of the flow than the classical multiplicative Schwarz algorithms, and converge
faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for
fluid flow applications than the classical additive and multiplicative Schwarz algorithms.

Key words. finite elements, convection-diffusion equations, subdomain ordering, overlapping
domain decomposition, preconditioners, iterative methods.
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1 Introduction

In this paper, we present some new overlapping domain decomposition methods for the numerical
solution of large, sparse, nonsymmetric and/or indefinite linear systems of equations arising from
Galerkin finite element discretizations of elliptic and parabolic partial differential equations. The
new algorithms belong to the family of overlapping Schwarz methods which is a variant of the
classical Schwarz alternating algorithm, introduced in 1870 by H. A. Schwarz [25]. This family of
methods has attracted much attention in the past few years as convenient and powerful compu-
tational methods for the solution of partial differential equations, see, e.g., [8, 26], especially on
parallel machines. The solution of such linear systems is an important computational kernel in
implicit methods, such as, solving the Jacobian equations in any Newton-like method used in com-
putational fluid dynamics, [4, 5, 27]. This family of methods is built upon the so-called subdomain
mapping operators T;, which solve the original problem, defined on a domain 2, approximately in
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subdomains ©Q; C Q with artificial boundary conditions and zero extensions to Q \ Q:. The formal
definitions of T; and Q; will be given in the next section. By using these T}’s as basic building blocks,
a family of polynomial Schwarz algorithms can be defined. Let N be the number of subdomains
and Ty the coarse space mapping operator. We define

T = pOly(T07T17 o 7TN)

as a multi-dimensional matrix-valued polynomial with variables T;, and assume that the polynomial
satisfies poly(0,---,0) = 0, which simply means that the constant term in the polynomial is zero. It
is known that if u* is the exact solution of the finite element equations then Tu* can be computed
without knowing ™ itself. This is because T;u*, ¢ = 0,---, N, can be computed directly from the
right-hand side function of the finite element equations. With g = T'u* as the new right-hand side
vector, a new linear system can be introduced as

Tu=yg

and it is not difficult to show that if T is nonsingular then the new linear system gives the desired
finite element solution u*. For each choice of the polynomial poly, a particular Schwarz algorithm
is defined. The algorithm is called optimal if the condition number, or some other “equivalent
measure” for nonsymmetric or indefinite problems, of the operator T is independent of the mesh
parameter h and the number of subdomains N. Several such optimal algorithms, such as the
additive (T = 2N 7;) and multiplicative (7' = I — I (I — T})) Schwarz algorithms, have been
identified. Generally, the additive algorithms have two features among others:

e They converge slower than the multiplicative algorithms because of the lack of subdomain to
subdomain communications within each iteration

e Their convergence is independent of the ordering and coloring of the subdomains.
The features of the multiplicative algorithms include:
e They are faster in terms of the total iteration numbers

e They are not as parallel as the additive algorithms because of the data dependence between
overlapping subdomains

e They have a strong dependence on the global ordering and coloring of subdomains especially
for convection-diffusion type problems.

See the last section of this paper for a detailed discussion on the ordering and coloring issues.
To use the multiplicative algorithms efficiently, it is important to color and order the subdomains
correctly. However, to obtain the optimal coloring and ordering is difficult in practice especially
when the underlying mesh is unstructured and the subdomains are obtained by means of graph
partitioning, see, e.g., [4, 11]. For a particular problem and a given subdomain partitioning, it is not
impossible to obtain a reasonable subdomain coloring and ordering according to certain practical
heuristics, but, in general, especially for unsteady problems where the flow direction changes from
time step to time step, it becomes desirable to have algorithms that do not need, or need less of, the
subdomain ordering and coloring. Extensive discussions on the effects of ordering and coloring of
nodes or elements, in the context of iterative and direct sparse matrix computations, can be found
in many research papers, see, e.g., [1, 10, 16, 18]. Some of the ideas and techniques can also be
applied, with certain modifications, to the coloring and ordering of overlapping subdomains. We
will not consider these techniques in this paper.



In this paper, we shall identify some overlapping Schwarz algorithms, which we call the local
multiplicative Schwarz methods. The new algorithms are not only optimal but also have conver-
gence rates that are

e better than that of the additive Schwarz method
e not sensitive to the coloring and global ordering of the subdomains, nor the flow direction
e more parallel than the multiplicative Schwarz algorithm.

Our basic idea is to use the multiplicative Schwarz algorithm only locally between those pairs of
overlapping subdomains for which we have effective techniques to determine the flow direction with-
out any global operations. We also use the additive techniques to handle the global communication
between pairs of subdomains and the coarse level preconditioning.

The paper is organized as follows. In Section 2, we shall define our model elliptic and parabolic
problems, their discretizations and the overlapping partitioning of the finite element mesh. In
Section 3, we introduce and analyze the new local multiplicative Schwarz algorithms. In the last
section of the paper we provide some numerical examples regarding to the performance of the new
algorithms, as well as some comparisons with the classical additive and multiplicative Schwarz
algorithms.

2 Model problems and subdomain partitioning

Let © be an open, bounded polygonal region in R?,d = 2 or 3, with boundary 9. We consider
the homogeneous Dirichlet boundary value problem

Lu(z) f(z) in Q, (1)
w(z) = 0 on 0f.

Here the elliptic operator L has the form Lu(z) = =V -(Vu)+28(2)-Vu+c(z)u. All the coefficients

are, by assumption, sufficiently smooth and the right-hand side f € L%(). We assume that the

equation has a unique solution in H}(Q). Let (-,-) denote the usual L%(Q) inner product and || - ||

or || - ||z> the corresponding norm. Let Vj, C H3(2) be the usual shape-regular, piecewise linear

continuous finite element space (details come up later in this section). The finite element form of
(1) is: Find w* € V}, such that

b(u”,v) = (f,v), Vo€ Vi (2)
The bilinear form b(u,v) is defined by

b(u,v) = /QVU - Vodz + /Q(ﬁ -Vu)vdzr + /QV (Bu)vdx + /Q(éuv)dw.

Here é(z) = ¢(z) = V-3 > éo > 0. We assume that b(w,v) is uniformly elliptic and bounded
in H3(Q). In addition to the following bilinear form a(u,v) = [oVu - Vodz, which is used as
the usual energy inner product in H{(Q) with norm defined by [jull, = (a(u,u))'/?, we also use
two other bilinear forms s(u,v) = [o(f - Vu)vde + [V - (Bu)vde and ¢(u,v) = (¢éu,v), which
correspond to the skew-symmetric and zeroth order parts of L, respectively. It is easy to verify
that s(u,v) = —s(v,u), Yu,v € HI(Q).



We shall consider the second model problem.

du(z,t)

T + Lu(z,t) = f(z,t) for 2€Q te(0,7T)

u(z,t) = 0 for = €dQ te(0,T) (3)
u(z,0) = wugp(x) for z €0

Here T' > 0 and ug(z) are given. L is the same as in (1) except that the coefficients can be time
dependent. We assume that é(z,t) = ¢(z,t) — V. - f(a,t) > é > 0, where & is a constant, and
b(u,v) is uniformly elliptic and bounded in both z and ¢. Let 7 = T'/m be the time step, and u*(z)
be an approximation of u(z, k7). With the given initial solution u’(x) = ug(z), we advance in time
with the implicit backward Euler’s method by solving the problem: Find w*t' € Vj, satisfying

ULk
(7,?1) + b(uk"'l,v) = (fk"'l,v), Yo € Vp.
-

Equivalently, at each time step, we need to solve a linear system of the form: Find v* € V} such
that .
b-(u*,v)=(f,v), Yv €V, (4)

where b, (u,v) = (u,v) 4+ 7b(u,v) and (f,v) = (5 +u¥ v).

Following Dryja and Widlund [14], we define a two-level conforming finite element triangulation
of 2. The region Q is first divided into nonoverlapping subdomains €;, ¢ = 1,---, N, such that
Q = UY, Q. Then all the subdomains €, which are assumed to have diameter of order H, are
divided into triangular elements of size h. We assume that the union of all of the elements, size
h, forms a regular finite element triangulation of 2. The common assumption, in finite element
theory (cf. [9]), that all elements are shape regular is adopted. With such a triangulation, we let
Vi C HY(Q) be the usual piecewise linear continuous finite elements space on Q. To obtain an
overlapping decomposition of the domain, we extend each subdomain ; to a larger region Q;, i.e.
Q; C Q: C Q. We assume that the overlap is uniformly large and let V; = V), (VHA(Q5) C Vj, be the
usual finite element subspace defined over Q;, with zero extension to € \ Q; Here uniformly large
overlap means that distance(@Q; NQ,00;NQ) > cH, where ¢ > 0 is a constant independent of H.
It is clear that Q = U, Q; and V, = Vo + Vi + -+ -+ V. The coarse space Vj is defined below.

Another key ingredient in the design of optimal domain decomposition preconditioners is the use
of at least one global coarse space, which in a way connects the local subdomains just introduced.
A number of coarse spaces have been introduced in the literature, see, e.g., [12, 13]. We shall focus
only on a simple one. Let Qg = {7;} be a quasi-uniform triangulation of Q and 7; one of the
triangles with a diameter on the order of H. Qp is the coarse grid. Let Vy be the piecewise linear
continuous finite element space on Q. In the analysis part of this paper we assume, for simplicity,
that Vy C V3, and that the diameter of the coarse elements 7; is of the same order as the diameter
of the subdomains €;. The theory can easily be extended to the case of a non-nested coarse, [2],
and to cases with small overlap, [15]. In the numerical experiments section, we shall present some
cases where the sizes of the subdomains and the coarse elements are of different order.

For each ¢ = 0,1,..., N, we define a mapping operator T; : Vi, — V; by

b(Tyu,v) = b(u,v), Yu € Vi, Yo € V; (5)

and T7 : Vi, — V; by
bo(T7u,v) = br(u,v), Yu €V, Yo €V; (6)



These T; and 77 will serve as the basic building blocks of the algorithms to be discussed in
the next sections. We shall mention that these T;’s can also be defined inexactly if we replace the
left-hand side bilinear form, in (5), by a different bilinear form, which in some sense, is equivalent

to b(-,-). Details on inexact Schwarz algorithms can be found in, for examples, [6, 8, 26].

3 New algorithms and analysis

In this section, we define the local multiplicative Schwarz algorithms by using the basic Schwarz
building blocks 7; and 77 defined in the previous section.

3.1 Steady-state convective-diffusion problems

We consider the general nonsymmetric case in this subsection. The techniques are mainly borrowed
from Cai and Widlund [6, 7]. Let us begin by summerizing the main results, namely that the
preconditioned matrix is uniformly bounded and its symmetric part, with respect to the inner
product a(-,-), is uniformly positive definite, in the following theorem. This theorem provides
the optimal convergence of several Krylov space iterative methods, including GCR and GMRES
[17, 24] among others. For each pair of neighboring subdomains, with indices 7 and j, we define a
multiplicative Schwarz operator

Pj=1—(I-T)(I-T).

Note that for any v € V3, P;;u € Vi +V;, and generally P;; # Pj;, unless Q; and Q; have no common
points. Let

P=Ty+> Py, (7)
where the summation is taken over all possible FP;;’s. Let g;; = P;;u* and go = Tou™, as mentioned

earlier, both can be computed without the knowledge of v*. With ¢ = g0+ ) ¢;;, it can be seen
that if the operator P is nonsingular, then the linear system

Pu™ =g (8)

has the same solution as that of (2). We shall prove in the remainder of the paper that P is
indeed nonsingular and uniformly well-conditioned, and that therefore (8) can be solved by using
certain Krylov space type iterative acceleration methods, such as CG or GMRES [24]. We remark
that if the bilinear form b(-,-) is symmetric, then the operator P is also symmetric with respect
to b(-,-). In other words, the local multiplicative Schwarz operator P is symmetric if both P;; and
Pj; are included in its definition. Later, in this section, we shall take only one of the two terms
when solving nonsymmetric problems. Keeping only the terms in the upwind direction makes the
algorithm very useful for convection-diffusion equations. Like other upwinding type discretization
schemes, we shall also introduce a parameter g that controls the amount of the upwinding, or
artificial diffusion, in the Schwarz preconditioning polynomial.

Theorem 1 There exist positive constants Hy, ¢ = ¢(Hg) and C, independent of the mesh param-
eters h and H, such that if H < Hg, the operator P is uniformly bounded, i.e.,

| Pulla < Cllulla, Yu € Vi,
and its symmetric part is uniformly positive definite, i.e.,

a(Pu,u) > c||lu|?, Yu € V.



To prove the above theorem, we need a result from Cai and Widlund [7] regarding to the
optimality of the additive Schwarz preconditioner.

Lemma 3.1 (Cai and Widlund([7]) There exist positive constants Hy, ¢(Hp) and C, indepen-
dent of the mesh parameters, such that if H < Hyg

N N
I3 Toalle < Clully and 3 [Tl > el

for any u € V.

We next present a number of useful lemmas before giving the proof of the main theorem later
in this subsection. The following lemma says that the symmetric part of T; is more or less positive
definite if the size of the subdomains, i.e. H, is sufficiently small. The proof is relatively simple,
and therefore not included. The constant C' appearing in the lemma depends on the coefficients
B(x) and ¢(z) of the elliptic operator L.

Lemma 3.2 There exists a positive constant C', independent of the mesh parameters, such that
a(u, Tow) > (1= CH)| T2~ CH|Jul g

forany 1 <i< N, and u € Vj,.

The contribution from the first and zeroth order terms of the elliptic operator L is estimated
in the next lemma. We prove that the contribution is of lower order in H.

Lemma 3.3 There exists a positive constant C, independent of the mesh parameters h and H,
such that for any v,j # 0 for which Q; and Q; overlap

Los(Tyu, Tyu) < CH (|| Toul]2 4 (| T5ul)2)
2. s(TiTju, Tyu) < CH (|| ToullZ 4 || T5ul]2)

3. s TT0) < CH ([Tl + ul?, )
for all w € Vi,. The same estimates hold if the bilinear form s(-,-) is replaced by the bilinear form
c(-,-).

We leave the proof of this lemma to the interested reader. The basic idea of the proof is to
use that HTIUHL2(Q;) < CHHT;uHa(Q;), for any [ # 0. As in the previous lemma, the constants C'

depend on the coefficients 3(z) and ¢(z) of the elliptic operator L. Using Lemmas 3.2 and 3.3, we
now proceed to give a lower bound of the two-subdomain multiplicative Schwarz operator P;;.

Lemma 3.4 There exists a positive constant C, independent of the mesh parameters h and H,
such that for any v, for which Q; and Q; overlap

1 1
ot Py (5= C ) Tl + (5 = CH) Tl = CHol

for any u € V.



Proof. We first note, by using the definition of the operators 7; and 7; and the fact that b(-,-) =
a(-, ) + 8('7 ) + C('v ')7 that

a(Pju,u) = a(Tiu,u)+ a(Tiu,u) — a(TTu, u)
= a(Tiu,u)+ a(Tju,u) — a(Tiu, Tju) +
s(Tyw, Tiu) — e(Tiu, Tiw) 4+ 2s(T;T5u, Tiu) +
s(u, TiTiu) + e(u, TiT;u).

The desired proof follows immediately by using Lemmas 3.2 and 3.3. O
We are now ready to prove the main theorem of this subsection. The upper bound is easy. It
can be seen that

Pij =T + T]‘(I — Ti)-
By using the fact that (I — 7}) is uniformly bounded, we obtain

1Psjulla < CUNTsulla + ([ T2la)-

The upper bound of P can then be obtained by summing the above estimate for all possible pairs
of subdomains and using Lemma 3.1. To establish the lower bound, we sum the estimate in Lemma
3.4 and use the lower bound part of Lemma 3.1, and the assumption that H is sufficiently small.
We next introduce a variant of the local multiplicative algorithm that is particularly useful
for fluid flow problems. The basic philosophy is the same as in the design of any upwinding type
discretization schemes. We first note that the operator P has the following, more explicit, form

pP= > Ti—- > T (9)

0<i<N 1<i#j<N

In other words, P is equal to the regular two-level additive Schwarz operator plus some second
order perturbation terms. Since the additional second order terms enchance the nearest neighbor
communication, we therefore believe they will make the overall convergence faster for the classical
additive Schwarz algorithms. This observation will be confirmed by a number of numerical experi-
ments in the next section. Borrowing a term from the Streamline Upwind Petrov-Galerkin (SUPG)
methods [19, 21], the second order terms 7377, if used properly, “stablize” the preconditioner when
solving convection-diffusion equations. The SUPG method also suggests the following version of
the algorithm with weights in the upwinding directions. Let

T= > T;- > Ty (10)

0<i<N 1<i#j<N

Here p;; equals zero or p, where 0 < pu < 1.0 is a constant. The choice of p;; depends on
the direction of the flow. The intuition is that if the flow goes from Q; to Q: and if these two
subdomains are neighbors, then we set p;; to be a positive constant u, and pu;; to zero. We have
not exploited the possibility of using different p;; for different pairs of subdomains. Of course, if Q;
and Q; are not neighbors we then set u;; = pj;; = 0. The motivation here is exactly the same as in
using the upwinding techniques in the solution of problems that involve hyperbolic components. A
difference is that the usual upwinding techniques are used only at the discretization level, and our
“upwinding” is introduced as a way to define the preconditioning polynomial. It is understandable



Figure 1: The term 7;T; is kept in the Schwarz polynomial only if the flow goes from Q; to Q;

that, for problems that have a strong characteristic direction, such as convection-diffusion problems,
some kind of upwinding can speed up the convergence.

We now propose a heuristic method to be used to determine the flow direction. Let §(z) =
(b1(z),...,04(2))T be the characteristic vector of the flow. For each pair of neighboring subdomains,
we choose a curve, such as I';; in Fig. 1 or Q, ﬂQj, that more or less, separates the subdomains.
Since we are defining preconditioners, it is not necessary to find the precise separating curve. Let
n;j, defined on I';;, be the unit vector pointing from subdomain Q; to Q; We define the parameters
i; by looking at the sign of a line integral

I if /ﬁ(x) ni;ds >0
[ij =

0 otherwise,

where the integral is taken along the curve I';;.

Theorem 2 Assume that ,u?j + ,u?i #0, and 0 < p;; < 2, for all 1,j. Then there exist positive
constants Hy, ¢(Hg) and C, independent of the mesh parameters h and H, such that if H < Hy,
the operator P is uniformly bounded, i.e.,

[Pulla < Cllulla, Yu € Vi,
and its symmetric part is uniformly positive definite, i.e.,

a(Pu,u) > cllul)?, Yu € V.

3.2 Unsteady convective-diffusion problems

We consider the unsteady problem (3). As the flow direction changes for most unsteady problems,
the local Schwarz algorithm has more advantage over the multiplicative Schwarz methods whose
convergence depends heavily on the ordering of the subdomains. A good global ordering is very
hard to obtain in practice. Other Schwarz type methods for unsteady problems can be found in
[3, 22, 23].

For each pair of neighboring subdomains, with indices ¢ and j, we define a multiplicative Schwarz
operator

PL=1—(1-TN)(I-T/).



As observed in [3, 22], for unsteady problems, the coarse space is usually not necessary, we therefore

define
PT =3P (11)

without the coarse space operator. To analyze the spectral condition of P7, we need the bilinear
form a,(u,v) = (u,v) + Ta(u,v).
We prove that

Theorem 3 (1) There exists a constant C > 0 independent of the mesh parameters, such that
1Pl < Cllulla,s Y € Vi

(2) If cy- = H(1 + 7/H?) is small enough, i.e. 0 < cpy, < Co, then there exists a constant
c(€9) > 0, such that
a-(PTu,u) > ¢e(cg)a-(u,u), Yu € V.

The proof can be obtained by applying similar techniques as what we do in the previous sub-
section with Lemma 3.3 replaced by the following lemma.

Lemma 3.5 There exists a positive constant C, independent of the mesh parameters h, H and T,
such that for any v,j # 0 for which Q; and Q; overlap

Lors(T7u, T u) < CH (||T7ul2 4+ (|77 u])2,)
2. 7s(T7T7u, T7u) < CH (||T7ul2 + (77 u]?,)

3. rs(u, I7T7u) < CH (HTJTUHZT + \]u\]iT(Q{))

for all w € Vi,. The same estimates hold if the bilinear form s(-,-) is replaced by the bilinear form

c(-,-).

We remark that for unsteady problems, the inclusion of a coarse space is usually not necessary.
As shown in (2) of Theorem 3, the bad factor 1/H? is multiplied by the time step 7, which must
be reasonably small in order to obtain a time accurate solution.

Similarly, we can introduce P7 containing parameters p;;. It is not difficult to show that as
long as the conditions ,u?j + ,u?i # 0 and 0 < p;; < 2 hold for all 7, j, Theorem 3 remains valid.

4 Numerical experiments

In this section, we present some experimental results to numerically understand the local multi-
plicative Schwarz algorithms, and to compare them with the classical additive and multiplicative
Schwarz algorithms for both symmetric positive definite and nonsymmetric problems. Although
the proposed methods belong to the class of optimal preconditioners, some effort is needed to obtain
the best performance for a particular test problem, especially in the selection of the parameter p
in both symmetric and nonsymmetric cases. We note that ¢ = 1.0 is usually not a good choice. As
mentioned earlier, our optimal convergence theory requires that the coarse grid is sufficiently fine,
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Figure 2: The curves show the iteration history of the additive, multiplicative and the local multi-
plicative Schwarz preconditioned CG methods. The solid curve represents the local multiplicative
Schwarz method, the dashed curve represents the additive Schwarz and the broken curve represents
the multiplicative Schwarz method.

however, in practice, especially in the nonsymmetric cases, it is quite difficult to find a coarse grid
of proper size such that the convergence is not slower than the pure local(means no coarse space)
Schwarz algorithms.

We consider the following model problem on the unit square

U 0 on 09.

{Lu = f in Q= (0,1)x(0,1),

The right-hand side f is always chosen such that the exact solution is w = ze™¥sin(nx)sin(7y).
The coeflicients of L will be specified later for each test problem. We use an 256 x 256 uniform
fine mesh throughout this section. The number of subdomains is 64 in all test cases, i.e., we use an
8 x 8 uniform partitioning of the domain into subdomains, with a uniform 2k overlap between each
neighboring subdomains, where h = 1/256. In our experiments, the coarse grid linear system and
all the subdomain linear systems are solved exactly by using a sparse linear system solver from the
Argonne National Laboratory software package PETSc of Gropp and Smith [20]. All the Schwarz
methods are used as left preconditioners for the CG method, or the non-restarted GMRES method,
with a zero initial guess. We stop the CG or GMRES iteration as soon as the preconditioned initial
residual is reduced by a factor of 107°. We discretize the PDE at both the fine and the coarse
levels by the usual five-point central, or upwinding, finite difference method.

Example 0. We first test the algorithms on a simple Poisson’s equation (This is not what
the new algorithm is designed for). In Fig. 2, we show that the new algorithm is slower than the
multiplicative Schwarz algorithm, but with parameter p = 0.3, faster than the additive Schwarz
algorithm. Without using a proper pu, the algorithm can be slow. An 8 x 8 coarse solve is included
in all cases. The multiplicative Schwarz algorithm is symmetrized in order to be able to use CG.
We remark again that even though the symmetrized multiplicative Schwarz is the fastest among the
three algorithms, it has the lowest parallelism. The per-step arithmetic cost of the new algorithm
is higher due the repetition of the subdomain solves.

Example 1. We let Lu = =V - (Vu) 4+ V - (Bu), where 3 = (b1, ) is a constant vector with
b1,by = 100.0, or —100.0. We discretize the PDE with the usual five-point central finite difference

10
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Figure 3: Central finite difference discretization with 3 = (100,100). The left figure shows cases
without coarse spaces, and the right figure shows cases with coarse spaces. The curves show the
iteration history of the additive, multiplicative and the local multiplicative Schwarz preconditioned
GMRES methods. The solid curves represent the local multiplicative Schwarz method, the dashed
curves represent the additive Schwarz and the broken curves represent the multiplicative Schwarz
method.

method. We first compare the new method, with g = 0.5, with the additive and multiplicative
Schwarz methods without coarse space in the case § = (100,100). For the multiplicative Schwarz,
we order the subdomains by the natural ordering. No coloring is incorporated in the implemen-
tation. The results are presented in the left figure of Fig. 3. It can be seen clearly that , for
# = (100, 100), the multiplicative Schwarz method is the fastest of the three. However, the sit-
uation changes, if we let § = (—100,—100) and do not change the subdomain ordering in the
multiplicative Schwarz method. As shown in the left figure of Fig. 4, the new method becomes the
fastest of the three. Apparently, the changing of the flow characteristics hurts the convergence of
the multiplicative Schwarz algorithm, but the new method does not suffer.

We next present cases when coarse spaces are included in the preconditioners. The optimal
convergence theory for all three Schwarz algorithms requires that the coarse grid is sufficiently
fine. Our numerical experiments suggest that they in fact need coarse grid of different sizes, i.e.,
a sufficiently fine coarse grid for one Schwarz method may not be sufficiently fine for the others.
We say a coarse space is “good” if the total number of iterations is smaller than without it. A
coarse grid, not sufficiently fine, usually lead to a slower convergence in all Schwarz type methods.
In the right figure of Fig. 3, we present three Schwarz algorithms with three different coarse grid
sizes, namely the multiplicative Schwarz with an 16 x 16 coarse grid; the additive Schwarz with
an 32 x 32 coarse grid; the new method with an 64 x 64 coarse grid, and u = 0.5. Comparing the
right figures in Fig. 3 and Fig. 4, we observe that the multiplicative Schwarz method with a coarse
space of proper size is always the best of the three.

Example 2. We let Lu = =V - (Vu) 4+ V - (Bu), where 3 = (b1, ) is a constant vector with
b1,b2 = 1000.0 or —1000.0. The equation is discretized by the usual five-point upwinding finite
difference method. We run the test code without using coarse spaces for four different constant
flow directions. As before, for the multiplicative Schwarz preconditioner, we order the subdomains
in the natural ordering. No coloring is assumed. For the new algorithm we use y = 0.7. The
residual history is presented in Fig. 5. It is clear that if the subdomain ordering does not follow
the flow characteristic direction the convergence of multiplicative Schwarz becomes significantly

11



preconditioned residual
N
o

"
preconditioned residual
N
o

10°

. .
10 15
GMRES iterations

I
20

. . . .
5 10 15 20
GMRES iterations

25

Figure 4: Central finite difference discretization with 3 = (=100, —100). The left figure shows cases
without coarse spaces, and the right figure shows cases with coarse spaces. The curves show the
iteration history of the additive, multiplicative and the local multiplicative Schwarz preconditioned
GMRES methods. The solid curves represent the local multiplicative Schwarz method, the dashed
curves represent the additive Schwarz and the broken curves represent the multiplicative Schwarz

method.

Table 1: nd denotes the number of subdomains

T nd =4 |nd =16 | nd = 64
1 7 10 14
0.1 7 10 14
0.01 7 10 13
0.001 7 10 12
0.0001 7 8 10

worse than in a case when the ordering follows the flow. Additive Schwarz is not sensitive at all
to such an ordering, but is quite slow. The new algorithm does not need any special attention to
the ordering, and converges faster than (a) the additive Schwarz algorithm in all four cases; (b) the
worst case of the multiplicative Schwarz algorithm.

Our experience suggests that it is by no means easy to find a coarse space of proper size in the
case that the PDE is discretized by upwinding finite difference methods. Further theoretical and
numerical investigation of this situation is underway.

Example 3. We test a problem obtained from the implicit discretization of an unsteady
equation. Let L, = I + 7L, where L is defined in Example 2, with 5 = (1000,1000) and [ is
the identity operator. We choose the number of subdomains as nd = 4, 16,64 and the time step

7=1,1071,1072,1073,10*. We fix u = —0.5. We summerize the number of GMRES iterations
in Table 1.

5 Conclusion

In this paper, we introduce a new class of overlapping domain decomposition methods for solving
convection-diffusion equations. The method improves the classical multiplicative Schwarz methods

12
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Figure 5: The figures show the iteration history of the additive (upper left), multiplicative (upper
right) and the new (lower left) Schwarz preconditioned GMRES method. The line types correspond

to the flow directions, i.e., solid lines # = (—1000, —1000), dashed lines 5 = (1000,1000), dotted
lines § = (1000, —1000) and broken lines 3 = (—1000, 1000).
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by reducing their sensitivity with respect to the flow direction. For the Galerkin finite element
discretization, we prove that the method is optimal in the sense that the convergence rate is
independent of the mesh size and also the number of subdomains in both R? and R3. For unsteady
problems, as long as 7/H is reasonably small, the algorithms are optimal without a coarse space.
Numerical experiments are also reported.

Acknowledgement. The authors are indebted to Professors M. Dryja, D. Keyes and O.

Widlund for many helpful discussions.

References

[1]

[2]

[11]

[12]

L. M Apawms aND H. J. JOrRDAN, Is SOR color blind? SIAM J. Sci. Stat. Comput., 7 (1986),
pp- 490-506.

X.-C. Cal1, The use of pointwise interpolation in domain decomposition methods with non-
nested meshes, SIAM J. Sci. Comput., 16 (1995), pp. 250-256.

X.-C. Ca1, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer.
Math., 60 (1991), pp. 41-61.

X.-C. Car, C. FARHAT, AND M. SARKIS, Schwarz methods for the unsteady compressible
Navier-Stokes equations on unstructured meshes, Domain Decomposition Methods in Sciences

and Engineering, R. Glowinski, J. Periaux, Z. Shi and O. Widlund, eds., John Wiley & Souns,
Ltd., 1997.

X.-C. Ca1i, W. D. Grorpp, D. E. Keves, anD M. D. TIDRIRI, Newton-Krylov-Schwarz
methods in CFD, in Proceedings of the International Workshop on the Navier-Stokes Equa-
tions, Notes in Numerical Fluid Mechanics, R. Rannacher, ed., Vieweg Verlag, Braunschweig,
1995.

X.-C. Ca1 anD O. B. WIDLUND, Domain decomposition algorithms for indefinite elliptic
problems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 243-258.

——, Multiplicative Schwarz algorithms for nonsymmetric and indefinite elliptic problems,
SIAM J. Numer. Anal., 30 (1993), pp. 936-952.

T. F. CHAN aND T. P. MATHEW, Domain decomposition algorithms, Acta Numerica (1994),
pp. 61-143.

P. CiarRLET, The Finite Element Method for Flliptic Problems, North-Holland, Amsterdam,
1978.

E. F. D’AzeveDpo, P. A. FORSYTH, AND W.-P. TaNG, Ordering methods for preconditioned
conjugate gradient methods applied to unstructured grid problems, SIAM J. Matrix Anal. Appl.,
13 (1992), pp. 944-961.

C. FARHAT AND M. LESOINNE, Mesh partitioning algorithms for the parallel solution of partial
differential equations, Appl. Numer. Math., 12 (1993), pp. 443-457.

M. DRryJa, M. SARKIS, AND O. B. WIDLUND, Multilevel Schwarz methods for elliptic prob-
lems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313-348.

14



[13] M. DryJsa, B. F. SmiTH, AND O. B. WIDLUND, Schwarz analysis of iterative substructuring
algorithms for problems in three dimensions, SIAM J. Numer. Anal., 31 (1994), pp. 1662-1694.

[14] M. DryJsa AND O. B. WIDLUND, Towards a unified theory of domain decomposition algorithms
for elliptic problems, in Third International Symposium on Domain Decomposition Methods
for Partial Differential Equations, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds.,
STAM, 1990.

[15] ——, Domain decomposition algorithms with small overlap, STAM J. Sci. Comput., 15 (1994),
pp. 604-620.

[16] 1. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradients,
BIT, (1989), pp. 635-657.

[17] S. C. EisEnstaT, H. C. ELmMAN, aAND M. H. Scuurrz, Variational iterative methods for
nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[18] H. C. ELMAN aND M. P. CHERNESKY, Ordering effects on relazation methods applied to
the discrete one-dimensional convection-diffusion equation, SIAM J. Numer. Anal., 30 (1993),
pp. 1268-1290.

[19] L. P. Franca, S. R. FreEY, anD T. J. R HuGHES, Stabilized finite element methods: 1. Ap-
plication to the advection-diffusion model, Comp. Metd. Appl. Mesh. Eng., 95 (1992), pp. 253~
276.

[20] W. D. GroprpP AND B. F. SmITH, Scalable, extensible, and portable numerical libraries, Pro-
ceedings of Scalable Parallel Libraries Conference, IEEE, 1993, pp. 87-93.

[21] C. JounsoN, Numerical Solution of Partial Differential Fquations by the Finite Element
Method, Cambridge University Press, 1987

[22] Y. KuzNETsov, OQuerlapping domain decomposition methods for parabolic problems, Sixth
Conference on Domain Decomposition Methods for Partial Differential Equations, A. Quar-
teroni and J. Periaux and Y. Kuznetsov and O. Widlund, eds., AMS, 1994

[23] T. P. MATHEW, Uniform convergence of the Schwarz alternating method for solving singularly
perturbed advection-diffusion equations, STAM J. Numer. Anal., (1997), to appear.

[24] Y. SAAD aAND M. H. Scuurrz, GMRES: A generalized minimum residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

[25] H. A. SCcHWARZ, Gesammelte Mathematische Abhandlungen, vol. 2, Springer, Berlin, 1890,
pp. 133-143. First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich,
volume 15, 1870, pp. 272-286.

[26] B. F. SmitH, P. E. BigrsTAD, AND W. D. GrROPP, Domain Decomposition: Parallel Mul-
tilevel Methods for Flliptic Partial Differential Fquations, Cambridge University Press, 1995.

[27] V. VENKATAKRISHNAN, Implicit schemes and parallel computing in unstructured grid CFD,
ICASE Report No. 95-28, 1995.

15



