
A scalable Schwarz method for 3D linear elasticity
problems on domains with complex geometry

Fande Kong
Department of Computer Science

University of Colorado Boulder
Boulder, Colorado 80309

fande.kong@colorado.edu

Xiao-Chuan Cai
Department of Computer Science

University of Colorado Boulder
Boulder, Colorado 80309-0430

cai@colorado.edu

ABSTRACT
We consider the numerical solution of linear elasticity equa-
tion defined on a 3D complex domain. Most existing pre-
conditioned iterative methods are scalable in terms of the
number of iterations, but not scalable if the total compute
time is used as the measure. We introduce a new three-level
method with boundary geometry preserving coarse spaces.
Some numerical experiments are given to show that the
new method is highly scalable in terms of the total com-
pute time and the number of iterations.

Keywords
Parallel computation, finite element method, linear elastic-
ity equation, unstructured meshes, multilevel domain de-
composition method

1. INTRODUCTION
Several iterative algorithms for solving the elasticity equa-
tion discretized by the finite element method are theoreti-
cally scalable in the sense that the number of iterations does
not grow much when the mesh is refined for better accuracy
or when the number of processors is increased. However,
the theoretically optimal scalability does not translate in-
to linear scalability in total compute time, especially when
the number of processors is large and the computational
domain is complex, because the coarse level solve is not s-
calable in terms of the compute time. We introduce a new
way to construct coarse level spaces that preserve the ge-
ometric feature of the computational domain, but give up
accuracy in the interior of the domain. As it turns out the
tradeoff in accuracy provides high scalability in terms of
the total compute time. The low accuracy coarse solver
does not change the overall accuracy since it is part of the
preconditioner. We show numerically that such a new pre-
conditioner is highly scalable for solving linear elasticity
equation discretized on unstructured 3D meshes with hun-
dreds of millions of unknowns on a supercomputer with over
10,000 processors.

2. LINEAR ELASTICITY EQUATION
The following linear elasticity equation [3] is used to calcu-
late the displacement u of a body Ω in R3 which is fixed
along a portion of its boundary, Γd, and is subject to a sur-
face force g along the rest of the boundary, Γn = ∂Ω\Γd. −µ∆u− (λ+ µ)∇(∇ · u) = f in Ω

σn = g on Γn
u = 0 on Γd.

(1)

Here f is the given body force, σ is a stress tensor, n is the
outward unit normal to the boundary Γn, µ and λ are Lamé
coefficients expressed as functions of Young’s modulus, E,
and Poisson’s ratio, ν, by

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
.

The classical finite element method is adopted to discretize
(1), then we have a large and often ill-conditioned linear
system of equations

Ax = b. (2)

3. THREE-LEVEL RESTRICTED SCHWARZ
PRECONDITIONER

We solve (2) with an overlapping Schwarz preconditioned
iterative method. To save space, we do not discuss the
iterative method itself and only focus on the preconditioner
used in this work. For related information, please see [5]
and [6].

For convenience, three meshes from fine to coarse are de-
noted by Ωhi , and the corresponding matrices and vectors
are denoted by Ahi and xhi , i = 0, 1 and 2. In order to
define an one-level method, we first partition the finite el-
ement mesh Ωhi into np (np is the number of processors)
subdomains Ωhi,j , then we extend each subdomain Ωhi,j

to overlap with its neighbors by a user-specified amount δ,
and we denote the overlapping subdomain as Ωδhi,j

. Let

Rδhi,j
[2] be a rectangular matrix that returns the vector of

coefficients defined in the interior of Ωδhi,j
that is,

xδhi,j
= Rδhi,j

xhi = (I 0)

(
xδhi,j

xhi\x
δ
hi,j

)
where xδhi,j

is the vector of the coefficients associated with

subdomain Ωδhi,j
, and xhi\x

δ
hi,j

is the vector for the com-

ponents in Ωhi\Ω
δ
hi,j

. Similarly, we define R0
hi,j

as a re-
striction that returns the vector of coefficients defined in
the interior of Ωhi,j without any overlap.

Thus, the one-level methods can be written as

Bhi
one =

np∑
j=1

(R0
hi,j)

TA−1
hi,j

Rδhi,j ,

Ahi,j = Rδhi,jAhi(R
δ
hi,j)

T , i = 0, 1, 2,

(3)

where A−1
hi,j

is an approximate subdomain solve. If a coarse
space is introduced, the two-level methods can be written
as:

Bhitwo = Bhi
one + Ihi

hi+1
A−1
hi+1

(Ihi
hi+1

)T

−Ihi
hi+1

A−1
hi+1

(Ihi
hi+1

)TAhiB
hi
one, i = 0, 1,

(4)

where Ihihi+1
is an interpolation operator from Ωhi+1 to

Ωhi , (Ihi
hi+1

)T is the corresponding restriction operator, and

A−1
hi+1

represents an approximate solve on Ωhi+1 . Similar-

ly, if the approximate solve is replaced by another two-level
preconditioner recursively, the three-level methods can be
written as:

Bhithree = Bhi
one + Ihi

hi+1
B
hi+1
two (Ihi

hi+1
)T

−Ihi
hi+1

B
hi+1
two (Ihi

hi+1
)TAhiB

hi
one, i = 0.

(5)



Figure 1: The left figure is the fine mesh, and the
right figure is a “boundary” geometry preserving
coarse mesh. In 3D,“boundary” is changed to “sur-
face”.

Figure 2: Left: a sample partition with 8 subdo-
mains; right: numerical solution.

4. SURFACE GEOMETRY PRESERVING
COARSE SPACE

The three-level preconditioner defined above is able to keep
the number of iterations small if the coarse meshes are fine
enough, but to keep the total compute time down is tricky.
We have to coarsen the coarse meshes to reduce the com-
putational cost. In the case of simple geometry (such as a
cube), we can uniformly coarsen the coarse meshes, but for
complex geometry (Fig 2), the uniform coarsening changes
the geometry of the coarse spaces and will result in a large
increase of the number of iterations. In this work, we pro-
pose a geometry preserving coarsening idea. For complex
geometry problems, a coarse space with the right geomet-
ric features is vital for guaranteeing that the algorithm is
scalable for a large number of processors. A boundary ge-
ometry preserving coarse mesh is shown in Fig 1.

5. RE-ENGINEERED PARMETIS FOR
LARGE NUMBER OF PROCESSORS

ParMETIS [4] is used for the partition of the meshes. When
the number of processors is small, ParMETIS is great, but
our experience shows that when the number of processors
is large the partition is far from ideal. We developed a
simple but very effective way to use ParMETIS, that is,
we first use ParMETIS to partition the mesh into N1 (N1

is the number of compute nodes) subdomains, and then
use METIS to further partition each of the subdomains to
N2 (N2 is the number of the cores on each compute node)
smaller subdomains . The resulting partition is significantly
better than obtaining a large number of subdomains all at
once from a single use of ParMETIS.

6. NUMERICAL RESULTS
We consider a three dimensional lever, which is part of a
dental CT machine, as shown in Fig 2, where a bearing
load of 5000 (N/mm2) is applied to the leftmost cylinder,
and the second and the last cylinders are all fixed. The
Young’s modulus E and Poisson ratio ν are assigned as
2.15 × 1011Pa and 0.29 respectively. The algorithms are
implemented on top of the PETSc [1] and the numerical
experiments are carried on a cluster of IBM servers. The
strong scalability for up to 10240 processor cores is listed in
Table 1. It can be seen clearly that the proposed approach
is scalable in terms of the number of iterations (it is nearly

a constant for all processor counts), and the total compute
time. The compute time and speedup are shown in Fig 3.

To further understand the scalability of the algorithm, we
plot the compute time spent on different levels and on the
interpolation/restriction in Fig 3. Level 2 is the coarsest
level, level 1 is the second coarse level, and the level 0 is
the fine level. The compute time on level 1 is not scalable,
but it counts for only a few percentage of the total time.

Table 1: Strong scalability results. The problem
has 260,998,902 degrees of freedom and is solved by
FGMRES with the three-level restricted Schwarz
preconditioner. np is the number of processors and
iter is the number of FGMRES iterations.
np iter time speedup ideal speedup efficiency

4096 51 44.1 1 1 100%
6144 51 29.1 1.5 1.5 100%
8192 51 23.6 1.9 2 95%
10240 49 18.4 2.4 2.5 96%

Figure 3: Left: total compute time; middle:
speedup; right: time spent on different levels and
on interpolation/restriction.

7. SOME FINAL REMARKS
A highly scalable three-level Schwarz method with geom-
etry preserving coarse spaces was introduced and studied
for solving 3D linear elasticity equation on an unstructured
mesh. Coarse meshes were carefully constructed so that
they preserve boundary geometry which is very important
for guaranteeing that the algorithm is scalable for a large
number of processors. A re-engineered ParMETIS was de-
veloped to partition meshes into a large number of subdo-
mains. Numerical experiments show that the algorithm is
highly scalable for linear systems with more than 260 mil-
lions unknowns, and on a supercomputer with over 10,000
processors.

8. REFERENCES
[1] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik,

M. Knepley, L. C. McInnes, B. F. Smith and H.
Zhang, PETSc Users Manual, Argonne National
Laboratory, 2013.

[2] X.-C. Cai, M. Sarkis, A restricted additive Schwarz
preconditioner for general sparse linear systems,
SIAM J. Sci. Comput., 21 (1999), pp. 792-797.

[3] P. Howell, G. Kozyreff and J. Ockendon, Applied
Solid Mechanics, Cambridge University Press,
Cambridge, 2009.

[4] G. Karypis, K. Schloegel, ParMETIS - Parallel
Graph Partitioning and Sparse Matrix Ordering
Library Version 4.0, University of Minnesota, 2013.

[5] B. F. Smith, P. E. Bjørstad and W. D. Gropp,
Domain Decomposition Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge
University Press, Cambridge, 1996.

[6] A. Toselli, O. Widlund, Domain Decomposition
Methods - Algorithms and Theory, Springer-Verlag,
Berlin, 2005.


