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Abstract� The classical Schwarz alternating method has recently been generalized in several
directions� This e�ort has resulted in a number of new powerful domain decomposition methods for
solving general elliptic problems� including the nonsymmetric and inde�nite cases� In this paper� we
present several overlapping Schwarz preconditioned Krylov space iterative methods for solving elliptic
boundary value problems with operators that are dominated by the self�adjoint� second�order terms�
but need not be either self�adjoint or de�nite� All algorithms discussed in this paper involve two
levels of preconditioning� and one of the critical components is a global coarse grid problem� We show
that� under certain assumptions� the algorithms are optimal in the sense that the convergence rates
of the preconditioned Krylov iterative methods are independent of the number of unknowns of the
linear system and also the number of subdomains� The optimal convergence theory holds for problems
in both two� and three�dimensional spaces� and for both structured and unstructured grids� Some
numerical results are presented also�

�� Introduction� In this paper� we present a family of overlapping domain de�
composition methods for the solution of large� sparse� nonsymmetric and�or indef�
inite linear systems of equations obtained by discretizing elliptic partial di�erential
equations� This family of methods originates from the classical Schwarz alternating
algorithm� introduced in ���� by H� A� Schwarz 	
�� in an existence proof for elliptic
boundary value problems de�ned in certain irregular regions� This method has at�
tracted much attention as a convenient computational method for the solution of a
large class of elliptic or parabolic equations� see e�g�� 	�
� 
��� especially on parallel
machines� 	���� There are essentially two ways to use the algorithm as a computational
tool� The �rst approach is to use it directly on the continuous partial di�erential equa�
tion de�ned on a physical domain� The mesh partitioning and the PDE discretization
are then carried out subdomain by subdomain� which may sometimes result in non�
matching grids between overlapping subdomains� The second approach is to use it on
the already discretized PDE� i�e�� a linear system of algebraic equations� In this ap�
proach� a global grid is assumed to have been introduced before the domain� or mesh�
is partitioned into subdomains� We shall consider only the second approach� Some of
the material presented in this paper can also be found the references 	�� ��� ��� ����

This family of overlapping Schwarz algorithms has been shown to be e�cient and
robust for solving di�erential equations of many di�erent types under a wide range of
circumstances� In this paper� we shall focus only on the class of nonsymmetric and�or
inde�nite second order elliptic �nite element� or �nite di�erence� equations� The
solution of such problems is an important computational kernel in implicit methods�
for example� the Jacobian problems that need to be solved in any Newton�like method
used in the solution of nonlinear partial di�erential equations such as in computational
�uid dynamics 	���

An e�cient iterative algorithm for solving general elliptic equations requires three
basic steps� namely �a� a discretization scheme� �b� a basic iterative method� and
�c� a preconditioning strategy� There is a signi�cant di�erence between symmetric
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and nonsymmetric problems� the latter being considerably harder to deal with both
theoretically and algorithmically� The main reasons are the lack of a generally appli�
cable discretization technique for the general nonsymmetric elliptic operator� the lack
of �good� algebraic iterative methods �such as CG for symmetric� positive de�nite
problems�� and the incompleteness of the mathematical theory for the performance of
the algebraic iterative methods that do exist� such as GMRES 	
�� 
��� By a �good�
method� we mean a method that is provably convergent within memory requirements
proportional to a small multiple of the number of degrees of freedom in the system�
independent of the operator� One must assume that the symmetric part is positive
de�nite and be able to a�ord amounts of memory roughly in proportion to the number
of iterations� in order to obtain rapid convergence with GMRES� The task of �nding a
good preconditioner for nonsymmetric or inde�nite problems is more important than
for symmetric� positive de�nite problems� since� �rst� the preconditioner can force the
symmetric part of the preconditioned system to be positive de�nite� and second� a
better�conditioned system implies both more rapid convergence and smaller memory
requirements� The focus of this paper is on the construction of e�cient� parallel and
scalable preconditioners by using domain decomposition methods�

Domain decomposition methods are commonly classi�ed according to a few cri�
teria� �Overlapping� and �nonoverlapping� methods are di�erentiated by the decom�
position into territories on which the elemental subproblems are de�ned� We shall not
discuss any nonoverlapping algorithms in this paper� interested readers should consult
the paper 	�
� for recent progress� For a comparison of some of the overlapping and
nonoverlapping algorithms� we refer to the paper 	��� Overlapping methods generally
permit simple �Dirichlet� updating of the boundary data of the subregions at the ex�
pense of having to solve some larger linear systems� de�ned on subregions� per iteration
from the redundantly degrees of freedom� An advantage of the overlapping methods�
over non�overlapping substructuring type methods� is that the solution of the so�called
interface problems �see 	�� �
�� can always be avoided� We remark here that a general
purpose� robust interface solver that guarantees the optimal convergence for the class
of general variable coe�cients� nonsymmetric and inde�nite elliptic problems is yet to
be introduced�

We shall restrict our attention to the so�called optimal algorithms� i�e�� algorithms
whose convergence rates are independent of the number of unknowns as well as the
number of subregions� All the algorithms under consideration can be used in either
two� or three�dimensional spaces� with either structured or unstructured meshes� A
coarse space� which is used in all the algorithms� plays an extremely important role
in obtaining the optimality� It essentially reduces the original nonsymmetric and�or
inde�nite elliptic problem to a positive de�nite problem 	��� ���� which may not be
symmetric� Most of the theory concerning the convergence rate of domain decomposi�
tion methods is in the framework of the Galerkin �nite element method� In some cases
the Galerkin results transfer immediately to �nite di�erence discretizations� though
this is less true for nonsymmetric problems than for symmetric� We shall describe
the algorithms by using a matrix language which is independent of the underlying
discretization schemes� however� we shall switch to the �nite element language when
discussing the convergence theory�

We remark that algorithms based on preconditioned iterative solution of the nor�
mal equations can also be used to solve nonsymmetric and�or inde�nite linear systems�
but are beyond the scope of this paper� Interested readers should consult� for exam�
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ples� 	
� ��� 
���
The paper is organized as follows� In the rest of this section� we shall de�ne our

model elliptic problem and its discretization� Section � is devoted to the description
of an overlapping partitioning of the mesh� as well as algorithms for subdomain col�
oring� Both nested and nonnested coarse meshes are discussed in Section �� The
main algorithms of this paper are introduced in Section 
� This section includes the
discussion of a number of optimal overlapping Schwarz algorithms including the ad�
ditive Schwarz algorithm� the multiplicative Schwarz algorithm and some polynomial
Schwarz algorithms� Several inexact subdomain problems solving techniques� and an
algebraic extension of the Schwarz algorithms for general sparse linear systems are
also discussed in Section 
� A brief overview of the available theory for the optimality
of the Schwarz algorithms is given in Section 
� The paper ends with Section �� which
contains some numerical results�

We con�ne ourselves to the following model problem� Let � be a polygonal region�
in Rd �d � �� 
�� with boundary ��� and let�

Lu � f in �
u � � on ��

���

be a second�order linear elliptic operator with a homogeneous Dirichlet boundary
condition� Here

Lu�x� � �
dX

i�j��

�

�xi

�
aij�x�

�u�x�

�xj

�
� �

dX
i��

bi�x�
�u�x�

�xi
� c�x�u�x�����

We assume that the matrix faij�x�g is symmetric and uniformly positive de�nite for
any x � � and the right�hand side f � L����� Only Dirichlet boundary conditions
are considered here� however� the algorithms can be used to solve problems with other
boundary conditions as well� such as Neumann or mixed boundary conditions� We also
assume that a �nite element mesh� structured or unstructured� has been introduced
on �� A �nite element� or �nite di�erence� discretization of the elliptic problem ���
on the given mesh in � gives us a linear system of algebraic equations

Bu� � f��
�

where B is an n � n sparse matrix and n is the total number of interior nodes in ��
Here and in the rest of the paper u� denotes the exact solution of the linear system
�
�� We shall use h� even in the unstructured case� to characterize the mesh interval
of the grid� which will be referred to as the h�level or �ne grid� The nodal points in
the �ne grid will be referred to as the h�level nodes� We shall use the n� n matrix A
to denote the discretization of the symmetric� positive de�nite part of the operator L�
Let ��� �� denote the Euclidean inner product with the corresponding norm k � k� We
denote the energy norm associated with the matrix A as

k � kA � �A�� ������

In practice� there are many discretization schemes can be used to obtain the linear
system �
�� such as the arti�cial di�usion and streamline di�usion methods 	�
� and
the methods in 	��� Multiple discretizations can also be combined in the same iterative
process� see� e�g�� 	�
�� The preconditioning techniques to be discussed in the next few
sections can easily be used together with these discretization schemes�
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�� Overlapping partitioning� subdomain coloring and coarse spaces� In
this section� we discuss a number of issues� mostly non�numerical� related to the par�
titioning the �nite element mesh� and the de�nition of a coarse mesh space� which is
an important component of the algorithms of this paper�

We begin with the overlapping partitioning of the mesh� Let f�i� i � �� � � � � Ng�
be nonoverlapping subregions of �� such that

N�
i��

��i � ���

where �� means the closure of �� Some earlier theory on Schwarz algorithms� 	��� ���
��� ���� required that the partitioning f�ig forms a regular �nite element subdivision
of �� but recent development shows that this requirement is not necessary 	��� These
subdomains can be of any shapes� In the case of unstructured meshes� this partitioning
is often achieved by using certain graph partitioning techniques� namely� we �rst de�ne
an adjacency graph for the �nite element mesh� then partition the graph into a number
of disjoint subgraphs� We refer to 	��� ��� ��� 

� for issues of graph partitioning�
We assume that the vertices of any �i� not on ��� coincide with the h�level nodes�
Following 	��� ���� we can obtain an overlapping decomposition of �� denoted by

f�
�

i� i � �� � � � � Ng�

Here �
�

i is obtained by extending each �i to a larger region which is cut o� at the
physical boundary of �� We assume that

Distance���
�

i � �� ��i � �� � �� �i�

for a constant � � �� Here �Distance� is in the usual Euclidean sense� In the uniform
mesh case� � is usually equal to an integer multiple of the mesh size h� � is an impor�
tant parameter in these overlapping algorithms� Usually� using a larger overlapping
can result in a reduced total number of iterations� however� per�iteration arithmetic
operations and local memory requirement may increase� Let ni be the total number
of h�level interior nodes in �

�

i� and Bi the ni � ni sti�ness matrix corresponding to
the discretization of L on the �ne grid in �

�

i� with a zero Dirichlet boundary condi�
tion on ��

�

i� Since the matrices Bi are used only in the preconditioner part of the
algorithms� they need not be calculated exactly� A detailed discussion on the use of
inexact subdomain solvers can be found in Section 
�
� The size of the matrix Bi

depends not only on the size of the substructure �i but also on the degree of overlap�
The cost for solving the linear systems corresponding to the matrix Bi is determined
not only by the size of the matrix but also by the type of solver� We note that a less
accurate solver� such as an ILU 	
��� or ILUT 	

�� with a small number of �ll�ins and
a relatively large drop tolerance� can keep the overall cost down� even if the overlap is
not too small�

When using some of the multiplicative algorithms �Section 
���� the subdomains
are usually colored with the purpose of reducing the number of the sequential steps
and speed up the overall convergence� The coloring is realized as follows� Associated
with the decomposition f�

�

jg� we de�ne an undirected graph in which nodes represent
the extended subregions and the edges intersections of the extended subregions� This
graph can be colored by using colors �� � � � � J � such that no connected nodes have the
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Fig� �� The coloring pattern of �� �ne grid overlapped subregions and a coarse grid region� Color

��� is for the global coarse grid� The extended subregions of the other colors are indicated by the dotted

boundaries�

same color� Obviously� colorings are not unique� Simple greedy heuristic subgraph
coloring algorithms have been discussed in the literature� see for examples� 	���� Nu�
merical experiments support the expectation that minimizing the number of colors
enhances convergence� An optimal �ve�color strategy �J � 
� is shown for the decom�
position in Figure �� in which the total number of subregions �including the coarse
grid on the global region� is N � � � ���

Let Ri be an ni � n matrix representing the algebraic restriction of an n�vector
on � to the ni�vector on �

�

i� Thus� if v is a vector corresponding to all the h�level
interior nodes in �� then Riv is a vector corresponding to the h�level interior nodes
in �

�

i� The transpose �Ri�
t is an extension�by�zero matrix� which extends a length ni

vector to a length n vector by padding with zero�
All the algorithms discussed in the next section involve a coarse level discretization�

Let us de�ne it here� Suppose that there is another mesh de�ned on �� which contains
n� nodes� and is coarser than the �ne mesh� Let B� be the discretization of L on this
coarse mesh� Let RT

� be an extension operator� which maps any coarse mesh vector to
the corresponding �ne mesh vector� There is a variety of ways that one can de�ne such
an operator� Here we discuss only one example in the �nite element context� Let �j�x�
be the basis function de�ned at the jth coarse node� Let fxi � �� i � �� � � � � ng be the
�ne mesh nodes� Then the n � n� matrix RT

� � frijg can be de�ned by rij � �j�xi��
R� is the transpose of R

T
� � and is used as a restriction operator that maps a �ne mesh

vector to a coarse mesh vector� In practice� the coarse mesh space needs not to be a
subspace of the �ne mesh space� we refer to 	�� for a detailed discussion� We shall use
�

�

� to denote the coarse grid� which is always assumed to have color ��
We conclude this section by introducing several frequently used notations� For

each subdomain �
�

i� i � �� � � � � N � we de�ne two n� n matrices

M��
i � RT

i B
��
i Ri and Pi � M��

i B�

For j � �� �� � � � � J � we denote by Qj the sum of all Pi
�

and by N��
j the sum of all

M��
i

�

that correspond to subregions of the jth color� These matrices will serve as the
basic building blocks of the overlapping Schwarz algorithms to be discussed�






�� Some Schwarz algorithms� In this section� we describe several overlapping
Schwarz type algorithms constructed by using Pi as the basic building blocks� We shall
begin with the so�called multiplicative Schwarz algorithm� which is a direct extension
of the classical Schwarz alternating algorithm� Then� we discuss a much simpler�
additive version of the multiplicative Schwarz algorithm� which will be referred to as
the additive Schwarz algorithm� In the third subsection� we introduce a family of
Schwarz algorithms constructed by using a multivariable matrix�valued polynomial
with Pi as the variables� In fact� both additive and multiplicative Schwarz algorithms
are special cases of this family of polynomial Schwarz algorithms� Finally� in the
last subsection� we brie�y discuss an algebraic extension of the overlapping Schwarz
algorithms� introduced recently in 	���� for solving general sparse linear systems�

���� Multiplicative Schwarz method �MSM�� Unlike other preconditioners�
such as the additive Schwarz� MSM algorithm can be employed either as an iterative
algorithm by itself or used as a preconditioner� As an iterative algorithm� or equiva�
lently as a preconditioner accelerated by a simple Richardson method� MSM is rather
sensitive to some of the problem parameters� such as the size of the �rst order terms
in the partial di�erential operator� and sometimes loses its convergence� see for exam�
ple Table �� However� it is an excellent and robust preconditioner� especially when
accelerated by a Krylov space iterative method� such as the GMRES� Along with the
other algorithms to be described below� we shall normally employ it as a precondi�
tioner for GMRES� but because of its historical importance� and to illustrate certain
robustness advantages of acceleration� we also include the Richardson version in our
discussion� In this paper� we shall use the abbreviation MSM for the multiplicative
Schwarz�preconditioned GMRES method� and MSR for the simple Richardson process
that corresponds to the classical Schwarz alternating algorithm with an extra coarse
grid solver�

To obtain parallelism� one needs a good subdomain coloring strategy so that a
set of independent subproblems can be introduced within each sequential step and
the total number of sequential steps can be minimized� A detailed description of the
coloring algorithm and its theoretical aspects can be found in 	
� ��� ���� We now
describe the MSR algorithm in terms of a subspace correction process�

Let uk be the current approximate solution� Then uk�� is computed as follows�
For j � �� �� � � � � J �

�i� Compute the residual in subregions with the jth color�

rk�
j

J�� � f � Buk�
j

J�� �

�ii� Solve for the subspace correction in all �
�

is that share the jth color�

Bie
k� j

J�� � Rir
k� j

J�� �

�iii� Update the approximate solution in all �
�

is that share the jth color�

uk�
j��

J�� � uk�
j

J�� �RT
i e

k� j

J�� �

At each iteration� every subproblem is solved once� For j �� �� applications of
operators Rj and RT

j do not involve any arithmetic operations� For j �� �� within
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each series of steps �i� �iii�� the operations in subregions sharing the same color can
be done in parallel� MSR can also be written in the following more compact form�
For a given initial approximate solution u�� and k � �� �� � � ��

uk�� � EJ��u
k � g�

where the error propagation operator EJ�� is de�ned as EJ�� � �I �QJ� � � ��I �Q��
and g � gJ is computed at a pre�iteration step by the following J �� sequential steps�

g� � N��
� f

g� � g� �N��
� �f �Bg��

���
gJ � gJ�� �N��

J �f �BgJ����

Next� we shall discuss an accelerated version of MSR� We begin with the observa�
tion that if the matrix I �EJ�� is invertible� then the exact solution of equation �
�
also satis�es

�I � EJ���u
� � g��
�

which is sometimes referred to as the transformed� or preconditioned� system corre�
sponding to �
�� We next observe that for a given vector v � Rn� the matrix�vector
product �I �EJ���v� denoted as vJ � can be computed in a manner similar to that of
g� namely�

v� � Q�v
v� � v� � Q��v � v��

���
vJ � vJ�� �QJ �v � vJ����

���

Now� the multiplicative Schwarz preconditioned GMRES method �MSM� can be
described as follows� Find the solution of equation �
� by solving the equation �
�
with the GMRES method for a given initial guess and inner product�

Even in the case that the matrix B is symmetric positive de�nite� the iteration
matrix I � EJ�� is not symmetric� An obvious symmetrization exists� upon which a
conjugate gradient method can be used as the acceleration method� however� we shall
not emphasize the case of a symmetric B in this paper�

���� Additive Schwarz algorithm �ASM�� An additive variant of the Schwarz
alternating method was originally proposed in 	��� ��� 
�� for selfadjoint elliptic prob�
lems and extended to nonselfadjoint elliptic cases in 	�� ���� The idea is simply to give
up the data dependency between the subproblems de�ned on subregions with di�erent
colors� as in going from Gauss�Seidel to Jacobi� Instead of iterating with ���� one uses

v� � Q�v

v� � v� � Q�v
���

vJ � vJ�� � QJv�

���

Of course� similar changes have to be made to the right�hand side vector g� Coloring
does not play a role at all in ���� Because of the lack of data dependency� the method is

�



usually not to be recommended as a simple Richardson process �it may not converge��
but as a preconditioner for some algebraic iterative methods of CG type� We denote
by M��

ASM
the preconditioning part of ���� Following 	��� and using the notation of the

previous subsection� we can de�ne the inverse of the matrix MASM� referred to as the
additive Schwarz preconditioner� as

M��
ASM

� RT
�B

��
�
R� � RT

�B
��
�
R� � � � ��RT

NB
��
N RN ����

The key ingredients for the success of the ASM are the use of overlapping subregions
and the incorporation of a coarse grid solver� At each iteration� all subproblems are
solved once� It is obvious that all subproblems are independent of each other and can
therefore be solved in parallel� The ASM discussed in this subsection can be used
recursively for the solving the subdomain problems� The result is the multilevel ASM�
as developed in 	�� ��� ��� 
�� 
���

���� Some polynomial Schwarz algorithms� In this subsection� we discuss a
family of Schwarz algorithms constructed by using some matrix�valued� multivariable
polynomials� The previously discussed ASM and MSM algorithms can be viewed
as two extreme cases of polynomial Schwarz algorithms� namely polynomials with the
lowest and highest possible degrees� We remark here that the degree of the polynomial
usually equals the number of sequential steps of the algorithm� Related subjects can
be found in the papers 	
� �� ��� ��� 
��� and references therein�

Let us de�ne

T � poly�P�� P�� � � � � PN�

as a matrix�valued polynomial in the variables Pi
�

� and we assume the polynomial sat�
is�es poly��� � � � � �� � �� which simply means that the constant term in the polynomial
is zero� It is not di�cult to see that Tu� � V h can be computed without knowing
u� itself� This is because that Piu

�� i � �� � � � � N � can be computed directly from the
right�hand side function f � By denoting g � Tu�� we can de�ne a new linear system

Tu� � g���

which will be referred to as the transformed system of �
�� It can be proved that if the
matrix T is invertible� then the equation ��� has the same solution as the equation �
��
To obtain the matrix T explicitly is usually not possible� however� for any v � Rn� the
matrix�vector multiply Tv can be computed easily� This makes the linear system ���
a good candidate for using Krylov space iterative methods�

We next look at some special examples� The �rst and simplest� in which the
degree of poly�� � �� is one� is the additive Schwarz method� in which the operator has
the form

Tasm � Q� � Q� � � � �� QJ �

The second example is the so�called multiplicative Schwarz operator

Tmsm � I � EJ���

where I is the identity matrix and EJ�� � �I�Q���I�Q�� � � ��I�QJ�� The degree of
this polynomial depends on the number of colors� and the exact form of the polynomial
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depends on how the subregions are colored� The third example� which is a hybrid
additive and multiplicative Schwarz algorithm �AMSM�� was introduced in 	��� and

Tamsm � �P� � I � EJ ����

where � is a balancing parameter and EJ � �I �Q�� � � ��I �QJ�� without containing
the coarse operator term� Numerical experiments suggest that � � � is usually a good
choice� although the corresponding theory is yet to be established� The algorithm
can be viewed as a combination of the additive and multiplicative Schwarz methods�
There are two major advantages� First� it converges faster than the additive Schwarz
algorithm because of the extra local data dependency� Secondly� it is more paralleliz�
able than the multiplicative Schwarz algorithm since the global coarse problem can
now be solved simultaneously with the rest of the local problems�

It is important to note that even if the original equation �
� is not well�conditioned�
the transformed systems can be uniformly well�conditioned and� more importantly� the
transformed system can be so arranged that a highly parallelizable algorithm can be
developed for solving it�

���� Using inexact subdomain solvers� Using an inexact solver for the inte�
rior subproblems� or an exact solver for approximate interior subproblems� can sig�
ni�cantly reduce the overall computational complexity� This is� in fact� one of the
major advantages of domain decomposition methods� in that they allow the use of
fast solvers designed for special di�erential operators on regions of special shape� A
somewhat disappointing experimental observation is that inexact solutions seem not
to work well for the coarse grid solver� In fact� the existing theory for MSM 	���� as
well as the theory for ASM 	���� requires an exact solve on the coarse grid�

There are essentially two ways to introduce an inexact subproblem solver� The
�rst method involves an approximation to the di�erential operator L� In each subdo�
main �

�

k� k �� �� L is replaced by a certain spectrally equivalent di�erential operator
Lk� which is usually chosen to have constant coe�cients� or has other special prop�
erties� so that a fast solver� such as an FFT�based method� can be used to solve the
corresponding discretized problem� As an example� we mention that if L is a general
operator� de�ned as in ���� then Lk can be de�ned as

Lku � �
dX

i�j��

ck
�

�xi

�u

�xj
�

where ck is an averaged eigenvalue of the matrix faij�xk�g and xk is a �xed point in
�

�

k� In this case� the subdomain matrix Bi� used in any of the Schwarz algorithms
discussed in the previous subsections� can be replaced by a discretization of Lk with
a zero Dirichlet boundary condition on ��

�

k�
The second class of inexact subproblem solvers can be de�ned at the algebraic

level� We assume that the matricesBk have already been obtained by the discretization
of certain di�erential equations on �

�

k� In this case� using inexact solver is understood
as solving the subdomain linear system

Bkx � b�

inexactly� Here x� b � Rnk � For examples� the above linear system can be �solved��
by ��� a few multigrid cycles 	���� or ��� a few Gauss�Seidel �SOR� SSOR� Jacobi�
iterations� or �
� replacing Bk with its ILU 	
�� or ILUT factorization 	

�� etc�

�



���� Algebraic Schwarz algorithms� According to 	���� the previously studied
Schwarz framework can also be extended for solving general sparse linear systems� The
fundamental principle underlying this extension is to replace the domain of de�nition

of the problem by the adjacency graph of the sparse matrix� i�e�� the graph that
represents its non�zero pattern� We note that by switching from a domain to a graph
the concept of Euclidean distance� which plays an important role in the optimality
analysis of these domain decomposition methods� is lost� It was shown in 	��� that�
mostly by means of numerical experiments� that the e�ciency of the overlapping
methods can be preserved to some extent with certain well�balanced overlapping graph
decomposition�

Suppose B � fbijg is an n � n sparse matrix� To describe a model algebraic
Schwarz algorithm� let us de�ne the graph G � �W�E�� where the set of vertices
W � f�� � � � � ng� represents the n unknowns and the edge set E � f�i� j� j bij �� �g
represents the pairs of vertices that are coupled by a nonzero element in B� Let us
assume that the non�zero pattern is symmetric� and therefore the adjacency graph G
is undirected� For the remaining discussion� we assume that the graph partitioning
has been applied and has resulted in a number N of subsets Wi whose union is W �

W �
N�
i��

Wi�

We will denote by Ni the vector space spanned by the set Wi in Rn and by mi its
dimension� For each subspace Ni we de�ne a corresponding submatrix� In matrix
terms� this is de�ned by the sub�identity matrix Ii of size n � n whose diagonal
elements are set to one if the corresponding node belongs to Wi and to zero otherwise�
With this we de�ne the matrix�

Bi � IiBIi �

which is an extension to the whole subspace� of the restriction of B to Ni� This is
sometimes termed the section of B on Ni� Its action on a vector is to project it on
Ni� then apply B to the result and �nally project the result back onto Ni� Note that
although Bi is not invertible� we can invert its restriction to the subspace spanned by
Wi� and de�ne

B��
i � Ii

�
�Bi�jNi

���
Ii

With this de�nition of B��
i � the Schwarz algorithms can be de�ned the same as in

the previous subsections� The only missing piece is the coarse preconditioner� As
indicated in 	���� without further geometric information of the problem� to de�ne a
coarse preconditioner is generally very di�cult�

�� Convergence theory� We now discuss very brie�y a theory that can provide
with us some understanding of these Schwarz preconditioners� All the discussions are
based on an assumption that there is an underling �nite element space� For simplicity�
we consider only the piecewise linear �nite element case� Let b�u� v� be the bilinear
form associated with the Dirichlet problem ���� The convergence of MSR has been
proved in 	���� under certain assumptions� The rate of convergence is

kuk � ukA 	

�s
��

CMSR

�J � ���

�k
ku� � ukA�


�



where CMSR � � is a constant independent of h� H and J � The estimate holds in both
two� and three�dimensional spaces� Here H is the diameter of the subdomains� The
assumptions include� ��� the overlap is uniform and must be O�H�� ��� H must be
su�ciently small� and �
� the number of colors� J � must be independent of the size of
the subregions H � The same estimate� with a di�erent constant� holds for MSR with
either exact or spectrally equivalent inexact solvers�

For the accelerated version MSM� under the same assumptions� we have that there
exist two constants CMSM � � and cMSM � �� independent of both h and H � such that
the transformed system is uniformly bounded�

k�I �EJ���xkA 	 CMSMkxkA� �x � Rn�����

and the symmetric part of the transformed system is positive de�nite in the inner
product �A�� ���

�A�I � EJ���x� x� � cMSMkxk
�
A� �x � Rn�����

For the additive Schwarz algorithm� it was shown 	�� ��� that� in the piecewise
linear �nite element case� the preconditioner M��

ASM
is optimal under the same �rst two

assumptions made for MSM in the sense that there exist two constants CASM � � and
cASM � �� which may be di�erent for exact and inexact subdomain solvers and are
independent of both h and H � such that the preconditioned linear system is uniformly
bounded�

kM��
ASM

BxkA 	 CASMkxkA� �x � Rn����

and the symmetric part of the preconditioned linear system is positive de�nite in the
inner product �A�� ��

�AM��
ASM

Bx� x� � cASMkxk
�
A� �x � Rn���
�

Similar boundedness results hold also for the operator ��� with certain well chosen
parameter �� see 	��� The extensions of the above results to the unstructured grids
cases can be found in 	���

In the case B � A� which means that the original elliptic operator is symmetric
positive de�nite� the left�preconditioned system is symmetric positive de�nite in the
�A�� �� inner product� thus one can use a CG method� In the nonsymmetric case� the
preconditioned system is nonsymmetric regardless of inner product� Therefore� in�
stead of the A�inner product� we usually use the Euclidean inner product for practical
implementations� By giving up the symmetry requirement of the preconditioned sys�
tem� we could also use ASM as a right�preconditioner� Neither of the pair of estimates
���� and ��
� has been proved in the L� norm� but in the numerical experiments sec�
tion� variability in ASM convergence rates measured �as is customary� with respect to
L� residuals clearly diminishes as mesh and subdomain parameters are both re�ned�
leading us to conjecture that analogous results hold�

We remark that the bounds ����� ����� ���� and ��
� can be used to estimate�
theoretically� the number of iterations for some of the Krylov space iteration meth�
ods� such as GMRES� As is well�known� the GMRES method� introduced in 	
��� is
mathematically equivalent to the generalized conjugate residual �GCR� method 	���
and can be used to solve the linear system of algebraic equations�

Px � b���
�







where P is a nonsingular matrix� which may be nonsymmetric or inde�nite� and
b is a given vector in Rn� In this paper� P is one of the transformed systems
T � poly�P�� � � � � PN�� According to the theory of 	��� ��� the rate of convergence
of the GMRES method can be estimated by the ratio of the minimal eigenvalue of the
symmetric part of the operator to the norm of the operator� Those two quantities are
de�ned by cP � infx��� �x� Px�A��x� x�A and CP � supx��� kPxkA�kxkA� where ��� ��A
is our A�inner product on Rn that induces the norm k�kA� Following 	���� the rate of
convergence can be characterized� not necessarily tightly� as follows� If cP � �� which
means that the symmetric part of the operator P is positive de�nite with respect to
the inner product 	�� ��� then the GMRES method converges and at the mth iteration�
the residual is bounded as

krmkA 	 �� �
c�P
C�
P

�
m��

kr�kA�

where rm � b � Pxm� The algorithm is parameter�free and quite robust� Its main
disadvantage is its linear�in�m memory requirement� To �t the available memory� one
is sometimes forced to use the k�step restarted GMRES method 	
���

�� Numerical experiments� We present a few numerical experiments in this
section to illustrate the convergence behavior of some of the Schwarz algorithms� For
comparison� We also include some results obtained by using ILU�k� as preconditioners�
Two test problems will be considered� A more complete comparison of overlapping
Schwarz algorithms with other domain decomposition algorithms can be found in 	���
Some three dimensional experiences with overlapping Schwarz algorithms can be found
in 	����

Example �� Lu � �
 u� �ux � �uy�

Example �� Lu � ���� � �

�
sin����x�ux�x � ��� � �

�
sin����x� sin����y�uy�y

� �� sin����x� cos����y�ux� �� cos����x� sin����y�uy � ��u�

In all the tests� � � 	�� �� � 	�� ��� and homogeneous Dirichlet boundary condi�
tions are prescribed on ��� GMRES is used as the Krylov iterative method� and the
iteration is stopped when the initial residual is reduced by ����� A one�point�per�
subdomain coarse grid solver is used in all the tests� All the subdomain problems are
solved exactly� For Example �� a uniform ���� ��� grid is used on �� the number
of subdomains is �
 � �� �� and the overlap is 
h �h � ������� The �rst order terms
are discretized by two schemes as indicated in Table �� For Example �� we test a few
di�erent �ne mesh sizes� as given in Table �� and the overlapping size is always set to
be ��! of the size of the unextended subdomain in both x and y directions�

	� Conclusions� In this chapter� we discussed a family of parallel overlapping
Schwarz type domain decomposition algorithms in the framework of preconditioned
Krylov space iterative methods� The preconditioners� which are optimal in the sense
of possessing mesh and subdomain parameter independent convergence rates� are con�
structed by using a multiple discretization of the partial di�erential equation� in local
subdomains and also on a coarser grid� When the subdomains are properly colored�
the algorithms are fully parallel since sub�problems de�ned on di�erent subdomains
can be mapped on to di�erent processors and solved independently at each Krylov
iteration�


�



Table �

Iteration count for solving Example ��

Methods �� � � �
 subdomains

Central
di�erence Method

� � � � �� �� ��� ���

MS�Richardson � � � �� 
� �

MS�GMRES 
 
 
 � � �

AMS�GMRES � � � �
 �� ��

AS�GMRES �� �� �� �� �� �


ILU����GMRES �� �
 �� �� 
� ��

ILU����GMRES 
� �
 �� 

 �� ��

ILU����GMRES 
� 
� 
� �� �� �


Upwind
di�erence Method

� � �� �� ��� ��� ���� �����

MSR � �� �� �� �� ��

MS�GMRES � � � � � �

AMS�GMRES � �� �� �� �� ��

AS�GMRES �
 �� �� �� �� ��

ILU����GMRES �� �� �� �
 �� �

ILU����GMRES �� 
� �� �� � 


ILU����GMRES 
� 
� �
 �� � 


Table �

Iteration count for solving Example ��

H � ���

h � ��
� ���
 �����

MS�Richardson � � �

MS�GMRES �� �� ��

AS�GMRES �� �� ��

ILU����GMRES 

 �� 
��

ILU����GMRES �� 

 ��

ILU����GMRES �� 
� ��
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