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Parallel Implicit Methods for Aerodynamics

X.-C. CAI, W. D. GROPP, D. E. KEYES, AND M. D. TIDRIRI

ABSTRACT. Domain decomposition (Krylov-Schwarz) iterative methods are
natural for the parallel implicit solution of multidimensional systems of
boundary value problems that arise, for instance, in aerodynamics. They
provide good data locality so that even a high-latency workstation net-
work can be employed as a parallel machine. Matrix-free (Newton-Krylov)
methods are natural when it is unreasonable to compute or store a true
Jacobian. We call their combination Newton-Krylov-Schwarz and report
experimental progress on two algorithmic aspects: the use of a coarse grid
in additive Schwarz preconditioning and the use of mixed discretization
schemes in the (implicitly defined) Jacobian and its preconditioner. Two
model problems in two-dimensional compressible flow are considered: the
full potential equation, and the Euler equations.

1. Krylov-Schwarz Algorithms

Fully implicit linear solvers in aerodynamics allow more rapid asymptotic
approach to steady states than time-explicit, approximate factorization, or re-
laxation solvers that hold the outer nonlinear iteration to small time steps. Nev-
ertheless, the all-to-all data dependencies between the unknown fields in a fully
implicit method have led to a resurgence of interest in less rapidly convergent
methods in high-latency parallel environments. Resisting, we briefly overview
two related efforts that lie along the route to parallel implicit computational
aerodynamics. Though the governing equation formulations are mathematically
very different — elliptic subsonic full potential and hyperbolic transonic Euler — a
common implicit software core allows them to be treated together. Our ultimate

1991 Mathematics Subject Classification. Primary 65N55, 65N22, 7T6G25.

The work was supported in part by the National Science Foundation and the Kentucky EP-
SCoR Program under grant STI-9108764 (XCC); by the Office of Scientific Computing, U.S.
Department of Energy, under Contract W-31-109-Eng-38 (WDG); by the National Science
Foundation under contract number ECS-8957475, the State of Connecticut and the United
Technologies Research Center (DEK); and by the National Aeronautics and Space Adminis-
tration under NASA contract NAS1-19480 while three of the authors (XCC,DEK,MDT) were
in residence at the Institute for Computer Applications in Science and Engineering.

This paper is in final form and no version of it will be submitted elsewhere.

©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page



2 X.-C. CAI, W. D. GROPP, D. E. KEYES, AND M. D. TIDRIRI

interest is in applying Schwarzian domain decomposition techniques to industrial
computations still being carried out in these (physically) primitive potential and
Euler formulations, and in extending them to Navier-Stokes, for which implicit
solvers are even more important. For a variety of reasons, industrial CFD groups
are inclining towards the distributed network computing environment character-
ized by coarse to medium granularity, large memory per node, and very high
latency, which creates a niche for domain decomposition methods.

Schwarz-preconditioned Krylov solvers for nonsingular linear systems, Az = b,
find the best approximation of the solution x in a small-dimensional subspace
that 1s built up from successive powers of the preconditioned matrix on the
initial residual. Such systems, in which A is a Jacobian matrix and b is the
nonlinear residual, arise from discretization and linearization of the governing
PDEs. A variety of parallel preconditioners, whose inverse action we denote by
B! can be induced by decomposing the domain of the underlying PDE, finding
an approximate representation of A on each subdomain, inverting locally, and
combining the results. Generically, we seek to approximate the inverse of A by
a sum of local inverses:

B~ =3 REA{'Ry,
k

where Rj is a restriction operator that takes vectors spanning the entire space
into the smaller dimensional subspace in which A is defined.

The simplest domain decomposition preconditioner is block Jacobi, which can
be regarded as a zero-overlap form of additive Schwarz [2]. The convergence rate
of block Jacobi can be improved, at the price of a higher cost per iteration, with
subdomain overlap and (for many problems) by solving an additional judiciously
chosen coarse grid system.

2. Newton-Krylov Methods

Evaluation of the discrete residuals of d-dimensional compressible flow for-
mulations requires a large number of arithmetic operations. (For instance, a
(d + 2)-dimensional eigendecomposition may be required at each grid point.)
Their Jacobians, though block-sparse, have dense blocks and are usually an
order of magnitude even more complex to evaluate, whether by analytical or nu-
merical means. Hence, matrix-free Newton-Krylov methods, in which the action
of the Jacobian is required only on a set of given vectors, are natural in this
context. To solve the nonlinear system f(u) = 0, given u°, let w/T! = u! + Aéu!,
for { = 0,1,..., until the residual is sufficiently small, where 6u’ approximately
solves the Newton correction equation J(u')éu' = —f(u'), and A is a damping
parameter. The action of Jacobian J on an arbitrary Krylov vector w can be
approximated by

J(u)w ~ E [F(u' + ew) — F(uh)] .

€
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Finite-differencing with ¢ makes matrix-free methods potentially much more sus-
ceptible to finite word-length effects than ordinary Krylov methods [5]. Steady
aerodynamics applications require the solution of linear systems that lack strong
diagonal dominance, so a secondary goal of our investigation is to verify that
properly-scaled matrix-free methods can be employed in this context. For brevity,
details are deferred to a later paper. We simply note here that GMRES may
have an advantage over other Krylov methods in the matrix-free context in that
the vectors w that arise in GMRES have unit two-norm, but may have widely
varying scale in competing methods.

An approximation to the Jacobian can be used to precondition the Krylov
process. Natural examples are: (1) the Jacobian of a related discretization that
allows economical analytical evaluation of elements, (2) the Jacobian of a lower-
order discretization, (3) a finite-differenced Jacobian computed with lagged val-
ues for expensive terms, and (4) domain-parallel preconditioners of the form

1 pT o 1 pT afi(u')
B! = RoJj Ry + E RiJ . Ry , where Jp v = {7}
* k=1 " 7 aUJ

is the Jacobian of f(u) for ¢ and j in subdomain k, and subscript “0” corre-
sponds to a possible coarse grid. The Newton-Krylov-Schwarz method (case 4)
can be combined with any other split-discretization technique (cases 1-3), in
principle. Right preconditioning of the Jacobian with an operator B~! can be
accommodated via

J(u)B™lw ~ E [f((ul +eB lw)) — f(ul)] .

€

3. Model Problems

For density p, velocity v, specific internal energy e, and pressure p, the steady
Euler equations of inviscid compressible flow are

V-(pv) =0, V- -(pvv+pl)=0, and V- ((pe + p)v) = 0.
The full potential equation for velocity potential @,
V- (p([IVe[)Ve) =0,

follows from the additional assumptions of irrotationality, v = V®, and isen-

tropy, V(p/p¥) = 0. The density is given in terms of the potential by
1
1 2 \ T
P = Poo (1 + VTMfo(l - T))

(o]

where ¢ = ||V®|| and Mo = qoo/0s. Here, a is the sound speed, ¢ the flow
speed, and oo refers to the freestream. When the flow is everywhere subsonic the
full potential formulation fits within the monotone nonlinear elliptic framework
of additive Schwarz methods [1]. For a simple non-lifting model problem of an
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airfoil lying along the symmetry axis y = 0, we choose boundary conditions as
follows:

e Upstream and Freestream: & = gox (zero angle of attack),

e Downstream: @ , = qoo,

e Symmetry: ® , = 0,

e On the parameterized airfoil with shape y = f(z): ®, = —¢oo f'(2).
The farfield boundary conditions lead to inaccuracies if applied too near the
airfoil, but our interest 1s in algebraic convergence rates.

Table 1 shows convergence performance for a fixed-size problem of 128 x 128
uniform cells with a fixed number of subdomains in an 8 x 8 array as the density
of the unnested uniform coarse grid varies. Bilinear rectilinear elements are used
for both coarse and fine grids, and bilinear interpolation for intergrid transfers.
An overlap 2h is employed on each of the subdomains, which are solved exactly.
My 18 0.1 and the airfoil is the scaled upper surface of a NACA0012. Nonlinear
convergence is declared following a 1073 relative reduction in the steady-state
residual, which requires only three Newton steps independent of inner linear
method. Inner iteration convergence is a relative residual reduction of 107%.
The Krylov solver used throughout this paper is GMRES [7], because of pre-
vious comparisons [3] with other modern Krylov solvers on the same problem
class that showed CPU cost differences to be small and unsystematic when well-
enough preconditioned that any of the methods were practical. Here, we restart
GMRES every 20 iterations and precondition on the right, in order to keep the
preconditioner out of the residual norm estimates used in the convergence test.
Key observations from this example are: (1) even a modest coarse grid makes a
significant improvement in an additive Schwarz preconditioner; (2) a law of di-
minishing returns sets in at roughly one point per subdomain; and (3) matrix-free
“matvecs” degrade convergence as much as 15-20% in the less well-conditioned
cases.

Coarse Grid || 0Xx0 | 4x5 [ 8x9 [12x13|16x 17 | 20 x 21
Analytical 177 35 28 27 24 21
Matrix-free 183 41 28 27 25 23

TABLE 1. Average number of GMRES steps per Newton step
for full potential Newton-Krylov-Schwarz solver with varying
coarse grid size.

Our Euler problem is a two-dimensional transonic airfoil flow modeled using
an EAGLE-derivative code [6] that employs a finite volume discretization over a
body-fitted coordinate grid. Only C-grids of 128 x 16 or 128 x 32 cells (from
[3]) around a NACAO0012 airfoil at an angle of attack of 1.25° and an M., of
0.8 are considered herein. To obtain a representative matrix/RHS pair on which
to test the behavior of Fuler Jacobians under Krylov-Schwarz, we first ran a
demonstration case from [6] partway to convergence and linearized about the
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resulting flow state. Following the defect correction practice of [8], a flux vector
split scheme is employed for the implicit operators, and f(u) itself is discretized
by a flux difference split scheme. Characteristic variable boundary conditions
are employed at farfield boundaries using an explicit, first-order accurate for-
mulation. For a given granularity of decomposition, curvilinear “box” decom-
positions are generally better than curvilinear “strip” decompositions for this
problem. Table 2 shows that the zero-overlap results are only slightly less con-
vergent than the corresponding h-overlapped additive Schwarz results at high
Courant-Friedrichs-Lewy (CFL) number, and that h-overlapped multiplicative
Schwarz is significantly better, though the latter is a much less parallel algo-
rithm. Though we have not yet experimented with a coarse grid in the Euler
context, [9] shows that even a piecewise constant coarse grid operator substan-
tially improves Krylov-Schwarz convergence rates in unstructured problems.

Precond. || Block Jacobi | Add. Schwarz | Mult. Schwarz
CFL No. || 1 102 1 102 1 102
1x1 1 1 1 1 1 1
2 X2 4 14 7 14 2 7
4 x4 4 18 7 17 3 8
8 X 8 5 28 10 23 3 8

TABLE 2. Iteration counts for transonic flow Jacobians at lo-
cal CFL numbers of 1 and 10?, for various preconditioners and
decomposition into 4, 16, or 64 subdomains.
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FicURE 1. CFL and steady-state residual versus iteration count
for defect correction and Newton-Krylov solvers.

To test the nonlinear matrix-free approach in a situation with four differently
scaled components per gridpoint, we started over and approached the steady
solution via a pseudo-transient continuation with an adaptively chosen local
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CFL number, as described in [3]. Use of the baseline approximate factorization
defect correction algorithm produces the dashed curves in Fig. 1. To obtain the
solid curves, the explicitly available (Van Leer) flux vector split Jacobian (Jy 1)
is used to precondition the implicitly defined (Roe) flux difference split Jacobian
(Jr) at each implicit time step. In matrix terms, the corrections u are obtained
as the approximate solutions of, respectively,

Jvru=—fr and (JVL)_ljRU = _(JVL)_lfR'

Unfortunately, in the retrofit of the existing code, transition to a full Newton
method (CFL number approaching infinity) is precluded by explicit boundary
conditions, but CFL number can be advanced, as shown in the figure, to @(10%)
with advantage.

Though space does not permit a meaningful discussion, we mention that both
codes have been executed on an ethernet network of workstations using a pack-
age of distributed sparse linear system routines developed at Argonne National
Laboratory by Gropp and Smith [4], with p4 as the data exchange layer. When
exact solvers are used on each subdomain, speedups on a per iteration basis are
seen on up to 16 processors, but exact solvers are an extreme case. As a se-
rial preconditioner, global incomplete LU is superior to a Schwarz method using
exact subdomain solvers.

4. Conclusions

By concentrating data dependencies locally, domain decomposition precon-
ditioners exploit the two-level memory hierarchy of high-latency distributed-
memory architectures. Low-communication zero or small overlaps between the
preconditioner blocks are feasible with small convergence rate penalty, at least
for intermediate granularities. The addition of a coarse grid has been shown
to lead to major iteration count improvements, for a fixed problem size and
algebraic residual reduction. Demonstrating the applicability of elliptic-based
domain decomposition preconditioners to full potential and Euler problems is
only a beginning. Further research will explore the limits of inconsistent pre-
conditioners in matrix-free contexts, the cost versus benefits of the coarse grid
solve in parallel contexts, and the relative tuning of inner and outer iteration
convergence tolerances.
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