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1 Introduction

One of the challenging problems in computational fluid dynamics is to solve
large, sparse, nonlinear systems of equations arising from the discretization of
incompressible Navier-Stokes equations at high Reynolds numbers [16,21,24],
particularly when the solution has boundary layers or singularities. For such
problems most existing nonlinear iterative methods [3,8,18] do not work well.
They are either not robust enough to deal with a wide range of Reynolds
numbers, e.g. Newton method, or show an unacceptably slow convergence,
e.g. continuation methods. Two properties are highly desirable in the design
of an algorithm for solving such system of equations on parallel computers:
robustness and scalability. An algorithm is called robust if the convergence is
not too sensitive to changes of some system parameters, for example, the initial
guess for iterative methods, the mesh size, and other physical parameters, such
as the Reynolds number. An algorithm is called scalable if the iteration count
(and the computing timing) is nearly constant as the number of processors and
the number of unknowns increase proportionally. To remedy these issues, we
develop a general multilevel nonlinear preconditioning technique that is fast,
robust and scalable. Our method is based on the inexact Newton method with
backtracking (INB) [8,18] and nonlinear additive Schwarz methods [4–6,12,13].
We briefly describe INB below. Let

F (x∗) = 0 (1.1)

be a nonlinear system of equations and x(0) a given initial guess. Assume
x(k) is the current approximate solution. Then a new approximate solution
x(k+1) of (1.1) can be computed by first finding an inexact Newton direc-
tion s(k) satisfying ‖F (x(k)) + F ′(x(k))s(k)‖2 ≤ ηk‖F (x(k))‖2, then by obtain-
ing x(k+1) with x(k+1) = x(k) + λ(k)s(k), where the parameter λ(k) is com-
puted via backtracking. In INB, the scalar ηk is often called the “forcing
term”, which determines how accurately the Jacobian system needs to be
solved by some iterative method, such as a Krylov subspace type method,
GMRES [20]. If the chosen forcing terms are small enough, the algorithm
reduces to the exact Newton algorithm. The scalar λ(k) is selected so that
f(x(k) + λ(k)s(k)) ≤ f(x(k)) + αλ(k)∇f(x(k))T s(k), where the merit function f
is defined as ‖F (x)‖22/2. Here, a line search technique [8] is employed to de-
termine the step length λ(k), and the parameter α is used to assure that the
reduction of f is sufficient. Although INB has the desirable property of local
fast convergence, like other nonlinear iterative methods, it is very fragile. It
converges rapidly for a well-selected set of parameters (certain initial guesses
and ranges of the Reynolds numbers), but diverges if we slightly change some
of these parameters. On the other hand, it may converge well at the beginning
of the iterations, then suddenly stall for no apparent reason [4,13].
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Recently, in [4,12,13], some nonlinear preconditioning methods were devel-
oped, and the nonlinear convergence of these methods is much less sensitive
to these unfriendly parameters if INB is applied instead to the so-called non-
linearly preconditioned system

F(x∗) = 0. (1.2)

Here the word “preconditioner” refers to the fact that the systems (1.1) and
(1.2) have the same solution and the new system (1.2) is, in some sense, better
conditioned, both linearly and nonlinearly. One preconditioner is constructed
by using some one-level nonlinear additive Schwarz method. To a certain ex-
tent, the robustness problem is solved by the one-level method, which con-
verges for a wide range of Reynolds numbers and mesh sizes. However, the
parallel scalability remains an open issue due to the lack of communication
between subdomains. To improve the inter-subdomain communication, a two-
level method was then proposed in [5], which is nonlinear on both the coarse
and fine levels. The method works well if the number of processors is small,
but when the number of processors is large, the nonlinear coarse solver require
too much CPU and communication times [17]. Hence, we propose a class of
combined linear and nonlinear additive Schwarz preconditioner and show nu-
merically that by using a linear coarse preconditioner we can maintain the
nonlinear robustness and at the same time reduce considerably the nonlinear
complexity. A preliminary version of the new method was discussed in a short
proceedings paper [14].

The paper is organized as follows. In Section 2, we discuss two-level nonlin-
ear Schwarz preconditioned inexact Newton algorithms and introduce a new
linear coarse preconditioner, which plays the central role in the scalability
of the algorithm. We also describe two-dimensional steady-state incompress-
ible Navier-Stokes equations and their finite element discretization, which is
taken as an example to illustrate the applicability of the method. Then, in
Section 3, we present some numerical results obtained on a parallel computer
for a lid-driven cavity flow problem. Particularly, we focus on the parallel lin-
ear and nonlinear scalability of the method. Finally, Section 4 presents some
concluding remarks.

2 Two-level nonlinearly preconditioned inexact Newton algorithms

In this section, we describe a new class of two-level preconditioners based
on a combination of local nonlinear additive Schwarz preconditioners and a
global linear coarse preconditioner. The local nonlinear preconditioners make
the method more robust in the sense that the method is able to converge for
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a wide range of Reynolds numbers and mesh sizes, while the linear coarse
preconditioner makes the method more scalable in the sense that the number
of linear iterations does not depend much on the number of parallel processors.
This is very important for solving large-scale problems on massively parallel
computers.

2.1 A model problem

For simplicity, we restrict our discussion to a two-component system (velocity
and pressure) resulting from the finite element discretization of incompressible
Navier-Stokes equations. The generalization to other multi-component prob-
lems is straightforward. Consider two-dimensional steady-state incompressible
Navier-Stokes equations in the primitive variable form [11,19] defined on a
bounded domain Ω with a polygonal boundary Γ:


u · ∇u − 2ν∇ · ε(u) +∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

(2.1)

where u is the velocity, p is the pressure, ν is the dynamic viscosity, which is
inversely proportional to the Reynolds number, and ε(u) = 1/2(∇u +(∇u)T )
is the symmetric part of the velocity gradient. Since only Dirichlet boundary
condition is specified, the pressure p is determined up to a constant. An addi-
tional condition,

∫
Ω p dx = 0, is imposed to make p unique. To discretize (2.1),

we use a stabilized finite element method [2,9] on a given quadrilateral mesh
T h = {K}. For each element K, we use hK to denote its element diameter.
Let V h and P h be a pair of finite element spaces for the velocity and pressure
given by

V h = {v ∈ (C0(Ω) ∩H1(Ω))2 : v |K ∈ Q1(K)2, K ∈ T h }
P h = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ T h}.

Here C0(Ω), L2(Ω), and H1(Ω) are the standard notations with the usual
meanings in the finite element literature [11,19]. For simplicity, our implemen-
tation uses a Q1−Q1 element (continuous bilinear velocity and pressure). The
weighting and trial velocity function spaces V h

0 and V h
g are

V h
0 = {v ∈ V h : v = 0 on Γ} and V h

g = {v ∈ V h : v = g on Γ}.
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Similarly, let the finite element space P h
0 be both the weighting and trial

pressure function spaces:

P h
0 =

p ∈ P h :
∫
Ω

p dx = 0

 .

Following [9], the stabilized finite element method for steady-state incompress-
ible Navier-Stokes equations reads: Find uh ∈ V h

g and ph ∈ P h
0 , such that

B(uh, ph; v , q) = 0 ∀(v , q) ∈ V h
0 × P h

0 (2.2)

with

B(u , p; v , q) = ((∇u) · u , v) + (2νε(u), ε(v))− (∇ · v , p)− (∇ · u , q)+∑
K∈T h

((∇u) · u +∇p, τ((∇v) · v −∇q))K + (∇ · u , δ∇ · v).

We use the stabilization parameters δ and τ as suggested in [9]. The stabilized
finite element formulation (2.2) can be written as a nonlinear algebraic system

F (x) = 0, (2.3)

which is often large, sparse, and highly nonlinear when the value of Reynolds
number is large. The vector x corresponds to the nodal values of uh = (uh

1 , u
h
2)

and ph in (2.2).

2.2 Subdomain partition, and one-level nonlinear preconditioner

To define parallel Schwarz-type preconditioners [22,23], we partition the finite
element mesh T h introduced in the previous section. Let {Ωh

i , i = 1, ...., N} be
a non-overlapping subdomain partition whose union covers the entire domain
Ω and its mesh T h. We use T h

i to denote the collection of mesh points in
Ωh

i . To obtain overlapping subdomains, we expand each subdomain Ωh
i to a

larger subdomain Ωh,δ
i with the boundary ∂Ωh,δ

i . Here δ is an integer indicating
the degree of overlap. We assume that ∂Ωh,δ

i does not cut any elements of T h.
Similarly, we use T h,δ

i to denote the collection of mesh points in Ωh,δ
i , including

∂Ωh,δ
i .

Now, we define the subdomain velocity space as

V h
i = {vh ∈ V h ∩ (H1(Ωh,δ

i ))
2

: vh = 0 on ∂Ωh,δ
i }
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and the subdomain pressure space as

P h
i = {ph ∈ P h ∩ L2(Ωh,δ

i ) : ph = 0 on ∂Ωh,δ
i \Γ}.

On the physical boundaries, we impose Dirichlet conditions according to the
original equations (2.1). On the artificial boundaries, we assume both u = 0
and p = 0. Similar boundary conditions were used in [15].

Let Ri : V h×P h → V h
i ×P h

i be a restriction operator, which returns all degrees
of freedom (both velocity and pressure) associated with the subspace V h

i ×P h
i .

Ri is an (3ni−2ri)×(3n−2r) matrix with values of either 0 or 1, where n and ni

are the total number of mesh points in T h and T h,δ
i , respectively, and r and ri

are the total number of mesh points at which the Dirichlet boundary condition
for velocity in T h and T h,δ

i is imposed, respectively. Since the element-based
partitioning is used,

∑N
i=1(3ni − 2ri) ≥ (3n − 2r). Note that for Q1 − Q1

elements, we have three variables per interior mesh point, two for the velocity
and one for the pressure. Then, the interpolation operator RT

i can be defined
as the transpose of Ri. The multiplication of Ri (and RT

i ) with a vector does
not involve any arithmetic operation, but does involve communication in a
distributed memory parallel implementation. Using the restriction operator,
we define the subdomain nonlinear function Fi : R3n−2r → R3ni−2ri as

Fi = RiF.

We next define the subdomain mapping functions, which in some sense play the
role of subdomain preconditioners. For any given x ∈ R3n−2r, Ti(x) : R3n−2r →
R3ni−2ri is defined as the solution of the following subspace nonlinear systems,

Fi(x−RT
i Ti(x)) = 0, for = 1, ..., N. (2.4)

Throughout this paper, we assume that (2.4) is uniquely solvable. Using the
subdomain mapping functions, we introduce a new global nonlinear function,

F (1)(x) =
N∑

i=1

RT
i Ti(x), (2.5)

to which we refer as the one-level nonlinearly preconditioned F (x). As shown
in [4,13], an approximation of the Jacobian of F (1) takes the form

Ĵ (1)(x) =
N∑

i=1

Ri
T J−1

i RiJ(x), (2.6)

where J is the Jacobian of the original function F (x) and Ji = RiJRi
T . The
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one-level additive Schwarz inexact preconditioned Newton (ASPIN) algorithm
is defined as: Find the solution x∗ of (2.3) by solving the nonlinearly precon-
ditioned system,

F (1)(x) = 0, (2.7)

using INB with an initial guess x(0). It is noted that Ĵ (1) can be viewed
as the original Jacobian J preconditioned by a one-level additive Schwarz
preconditioner. Hence, according the classical Schwarz theory, Ĵ (1) is well-
conditioned only for the case with a small number of processors. In other
words, the number of linear iterations for solving the global Jacobian system
is expected to increase as the number of processors increases.

2.3 A linear coarse component for the nonlinear preconditioner

The one-level ASPIN is robust, but not linearly scalable with respect to the
number of processors. A coarse preconditioner is required to couple the local
subdomain preconditioners. One such coarse preconditioner, which is proposed
and tested in [5,17], is based on a nonlinear coarse problem. To be more
specific, the nonlinear coarse system can be defined as follows. Consider the
nonlinear coarse system, F c(x∗c) = 0, where F c is the discretization of original
nonlinear PDEs on a coarse mesh T H covering the domain Ω. The solution x∗c
is assumed to be uniquely determined and available through a preprocessing
step. We define the coarse-to-fine and fine-to-coarse mesh transfer operators.
Let {φH

j (ξ), j = 1, . . . ,m} be the finite element basis functions on the coarse
mesh, where m is the total number of coarse mesh points in T H . We define
an (3n− 2r)×(3m− 2q) matrix Ih

H , the coarse-to-fine extension matrix, as

Ih
H = [E1 E2 · · ·En]T ,

where the block matrix Ei of size 3× (3m− 2q) is given by

Ei =


(eh

H)v
i 0 0

0 (eh
H)v

i 0

0 0 (eh
H)p

i



and the row vector (eh
H)v

i of length m− q for the velocity is given by

(eh
H)v

i =
[
φH

1 (ξi), φ
H
2 (ξi), . . . φ

H
m(ξi)

]
, ξi ∈ T h \ Γ
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for i = 1, . . . , n−r. Similarly, the row vector (eh
H)p

i of length m for the pressure
is given by

(eh
H)p

i =
[
φH

1 (ξi), φ
H
2 (ξi), . . . φ

H
m(ξi)

]
, ξi ∈ T h

for i = 1, . . . , n. A global coarse-to-fine extension operator Ih
H can be defined

as the transpose of IH
h . Then, the coarse function is defined as

S0(x) = Sc(x)− x∗c , (2.8)

where y = Sc(x) : R3n−2r → R3m−2q is the solution of the nonlinear coarse
system,

F c(y) = IH
h F (x). (2.9)

Note that to evaluate the coarse function S0(x) at any point, one needs to
solve the nonlinear system of equations defined in (2.9). In general, this coarse
system is easier to solve than the fine mesh system, but a Newton-Krylov-
Schwarz method is sometimes not good enough to converge the system. There-
fore, as suggested in [5,17], the one-level ASPIN is used to solve the coarse
system. Although the one-level ASPIN-based coarse preconditioner provides
good mathematical properties, such as acceleration of the convergence of the
linear iterative method, in practice, the computational cost of solving many
coarse systems is usually high. Numerical experiments [17] show that the one-
level ASPIN based coarse preconditioner works fine only for a small number
of processors; for a large number of processors, a more efficient coarse precon-
ditioner is needed.

In this paper, we introduce a new coarse system, which is linear, and the
system is constructed by a linearization of the nonlinear coarse system men-
tioned above, using a Taylor approximation. The coarse function evaluation
requires only the solution of a linear system, and hence the computational
cost is reduced considerably compared to the algorithm of [5].

To define the coarse function T0 : R3n−2r → R3m−2q, we introduce a projection
T c : R3n−2r → R3m−2q as the solution of the linearized coarse system of (2.9)

F c(x∗c) + J c(x∗c)(T
c(x)− x∗c) = IH

h F (x), (2.10)

for any given x ∈ R3n−2r. Note that the left-hand side of (2.10) is a first-order
Taylor approximation of F c(x) at the exact coarse-mesh solution, x∗c . Since
F c(x∗c) = 0, we can rewrite (2.10) as

T c(x) = x∗c + (J c(x∗c))
−1IH

h F (x),
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provided that J c(x∗c) is nonsingular. It is easy to see that T c(x∗) can be com-
puted without knowing the exact solution x∗ of F , and T c(x∗) = x∗c . Then the
coarse function can be defined as

T0(x) = T c(x)− T c(x∗) = (J c(x∗c))
−1IH

h F (x)

and its Jacobian is given by

∂T0(x)

∂x
= (J c(x∗c))

−1IH
h J(x). (2.11)

We now define a new two-level additive nonlinearly preconditioned function

F (2)(x) = Ih
HT0(x) +

N∑
i=1

RT
i Ti(x), (2.12)

and by combining (2.11) and (2.6), we obtain an approximation of the Jacobian
of F (2) in the form

Ĵ (2)(x) =

{
Ih
H(J c(x∗c))

−1IH
h +

N∑
i=1

[
RT

i (Ji(x))−1Ri

]}
J(x).

The two-level Schwarz preconditioned inexact Newton algorithm with a lin-
ear coarse solver is defined as: Find the solution x∗ of (2.3) by solving the
nonlinearly preconditioned system

F (2)(x) = 0, (2.13)

using INB with an initial guess x(0).

Remark 1 In the linear case, F (x) = 0, where F (x) = Ax − b, each com-
ponent of F (2) can be written down explicitly as T0 = (Ac)−1IH

h (Ax − b) and
Ti = (Ai)

−1Ri(Ax − b). Here (Ac)−1 and A−1
i are the subspace inverses of

Ac = IH
h AIh

H and Ai = RiART
i , respectively. Hence,

F (2)(x) =

{
Ih
H(Ac)−1(IH

h ) +
( N∑

i=1

RT
i A−1

i Ri

)}
(Ax− b) = 0.

This is indeed a two-level additive Schwarz preconditioned linear system.

The details of the two-level ASPIN are given below. Let x(0) be an initial guess
and x(k) the current approximate solution. Then a new approximate solution
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x(k+1) can be computed with the two-level ASPIN algorithm as follows:

Algorithm 1 (Two-level ASPIN) .

Step 1: Evaluate the nonlinear residual F (2)(x) at x(k) through the following
steps:

(1) Find w
(k)
0 = T0(x

(k)) by solving the linear coarse problem,

J c(x∗c)zc = IH
h F (x(k)). (2.14)

(2) Find w
(k)
i = Ti(x

(k)) by solving in parallel, the local nonlinear systems,

Gi(w) ≡ Fi(x
(k) − w) = 0. (2.15)

(3) Form the global residual

F (2)(x(k)) = Ih
Hw

(k)
0 +

N∑
i=1

RT
i w

(k)
i .

Step 2: Check the stopping condition on ‖F (2)(x(k))‖2. If ‖F (2)(x(k))‖2 is
small enough, stop, otherwise, continue.
Step 3: Find an inexact Newton direction s(k) by solving the following Ja-
cobian system approximately using a Krylov subspace method

Ĵ (2)s(k) = −F (2)(x(k)) (2.16)

in the sense that

‖F (2)(x(k)) + Ĵ (2)(x(k))s(k)‖2 ≤ ηk‖F (2)(x(k))‖2 (2.17)

for some ηk ∈ [0, 1).

Step 4: Scale the search direction s(k) ← smax

‖s(k)‖2
s(k) if ‖s(k)‖2 ≥ smax.

Step 5: Compute a new approximate solution

x(k+1) = x(k) + λ(k)s(k),

where λ(k) is a damping parameter determined by the standard backtracking
procedure.

Remark 2 No preconditioning is used in the solution of the linear system in
Step 3 of Algorithm 1. In fact, Ĵ can be viewed as the Jacobian matrix for the
original function, J preconditioned by a two-level additive Schwarz precon-
ditioner, where the coarse part of the preconditioner Ih

H(J c(IH
h x(k)))−1IH

h is
approximated by Ih

H(J c(x∗c))
−1IH

h . Hence, Ĵ is well-conditioned through non-
linear preconditioning as long as x∗c is close to IH

h x(k).
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Remark 3 Although each component of Ĵ (2) is sparse, Ĵ (2) itself is often
dense and expensive to form explicitly. However, if a Krylov subspace method is
applied to the global Jacobian system (2.16), only the Jacobian-vector product
is required. For example, in a distributed-memory parallel implementation, the
operation, u = Ĵ (2)v, consists of eight phases:

(1) Perform the matrix-vector multiply, w = Jv, in parallel.
(2) On each subdomain, do the following three steps:

(a) Collect the data from the subdomain and its neighboring subdomains,
wi = Riw,

(b) Solve Jixi = wi using a sparse direct solver, and
(c) Send/receive the partial solutions to/from its neighboring subdomain,

x̂i = RT
i xi.

(3) Restrict yc = IH
h w

(4) Solve the coarse linear system, J c(x∗c)z
c = yc

(5) Extend y = Ih
Hzc

(6) Compute the sum, u =
∑N

i=1 x̂i + y.

Remark 4 As suggested by Dennis and Schnabel on page 129 of [8], we in-
clude a re-scaling of the search direction s(k) in Step 4 if ‖s(k)‖2 ≥ smax before
entering the backtracking step. In general, the purposes of this step length con-
straint are to avoid very large steps during the calculation and to prevent the
intermediate solution from leaving the domain of our interest. The scalar smax

is provided by the user. The optimal choices of smax are determined empirically
in practices and often depend on some physical parameter such as the Reynolds
number, the mesh size and the number of processors. In [13], numerical results
show that the re-scaling step plays an important role in enhancing the robust-
ness of ASPIN for solving incompressible Navier-Stokes equations, especially
when Re is high. With careful choices of smax, the efficiency of ASPIN can be
improved as well.

Remark 5 The linear coarse problem,

J c(x∗c)x
c = yc,

has to be solved with different right-hand side vectors yc as part of nonlinear
and linear iterations, for example, in the first sub-step of Step 1 of Algorithm
1 and Step 4 in Remark 3. Since in our algorithm the coarse matrix remains
unchanged throughout the global nonlinear iterations as well as the global lin-
ear iterations, an LU decomposition based direct solver rather than a parallel
iterative methods is a better choice. The coarse matrix needs to be decom-
posed only once at the beginning of the iterations, and two matrices, upper
and lower triangular matrices are stored. Then we perform the forward and
backward substitutions at each coarse solve.
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3 Numerical results

In this section, we consider a two-dimensional lid-driven cavity flow problem
as a benchmark for evaluating the parallel performance of the new two-level
ASPIN. The detailed description of the lid-driven cavity flow problem can be
found in [10]. The Reynolds number (Re) for this test problem is defined as
Re = 1/ν, where ν is the dynamic viscosity in (2.1). Our main focus is on
the impact of the coarse mesh size and the subdomain overlapping size on the
convergence rate and the overall execution time. In addition, we investigate the
linear and nonlinear scalability of ASPIN for different values of the Reynolds
number.

3.1 Implementation details and parameter selections

We use the Portable, Extensible Toolkits for Scientific computations (PETSc)
[1] for the parallel implementation and obtain all numerical results on a clus-
ter of workstations. In our implementation, after ordering the mesh points,
we number the unknown nodal values in the order of uh

1 , uh
2 , and ph at

each mesh point. The mesh points are grouped subdomain by subdomain
for the purpose of parallel processing. Regular uniform checkerboard par-
titions, 2×2, 4×4, and 8×8, are used for our experiments. The number of
subdomains is always the same as the number of processors, np. Three fine
meshes are considered: 64×64, 128×128, and 256×256. The total number of
unknowns ranges from 12K to 190K. The coarse mesh size is varied from
16×16 to 80×80. Since non-nested coarse mesh is used, np and the coarse
mesh size are not related. The overlapping size for the fine mesh is defined
as ovlp = max{(L′

x − Lx)/2h
K , (L′

y − Ly)/2h
K} for both interior subdomains

and those touching the boundary. Since square elements are used for the test
problem, the elemental diameter hKs are the same and equal to the fine mesh
size. L′

x and L′
y are defined here as the side lengths of the overlapping sub-

domain Ωh,δ
i in the x-direction and the y-direction, respectively. Similarly, Lx

and Ly are defined as the side lengths of the non-overlapping subdomain Ωh
i

in the x-direction and the y-direction, respectively. At the fine mesh level, we
use INB with the zero vectors as the initial guesses for the global nonlinear
system (2.5) and the local nonlinear systems (2.15). The original Jacobian J
as well as the local Jacobian matrices are constructed approximately by a mul-
ticolored forward finite difference method. During local nonlinear iterations,
the LU decomposition with the forward and backward substitutions is em-
ployed for solving each local Jacobian system. The global nonlinear iteration
is stopped if the condition

‖F (2)(x(k))‖2 ≤ 10−6‖F (2)(x(0))‖2
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is satisfied, and the success of the two-level ASPIN is declared if the above con-
dition is satisfied. The local nonlinear iteration on each subdomain is stopped
if the condition

‖Gi(w
(k)
i,l )‖2 ≤ 10−4‖Gi(w

(k)
i,0 )‖2

is satisfied. We use GMRES with no preconditioning for solving the global
Jacobian system (2.16). The global linear iteration is stopped if the condition

‖F (2)(x(k)) + Ĵ (2)(x(k))s(k)‖2 ≤ 10−4‖F (2)(x(k))‖2

is satisfied. At the coarse mesh level, the redundant LU approach is used for
solving the coarse linear systems. In this approach, each processor performs
the LU decomposition of the same coarse matrix in parallel, then the forward
and backward substitutions are done sequentially at each stage of the coarse
solve. All numerical results reported here are based on the optimal choices of
smax that result in the fastest overall convergence in terms of the computing
time for each case.

3.2 The effect of the coarse mesh size

In Table 1, we study the effect of the coarse mesh size on the global nonlinear
and linear iterations and the computing time of the two-level ASPIN for Re =
104. In this set of numerical experiments, we keep the subdomain mesh size
fixed and scale up the total fine mesh size and the number of processors. The
coarse mesh size is varied from 16×16 to 80×80 and the maximum ratio of
fine-to-coarse mesh size is limited to 1/2. Cases in which the coarse mesh
sizes are equal to or larger than a half of the fine mesh size are not tested
(marked as “–” in Table 1). The label “**” in the table indicates that the 8×8
uniform partitioning of the 20×20 coarse mesh is not available. From the cases
in Table 1, we observe that by increasing the coarse mesh size, we reduce not
only the average number of global linear iterations significantly as we increase
the number of processors from 4 to 64, but also the number of global nonlinear
iterations, especially in the 64-processor case. Roughly H ∼ 8/3h is needed to
achieve the fastest convergence in terms of the computing time. Also, although
not shown in the table, we note that the optimal coarse mesh size depends
somewhat on the Reynolds number. The coarse mesh size for low-Reynolds
number flows does not need to be as fine as it does for the high Reynolds
number flows. For example, only H ∼ 4h is required for optimal performance
in the cases of Re = 103 and 5×104.
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Table 1
Varying the coarse mesh size for Re = 104. Fixed subdomain mesh size: 32×32.
ovlp = 2. The coarse problem is solved by the redundant LU approach. NGNI: the
number of global nonlinear iterations. ANGLI: the average number of global linear
iterations. so

max: the optimal size of smax.

Fine (np) Coarse 16×16 20×20 32×32 40×40 64×64 80×80

64×64 (4) NGNI 14 11 11 – – –

ANGLI 52.6 42.3 28.3 – – –

Time (sec) 182.3 150.1 136.0 – – –

so
max 1.0 1.5 1.5 – – –

128×128 (16) NGNI 19 16 13 10 11 –

ANGLI 102 80.1 51.5 47.2 42.3 –

Time (sec) 444.5 246.3 181.8 150.6 162.2 –

so
max 2.0 3.0 3.0 5.0 4.0 –

256×256 (64) NGNI 22 ** 17 17 14 10

ANGLI 238 ** 81.5 68.0 61.4 66.1

Time (sec) 408.5 ** 250.5 250.4 236.2 215.8

so
max 4.0 ** 5.0 5.0 7.0 18.0

3.3 The effect of the overlapping size

Table 2 shows the effect of the overlapping size on the two-level ASPIN. We
vary the overlapping size from 2 to 5. From the table, we find that similar
to elliptical-dominated PDEs, the average number of global linear iterations
decreases monotonically as the overlapping size increases. However, except in
the case of the smallest problem with 4 processors, the total computing time
of the two-level ASPIN increases due mainly to the increase in the size of
nonlinear subdomain problems. Therefore, in general, our recommendation is
to use small overlap (ovlp = 2) for the two-level ASPIN.

3.4 Parallel performance study

To evaluate the parallel performance, we use the so-called fixed-subdomain-
size-per-processor scalability. Using this metric, we study how the algorithm
behaves as the number of unknowns and processors increase simultaneously
while the subdomain mesh size is kept a constant. The scalability study of
the two-level ASPIN for different values of Reynolds number is summarized in
Table 3. For the purpose of comparison, we also include the results obtained
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Table 2
Varying the overlapping size, ovlp, for Re = 104. Fixed subdomain mesh size: 32×32.
The coarse problem is solved by the redundant LU approach. NGNI: the number of
global nonlinear iterations. ANGLI: the average number of global linear iterations

Fine/Coarse (np) ovlp 2 3 4 5

64×64/32×32 (4) NGNI 11 11 10 10

ANGLI 28.3 26.0 25.7 24.8

Time (sec) 136.0 130.6 134.4 147.3

128×128/40×40 (16) NGNI 10 11 11 11

ANGLI 47.2 42.5 40.9 39.3

Time (sec) 150.6 169.8 180.5 195.2

256×256/80×80 (64) NGNI 10 10 11 13

ANGLI 66.1 65.1 57.0 50.8

Time (sec) 215.8 242.4 282.7 336.6

using the one-level ASPIN. The scaled efficiency η shown in Table 3 is defined
by η = T4/Tnp , where T4 and Tnp are the execution times obtained by using 4
and np processors, respectively. In an ideal case, η ∼ 1.

From Table 3, we see that although the one-level ASPIN is robust, it is not
scalable either nonlinearly or linearly. The average number of global linear it-
erations grows significantly as np is increased and in the 64 processor case, only
36% scaled efficiency is achieved. On the other hand, the two-level ASPIN with
a minimum overlap and a sufficiently fine coarse mesh is more scalable with
respect to the Reynolds number, the mesh size, and the number of processors.
Linear and nonlinear iterations for the two-level ASPIN are not especially
sensitive to the increase of those factors. Furthermore, the two-level ASPIN is
always two to three times faster than the one-level ASPIN for the case of 64
processors and the scaled efficiency of the two-level ASPIN maintains at least
60% for all cases. To understand the degradation of the scaled efficiency in
the two-level ASPIN, we measure some key components in the algorithm. This
includes the two-level nonlinearly preconditioned function evaluation, both for
the local subdomain part in (2.15) and the global coarse part in (2.14), the
construction of the Jacobian for the original function, which is needed in Step
(1) of Remark 3, and the coarse solution required as part of preconditioned
GMRES iterations in Step (4) of Remark 3. Table 4 presents the breakdown
of the timing results for the case of Re = 104. As expected, the most time-
consuming component in the two-level ASPIN is the local subdomain part of
the global function evaluation, taking over 60% of the total computing time
for each case, since each processor needs to solve several nonlinear subdomain
systems. Exact LU decomposition for solving the local Jacobian system and

15



the construction of the local Jacobian matrices using multi-colored finite dif-
ferences both take a lot of time. However, these two operations are purely
local and do not involve any communications so that time spent in this stage
remains nearly constant as the number of processor is increased. On the other
hand, the linear coarse part of the global function evaluation (the first column
of Table 4) is very efficient, taking less than 0.5% of the total computing time.
From the same table, we also find that the only non-scalable component in
the two-level ASPIN is the coarse solution required in part of the precondi-
tioned GMRES iterations. It is expected that the computing time spent on
this component will be dominant when a large-scale problem is solved using
a large number of processors. Replacing a redundant direct coarse solver by a
parallel direct solver, such as SuperLU Dist [7] may be a solution. However,
the performance of a parallel direct solver depends heavily on the ordering
and pivoting strategies. How these factors affect the overall performance of
the two-level ASPIN needs to be investigated further.

4 Concluding remarks

We presented a new two-level ASPIN algorithm and its application to incom-
pressible Navier-Stokes equations. The two-level nonlinear preconditioner is
constructed by using a local nonlinear overlapping Schwarz domain decompo-
sition method and a global linear coarse solver. We obtained some encouraging
numerical results for a moderate number of processors. We show that the new
two-level ASPIN maintains fast convergence and robustness properties of the
one-level ASPIN. In addition, if the coarse mesh size is fine enough, the new
algorithm provides better nonlinear and linear scalability with respect to the
number of processors. To show the applicability of ASPIN for larger prob-
lems, more applications with complex geometry need to be tested using larger
numbers of processors.
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