THE USE OF POINTWISE INTERPOLATION IN DOMAIN
DECOMPOSITION METHODS WITH NON-NESTED MESHES *
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Abstract. In this paper, we develop a new technique, and a corresponding theory, for Schwarz type
overlapping domain decomposition methods for solving large sparse linear systems which arise from finite
element discretization of elliptic partial differential equations. The theory provides an optimal convergence
of an additive Schwarz algorithm that is constructed with a non-nested coarse space, and a not necessarily
shape regular subdomain partitioning. The theory is also applicable to the graph partitioning algorithms
recently developed, [5, 15], for problems defined on unstructured meshes.
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1. Introduction. Considerable interest has developed in Schwarz type overlapping
domain decomposition methods for the numerical solution of partial differential equations;
see for examples [2, 3, 4, 6, 7, 12, 13, 18] and the references therein. This class of methods
offers a great deal of parallelism and is very promising for modern parallel computers. The
success of the methods depends heavily on the existence of a uniformly, or nearly uniformly,
bounded decomposition of the function space in which the problem is defined. In this paper,
we further enrich the Schwarz theory by providing a new technique of constructing a uni-
formly bounded decomposition of the problem space, which is more flexible and convenient
for large, geometrically complicated, practical problems. It has a convergence rate that is
similar to that of the regular Dryja-Widlund type decomposition [13], and does not require
the coarse space to be a subspace of the original finite element space, in which the partial
differential equation is discretized. Nor does it require that the collection of the un-extended
subdomains forms a regular finite element subdivision.

We shall only discuss a two-level additive Schwarz algorithm, with a coarse and a fine
grid. It is well known that the fine grid determines the accuracy of the discrete problem
and that the only role of the coarse grid is to accelerate the convergence of the iterative
method. In this paper, we try to minimize the inter-connection between the two grids by
using a not necessarily nested coarse grid. As a result, the same coarse grid can be used
even if the fine grid is locally refined, or re-meshed, to deal with the local singularity of the
underlining problem. There are a number of ways to handle the communication between
the two grids, in this paper, we insist on the computationally simplest one, i.e., pointwise
interpolation. We show that this, sometimes troublesome, interpolation operator behaves
well in both two- and three-dimensional space in our applications. For technical reasons, we
assume that the coarse mesh is quasi-uniform, however, no such assumption is needed for
the fine mesh. Other recent developments along this line can be found in [9, 10, 11, 19, 20].
Some theory and experiments with the pointwise interpolation in the context of non-nested
multigrid methods can be found in [1, 8, 16, 17], and references therein.

In [14], Dryja and Widlund developed a general theory for Schwarz type algorithms
which has a convergence rate characterized by the quantity (1 + H/d), where H measures
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the diameters of the subdomains (as well as the coarse mesh size) and ¢ the overlap between
neighboring subdomains. This quantity indicates that subdomains with uniform aspect
ratio is desired. In this paper, we develop a result involving min{l + H2/6%, 1+ H/é +
H./é6 - H./H}, where H, is the size of the coarse grid, which generally has nothing to do
with the subdomain diameter H. The first quantity is independent of H. This allows us
to use subdomains of arbitrary shape. As a consequence, our theory applies to the type
of unstructured mesh problems decomposed by some graph-based partitioning techniques
discussed by Cai and Saad in [5]. The second quantity reduces to that of Dryja and Widlund
when H ~ H., and comes into play in the case of small overlap.

When solving a system of equations arising from the discretization of non-selfadjoint, or
indefinite, or nonlinear elliptic problems by a Schwarz type algorithm, a fine enough coarse
mesh space is usually used in order to make the convergence rate optimal, see e.g., [6, 7].
In such a case, using the Dryja-Widlund construction [13] would normally result in a large
number of subdomains that have to be combined in order for the number of subproblems
to fit the number of processors of a parallel computer. With our new construction, the size
of the coarse mesh is totally independent of the number of subdomains.

In this paper, we shall focus only on a simple self-adjoint model problem, namely the
homogeneous Dirichlet boundary value problem: Find u} € V;, C H}(2) such that

(1) a(up,v) = (f,v), Yvée WV,

where the bilinear form a(wu,v) is defined by a(u,v) = [, VuVodz, f(z) € L*(Q) is given,
and Q is an open bounded polygon in R? (d = 2 or 3), with boundary 9. We shall use
a(+,+) and || - ||, to denote the inner product and norm of H}(Q). To introduce the finite
element discretization and the finite element space Vj,, we let Q;, = {k;} be a standard finite
element triangulation of ! that satisfies the minimal angle condition, i.e., in two dimensional
case Y, > Yo > 0, for any k € Q. Here 7, is the minimal interior angle of k € Qp and g
a constant. We do not assume that the triangulation is quasi-uniform. We allow the use
of highly refined unstructured meshes. We define the corresponding finite element space
Vi, C H3(R) as the regular piecewise linear continuous triangular finite element space on .
Let us denote by h the maximum diameter of this finite element mesh which will be used
later to restrict the size of the coarse grid.

Throughout this paper, ¢ and C, with or without subscripts, denote generic, strictly
positive constants which are independent of any of the mesh parameters.

2. A non-nested coarse mesh space. We begin by introducing several notations.
Let Qp. = {7} be a quasi-uniform triangulation of € and 7; one of the triangles whose
diameter is of order H.. Qp, will be referred to as the coarse grid. Here H. is the maximum
diameter of this coarse triangulation. We assume, throughout this paper, that each fine
triangle intersects with a finite number of coarse triangles,

(2) h<CH., and
(3) |ki|§C|Tj|7 ifkiﬂT]‘#@.
Here and in the rest of the paper, | - | means the area in R? and the volume in R3. Let

Vi, C HY(Q) be a shape-regular finite element space over (2 consisting of piecewise linear
continuous functions. Note that, in general, Vi, ¢ V},, and it is not necessary for Vi, to
have the same type of elements as V. Let Il : C°(2) — V}, be the usual piecewise linear
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continuous interpolation operator, which uses values only at the nodal points of the fine
mesh triangulation. This operator has the following properties.

LEMMA 2.1. There exists a constant C' > 0, independent of h, H., such that

(i) Mavlla < Cllollas Yo € Vi

(ii) v = pvllp2q) < Ch||vlla, Vv € V..

We note that estimates (i) and (ii) do not hold if v is an arbitrary function in H'(Q).
However, we need the bounds only for functions in the subspace Vg,. A proof of Lemma
2.1 will be given in §4. Let

Vo = UV, = {v € V},, there exists w € V., such that v = Il w},

which is a subspace of Vj,. We shall use the L? projection operator Qg : H}(Q) — Vg,
defined by (Qp,u,v) = (u,v), for any u € H}(Q), and v € Vy,.

We now partition  into non-overlapping subdomains {€;}, such that no 9€; cuts
through any elements k;, and Q = Uf\;lﬁi. Note that we do not assume that {€;} forms a
regular finite element subdivision of {2, nor that the diameters of €; are of the same order.
In practice, a graph based partitioning technique, such as those introduced in [5, 15], can
often be used to obtain €;, especially if £, is an unstructured grid. To obtain an overlapping
decomposition of 1, we extend each ; to a larger subdomain Q; D {};, which is also assumed
not to cut any fine mesh triangles, such that distance(@Q; NN, NN > cb, Vi, fora
constant ¢ > 0. Here ¢ > 0 will be referred to as the overlapping size. For each Q;, we
define a finite element space V; = V3, N HA(;) and extended by zero outside Q. In the next
lemma, we prove that the decomposition V, = Vo + Vi 4+ -+ - 4+ Vv exists, and is uniformly
bounded.

LEMMA 2.2. For any v € V},, there exist v; € Vi, ¢ =1,---, N, and vé € Vg, such that
v = Hhvé +v1 4+ -+ vy, and in addition, there exists a constant Cy > 0 independent of
the mesh parameters, such that

N 2
! H;
(4) [looll2 + D lluillz < Co (1 + 5 ) 10]12, Yo € Vi
=1

Proof. For any v € Vj, let vé =Qpv e Vg, v = Hhvé € Voand w =v—1vy € V).
Because of the boundedness of Q. in the H} norm, we clearly have ||vglla < C|v[ls. Let
{6:(2)} be a partition of unity of Q corresponding to {Q;}, such that |V8;|, < C/é and
SN 8i(x) = 1 (] - |2 is the usual Euclidean norm in R? or R?). Of course, §; are smooth
and 0 < 6; < 1. We define v; = I[,(;w) € V,. It is easy to see that vy + Zf\; v = v,
therefore the existence of such a decomposition is proved.

Let k be a single triangular element in Q; with diameter h. We assume that the average
of 8; over k is éug. It can be seen that

(5) |0il gy < 2000 hwlFp gy + 200 ((6; = 850)w) 772 -

Because Il,w = w, the first term on the right-hand side of this inequality presents no
problems. We next estimate the second term. With the help of the element-wise inverse
inequality, we have

~ 1 ~
1 (6 = Oip)w) [y < € (1T (6 = Bip)w) || 2 s

(6) 1h 1
Co 5 llwleg = € 5 llwlew,
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where (' depends only on the finite element subdivision of . The fact |6; — éi,k| < Ch/é
is also used. By taking the sum over all elements k € Q;, we arrive at the estimate

1

which implies that

g sz wty < € (Il + Slwltage)).

Here the fact that each point in € is covered by only a finite number of overlapping subdo-
mains is assumed. To bound the first term on the right-hand side of (8) in terms of ||v]|,,
we use the boundedness of the operators II;, and @, in the H} norm, i.e.,

(9) [w]la = {lv = WnQu.vlla < C([Jo]la + [|[@r.0]la) < Cl[o]a

To estimate the second term on the right-hand side of (8) in terms of ||v||,, we need the L?
regularity estimates of Il ( (ii) of Lemma 2.1) and Qp,, which give us

(10) lwllzoy < llv = @reollie ) + @m0 = NnQu, vl L2(q) < CHe||v]la:

Recall that h < C' H, by assumption. The proof of the lemma thus follows immediately by
combining the estimates (8), (9) and (10). O

3. An estimate for the small overlap case. The decomposition bound (4), pro-
vided in the previous section, grows at a rate proportional to 1/62, which is rather large
when a small overlap is used. In this section, we discuss an alternative estimate, for the
same decomposition described in Lemma 2.2, and prove that it is in fact proportional only
to 1/6. However, for the small overlap case, we do need to assume that the Q;s have ap-
proximately the same size, i.e., if H; is the diameter of Q;, then there exists a constant 3,
such that 1 > min{H;}/ max{H;} > p.

LeMMA 3.1 (DRYJA AND WIDLUND[14]). Let T's; C Q. be the set of points that is
within a distance of 6 of 9Q; N Q. Then

A0 ollaq,) < € (04 Dol + slolag) ) - Vo e 1@, i
Here H is the maximum diameter of these Q;s. The constant C may depend on 3.

LEMMA 3.2. The same decomposition described in Lemma 2.2 exists and is bounded in
the sense that there exists a constant Coy > 0 independent of the mesh parameters, such that

(12) I + bl < Co (14 2+ 22 oz, o e v

=1

Proof. The proof is nearly the same as that for Lemma 2.2, except that we make use
of the fact that 8; — Hk_OlkaQ\ng 0

We note that the aspect ratio, or diameter, of the subdomains, H, appears in the
estimate in the case when small overlap is being used. The factor H is introduced into
the estimate by Lemma 3.1. We do not know whether it can be removed, or replaced by
a quantity that is independent of the subdomain aspect ratio. We also comment that if
H.~ H, then the result of Lemma 3.2 coincides with that of [14].
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4. The boundedness of II,. If the interpolation operator 1l is considered as a map
from the space H}(Q) to V}, then it generally does not satisfy the bounds stated in Lemma
2.1, because the values of a H'(Q)-function are not necessarily well defined at the mesh
points. In this section, we prove, however, that Il restricted to the subspace Vg, C HL(Q),
is indeed bounded. In a trivial case, when Vg, C Vj then (i) of Lemma 2.1 holds as an
equality with C' = 1, and (ii) holds with €' = 0. The elementary proof provided in this
section applies to both d = 2 and 3. Several different proofs have been obtained recently,
see [9, 11, 19, 20].

We begin with part (i) of Lemma 2.1. The essential step is to establish the estimate

(13) Mul3gy < C (X [Vul-l3) [k, Yu € Vi,

where k € , and the summation is taken over all 7 € 5, that have non-empty intersection
with k. We note that Vul|; is a constant vector(since u is linear in 7) and | - | is the usual
Euclidean norm in R?.

If k& belongs completely to a single 7, then (13) is obviously true. Otherwise, we denote
by A;, 1 =1,---,d+ 1, the vertices of k, and it is known that

d+1
(14) Mhulipgy <C 30 (u(Ay) = (A7) ki

1,y=14<yg

Here hy, is the diameter of k. Let A;A; be the line segment connecting points A; and A;.

We assume that A;A; is cut into [ pieces by the coarse tetrahedra 7,7,---, 77, and u(-) is
linear on each piece. By the assumption made at the beginning of Section 2, [ is finite.
Therefore, by using the triangle inequality and the mean value theorem, we have

2
3.
5 'tk

I
(15) (u(As) = u(A)f 2 37 Vul

(13) can thus be proved by combining the estimates (15) and (14). For 7 € Qp_, we denote
by 7;,7 = 1,---,11, all the coarse tetrahedra that share at least one of the fine tetrahedra
with 7 (i.e., this fine tetrahedron intersects with both 7 and 7;). {1 is a finite number. By

summing (13) over all k; € Qp,¢ = 1,---,m, whose intersection with 7 is non-empty, we
obtain

m ll 2
(16) W ulfpn iy < D Mnulfpy < CY 2| Vuls, | 7l

=1 7=1

Here we used that fact that, for each 7;, the sum of the areas of the fine tetrahedra that
intersect with 7; is less than C'|7;|, because of the assumption h < C H,. The proof for
part (i) of Lemma 2.1 follows immediately by summing (16) over all 7 in Qp, (the number
of repetitions, for each 7, in the summation is finite).

We now turn to the proof of part (ii) of Lemma 2.1. Let k be a fine tetrahedron and
A one of its vertices, which implies that w(A) = 0. Here w = u — lHu. We estimate the
integral

(17) ol = [ 0?0000 = [ (w(X) - w(a)fan.



Let XA be the line segment connecting points X and A. Using the same argument as
before, we assume X A is cut into I, pieces by coarse tetrahedra 7J, - - -,T/;. Since w is linear
on each piece, we have

2
Rz
o 1k

lo
(18) (w(X) = w(4)? <2 30 Vol

By combining the results of (17), (18) and assumptions made at the beginning Section 2,
we arrive at

(19) w22y < CREY IV w[Ta(y,s

where the sum is taken over all coarse tetrahedra which intersect with k. Summing (19)
over all k£ and noting that the number of coarse tetrahedra overlap with each k is finite, we
obtain

[w]|72(q) < Ch?[Vw|faq)-

Thus, the proof of part (ii) of Lemma 2.1 follows immediately by using the result of part
(i)

5. An additive Schwarz method based on a non-nested coarse space. In this
section, we define and analyze an additive Schwarz algorithm for solving the finite element
problem (1). For 1 < ¢ < N, we define the operator P; : V}, — V; by a( Piu, ¢) = a(u, ¢), for
any u € V, and ¢ € V;, and define P(; 2V — Vi, by a(P(;u,qb) = a(u,1l,¢), for any u € V),
and ¢ € Vi,. Let Fy = HhP(;. Similar operators were used in the context of non-nested
subspaces based multigrid methods, see e.g., [1, 17]. Let P be defined by P = Ef\;o F. 1t
can be seen easily that P is symmetric in the inner product a(-,-). Let g = g0 + Zf\il g
and g; = P;uy. Following the Schwarz theory of Dryja and Widlund [13], it can be shown
that, if the operator P is nonsingular, then the linear operator equation

(20) Puj, =g

has the same solution as that of (1). We show in the next theorem that P is not only
nonsingular but also uniformly bounded from both above and below. A proof can be
obtained by using the standard techniques in [13].

THEOREM 5.1. The following estimate holds,

ca(u,u) < a(Pu,u) < Calu,u), Yu € Vy,
where ¢ = max{1/[Co (1 + H2/6*)],1/[Co(1 + H/§ + HZ/6H)]}.
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