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1.1 Introduction

Overlapping Schwarz is a family of preconditioners for solving large sparse
linear systems arising from the discretization of partial differential equations,
see e.g. [CS96, DW94, SBGI5]. Here we report on our preliminary experiences
on using it in the implicit solution of unsteady Navier-Stokes (N.-S.) equations
discretized on two-dimensional unstructured meshes. One of the advantages
of implicit methods 1s that they allow the time steps to be determined
solely based on the physics of the fluid flow, not on the stability property
of the time discretization scheme, [Ven95, VM95]. To advance in time, a
large linear system of equations must be solved. Depending of the size of
the time step, and other flow parameters, the conditioning of the matrix
may change drastically from time step to time step. To solve these systems
iteratively, it is necessary to have a family of preconditioners whose strength
can be controlled. Overlapping Schwarz methods do have these properties, for
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examples, they have adjustable strength, controlled by (1) using the inexact
solution techniques for solving local problems; (2) including or excluding the
coarse preconditioner; (3) changing the size of the coarse mesh.

In this paper, we investigate the difference between the Schwarz family
of preconditioners and the global ILU preconditioners. Within the Schwarz
preconditioners, we try to understand the role of the overlapping size between
subdomains, the effect of the number of subdomains and inexact subdomain
solvers. At each time step, we solve the resulting global linear system by the
preconditioned GMRES method, and in the preconditioning stage, we solve
the local subdomain problems again by the preconditioned GMRES method,
with different preconditioners and stopping conditions. Since the construction
of the preconditioner is very expensive, we explore the possibility of re-using
the preconditioner for several time steps. For steady state problems, some
studies can be found in [GKM94]. For other recent development in unsteady
calculations, we refer the reader to [BL95, Ven95, VM95].

1.2 Governing Equations

Let Q C R? be the flow domain and T its boundary. The conservative form of
the N.-S. equations is given by

%W+Vf~}'(w(f,t)): évf~R(W(f,t)), (1.1)

where W = (p, pu, pv, E)T, and # and t denote the spatial and temporal
variables. The detailed definition of F and R can be found in [FFL93]. In the
above expressions, p is the density, U= (u,v)T is the velocity vector and E
is the total energy per unit volume.

We are interested in unsteady, external flows around an airfoil as pictured
in Fig.1. The domain boundary is I' = T'y, U ' and the far field velocity
is [joo. On the wall boundary T'y,, a no-slip condition on U and a Dirichlet
condition on the temperature 7T are imposed, i.e., U=0and T = Tw. No
boundary conditions are specified for the density. In the far field, the viscous
effect is assumed to be negligible, therefore a uniform free-stream velocity
[joo is imposed on ['o,. More precisely, p = po, [joo = (cos a,sin a)?, and
the pressure po, = 1/(yM2)), where « is the angle of attack and M., is the
free-stream Mach number.

1.3 Discrete Formulation

Let the temporal variable ¢ be discretized as ¢*T1 = ¢" + 6¢*, where "

is the discrete time increment. We also consider the increment s\t =
Wntl — W where W™ is an approximation of W(-,t") . We note that
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Figure 1 The computational domain

when an algorithm is written in the “delta” form, the increment §Wn+! is
the unknown variable rather than W7"%!. Here, we use a first-order accurate

temporal difference approximation, namely, the backward Euler scheme given
as

swntl

stntl

where F™ and R™ are approximations of F(W(-,t")) and R(W(-,t")),
respectively.

The computational domain is discretized by an unstructured, triangular
grid. We locate the variables at the vertices of the grid. This gives rise to a cell-
vertex scheme. The space of solutions is taken to be the the space of piecewise
linear functions. The discrete system is obtained via a mixed Galerkin finite
element /finite volume formulation; see e.g. Farhat et al. [FFL93], and Fezoui
and Stoufflet [FS89]. In short, the discrete system for (1.2) is obtained by using
a “mass-lumping” technique for the time derivative, a first-order MUSCL
scheme with a Roe approximate Riemann solver for the convective terms of
the LHS, and a Galerkin finite element (first-order quadrature integration) for
the diffusive terms of the LHS. For the RHS, we use a second-order MUSCL
scheme with a Roe approximate Riemann solver and Van Albada’s limiting

+ T T Wt o (TR v ew 2 v cF T 4 v R, ()
e -

procedure for the convective terms, and a Galerkin finite element method for
the diffusive terms.

For the initial values, we assume that W, satisfies strongly the wall
boundary conditions on I'y, and the far field boundary conditions at infinity.
In the interior nodes of 2, Wy takes the free-stream boundary condition.

1.4 Algebraic Schwarz Algorithms

At each time step, we solve a linear system, Au = f, where A is a
nonsyminetric sparse matrix with symmetric non-zero pattern. Each element
of A can be considered as a 4 x 4 matrix, and each unknown of the vector u 1s
a ‘4-size’ vector. Thus, there is a bijection between unknowns and vertices. We
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denote the set of vertices (or nodes) by "= {1,---,n}, where n represents the
total number of nodes (or unknowns). To define algebraic Schwarz algorithms
[CS96], we first partition the set A into ng nonoverlapping subsets N; whose
union is . We use the TOP/DOMDEC mesh partitioning package of Farhat
et al. [FLS95] to obtain sets A;. The recursive spectral bisection method with
certain optimization is used in the partitioning. The number of nodes in each
N; is roughly the same. To generate an overlapping partition, we further
expand each subgrid A; by ovlp number of neighboring nodes, denoted as N;.

We denote by L; the vector space spanned by the set N;. For each subspace
L; we define an orthogonal projection operator I; as follows: I; is a n x n matrix
whose diagonal elements are set to 4 x 4 identity matrices if the corresponding
nodes belong to N; and to 4 x 4 zero matrices otherwise. With this we define
A; = I; Al; , which is an extension to the whole subspace, of the restriction of
A to L;. Note that although A; 1s not invertible, we can invert its restriction
to the subspace spanned by A, and define Ai_l = I ((Ai)|L,)_1 I;. The
additive and multiplicative Schwarz algorithms can now be simply described
as follows: Solve the equation M Au = M f by a Krylov subspace method,
where M = Al_l +-- ~—|—A501 , for the additive Schwarz algorithm, and M A =
I—(I—A7T A (I - A7y for the multiplicative Schwarz algorithm. We
remark that in the algorithms discussed above all subproblems are assumed
to be solved exactly; e.g., with sparse Gaussian elimination. In our numerical
experiments we also consider inexact solvers.

1.5 Numerical Results

The main goal of this section is to compare the effectiveness of various
preconditioners for unsteady subsonic and transonic flows. The experiments
were performed using PETSc [GSM95] on a DEC Sable workstation.

We consider flows past a NACAQ012 airfoil at an angle of attack of 30
degrees and Reynolds number 800. Problem 1 corresponds to a Mach number
0.1 and CFL 100, Problem 2 to a Mach number 0.8 and CFL 100, and Problem
3 to a Mach number 0.8 and CFL 25. The iteration numbers and CPU times
that we report are for one single time step and for a non-dimensionalized
time far from the initial transient regime, i.e. time equals to 3.0. In the
CPU time, we do not include the time for constructing the preconditioner
since the same preconditioner can be frozen for several time steps. We used
left preconditioners and we stopped the iterations when the [ norm of the
preconditioned residuals were reduced by a factor of 1076,

We found that we can take CFL up to 100 without losing much accuracy for
the unstructured grid with 12280 nodes; see the left figure in Fig.2. Therefore,
using the implicit methods has a clear advantage over the explicit one in which
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the CFL must be less than 1.0.

Table 3 illustrates the results for additive and multiplicative Schwarz
methods. The multiplicative OSM had better convergence properties although
it is not as parallelizable as the additive OSM. We can also see that a small
overlap gave generally less GMRES iterations than zero overlap. For Problem
2 and 3, we detected some pathological cases in which an increase in the
overlap resulted in more GMRES iterations. We note, however, that when
the subdomains were relatively large, a small overlap resulted in a significant
decrease in the CPU time. We will expect promising results when we run
our code on parallel machines with coarse granularity. We observed a slight
increase in the number of GMRES iterations when we increased the number
of subdomains, thus, it is not clear that for unsteady problems an additional
coarse space would decrease the CPU time.

Table 4 represents the behavior of the GMRES/OSM iteration numbers
with different inexact local solvers. We found that if we increased the overlap,
the number of GMRES iterations increased when the local problems are
not solved to a certain tolerance. We tested several cases of additive OSM
(8 subdomains) with GMRES/ILU(fill) as the inexact solvers. The best
performance in terms of CPU time was zero overlap and zero fill with
local stopping tolerance 1.072; see Table 1. We noted also that as a local
solvers, using LU gave smaller CPU time than using GMRES/ILU(0). We
note, however, that for larger problems we might obtain different conclusions.

We studied the behavior of other preconditioners; see Table 2. We observed
that the 4 x 4 block Jacobi iterative method required a very large number of
iterations. The family of global ILU(fill) gave the best results but it would
not be trivial to code them on parallel machines.

Finally, we examined the effect of using the same preconditioner for several
time steps, thus, we did not need to form the preconditioner or factorize it at
every time step; see the right figure in Fig.2. We considered a case in which
we used LU local solver in one time step and then used this LU factorization
as a preconditioner for local problems (with one Richardson iteration) for the
following time steps. We found that for additive OSM with 8 subdomains and
1 overlap the convergence did not deteriorate for 25 time steps.

1.6 Conclusions

We report the performance of GMRES/ILU( fill) and GMRES/OSM methods
for solving systems that arise from the discretization of unsteady, compressible
N.-S equations. The best results in terms of CPU time were obtained for the
GMRES /ILU( fill) methods, where fill is around 5. However, the TLU( fill)
is not easy to parallelize. We then tested several additive OSM. For problems
in which the size of the subdomains were not too small, we observed that we
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reduced the CPU time if we used a small overlap rather than zero overlap. We
note that the local problems were solved by Gaussian elimination. When using
inexact local solvers, we noted that an overlap did not improve performance,
and that the inexact local solver GMRES/ILU(0) gave the smallest CPU
time; we must mention however that this observation may change if we can
run problems with large subdomains. We also found that a slight increase in
the number of GMRES iterations occurred when we increased the number
of subdomains. We suspect that an improvement in performance might be
obtained if we were to add a coarse space.
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Figure 2 The left figure compares the solutions obtained by both explicit and

implicit methods. The right figure shows the number of GMRES iterations when

preconditioners are frozen for a number of time steps.

Table 1 GMRES iteration number and CPU time in seconds using Additive

OSM with zero overlap. Number of nodes is 12280

. We use GMRES/ILU(0) as

local solvers reducing the local preconditioned residual by = 2.0e™!.

Problem 1 Problem 2 Problem 3
SUB = 8 17 (31.9) 14 (22.5) 8 (11.4)
SUB = 16 20 (29.3) 13 (17.6) 8 (9.9)
SUB = 32 23 (33.5) 15 (19.3) 10 (11.8)
SUB = 64 25 (33.3) 17 (21.1) 10 (11.6)
SUB = 128 29 (37.5) 20 (23.6) 12 (13.5)
SUB = 256 35 (43.9) 22 (25.5) 13 (14.0)
SUB = 512 41 (49.9) 27 (30.2) 16 (16.7)

Table 2 Iteration numbers and (CPU time i

n seconds) to reduce the

preconditioned residual to 1.0¢~% using GMRES/ILU( f4ll) and Richardson/(4x

4 block Jacobi).

Problem 1 Problem 2 Problem 3
1X4 BJ 219 (44.4) 190 (40.3) 98 (18.0)
FILL = 0 34 (29.1) 21 (17.1) 10 (7.7)
FILL = 1 23 (21.4) 13 (13.6) 7 (6.8)
FILL = 2 19 (20.1) 12 (13.5) 6 (6.9)
FILL = 3 9 (10.9) 6 (8.18) 1 (5.7)
FILL = 4 7 (9.1) 5 (7.5) 5 (4.8)
FILL = 5 6 (8.4) 1 (6.5) 3 (5.1)
FILL = 6 6 (8.7) 1 (6.7) 2 (5.6)
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Table 3 Tteration numbers and CPU time per time step GMRES/OSM

(tolerance = 1.06_6) for Pro

blems 1, 2 and 3 using 12280 nodes. As local solvers
we use LU.

Problem 1 ovlp 0 ovlp 1 ovlp 2 ovlp 3
SUB = 8 (a) 15 (27.8) 11 (22.4) 10 (22.5) 9 (21.8)
(m) 8 (17.4) 5 (12.5) 4 (11.4) 4 (12.3)
SUB = 16(a) 17 (27.4) 13 (23.9) 13 (26.9) 12 (27.9)
(m) 10 (18.9) 6 (13.6) 5 (13.0) 5 (14.7)
SUB = 32(a) 19 (25.4) 16 (26.5) 15 (30.1) 15 (36.0)
(m) 11 (17.5) 7 (14.4) 6 (15.2) 5 (15.5)
SUB = 64(a) 21 (25.6) 20 (31.1) 20 (40.0) 19 (47.7)
(m) 12 (16.8) 9 (17.4) 7 (17.9) 6 (19.7)
Problem 2
SUB = 8 (a) 13 (24.0) 9 (18.3) 7 (16.1) 8 (19.5)
(m) 7 (15.6) 3 (8.2) 3 (9.1) 3 (9.7)
SUB = 16(a) 13 (20.8) 9 (16.7) 10 (20.8) 10 (23.3)
(m) 7 (13.5) 4 (9.5) 4 (10.8) 3 (9.6)
SUB = 32(a) 14 (18.4) 12 (19.8) 11 (22.0) 12 (28.6)
(m) 8 (12.9) 5 (10.6) 4 (10.7) 3 (10.1)
SUB = 64(a) 15 (17.7) 15 (23.6) 15 (30.6) 15 (38.6)
(m) 9 (12.6) 5 (10.2) 1 (11.0) 1 (13.9)
Problem 3
SUB = 8 (a) 8 (15.1) 7 (14.6) 6 (14.0) 6 (15.0)
(m) 5 (11.4) 2 (6.1) 2 (6.7) 2 (7.2)
SUB = 16(a) 8 (13.0) 7 (13.3) 8 (16.9) 8 (19.1)
(m) 5 (10.0) 3 (7.6) 3 (8.5) 2 (7.1)
SUB = 32(a) 10 (13.3) 9 (15.2) 8 (16.5) 9 (21.8)
(m) 6 (5.9) 3 (7.0) 3 (8.5) 3 (7.6)
SUB = 64(a) 10 (11.8) 11 (17.0) 11 (22.1) 12 (30.3)
(m) 6 (8.7) 3 (6.7) 3 (8.8) 3 (11.1)
ovlp=0 Problem 1 Problem 2 Problem 3
SUB = 128 25 (26.7) 17 (17.5) 11 (11.3)
SUB = 256 31 (29.7) 20 (18.1) 13 (11.4)
SUB = 512 39 (35.7) 26 (21.5) 15 (11.7)

Table 4 GMRES iteration numbers to reduce the preconditioned residual of

Problem 1 (12280 nodes)

to 1.0e™° using GMRES/(Additive OSM) with 8

subdomains. We use GMRES/ILU(0) inexact local with different local solvers

stopping criteria.

tolerance ovip =0 ovip =1 _ovip =2 _ ovip = 3
1 iteration 35 43 16 48
5.0e— 1 23 32 33 33
3.0e— 1 18 20 19 19
1.0e— 1 16 15 14 14
1.0e—2 15 12 11 10
exact 15 11 10 5




