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��� Introduction

Overlapping Schwarz is a family of preconditioners for solving large sparse
linear systems arising from the discretization of partial di�erential equations�
see e�g� �CS��� DW��� SBG��	� Here we report on our preliminary experiences
on using it in the implicit solution of unsteady Navier�Stokes 
N��S�� equations
discretized on two�dimensional unstructured meshes� One of the advantages
of implicit methods is that they allow the time steps to be determined
solely based on the physics of the �uid �ow� not on the stability property
of the time discretization scheme� �Ven��� VM��	� To advance in time� a
large linear system of equations must be solved� Depending of the size of
the time step� and other �ow parameters� the conditioning of the matrix
may change drastically from time step to time step� To solve these systems
iteratively� it is necessary to have a family of preconditioners whose strength
can be controlled� Overlapping Schwarz methods do have these properties� for
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� SCHWARZ PRECONDITIONERS

examples� they have adjustable strength� controlled by 

� using the inexact
solution techniques for solving local problems� 
�� including or excluding the
coarse preconditioner� 
�� changing the size of the coarse mesh�
In this paper� we investigate the di�erence between the Schwarz family

of preconditioners and the global ILU preconditioners� Within the Schwarz
preconditioners� we try to understand the role of the overlapping size between
subdomains� the e�ect of the number of subdomains and inexact subdomain
solvers� At each time step� we solve the resulting global linear system by the
preconditioned GMRES method� and in the preconditioning stage� we solve
the local subdomain problems again by the preconditioned GMRES method�
with di�erent preconditioners and stopping conditions� Since the construction
of the preconditioner is very expensive� we explore the possibility of re�using
the preconditioner for several time steps� For steady state problems� some
studies can be found in �GKM��	� For other recent development in unsteady
calculations� we refer the reader to �BL��� Ven��� VM��	�

��� Governing Equations

Let � � �� be the �ow domain and � its boundary� The conservative form of
the N��S� equations is given by

�

�t
W �r�x � F�W��x� t�� �

�

Re
r�x � R�W ��x� t��� �����

where W � 
�� �u� �v�E�T � and �x and t denote the spatial and temporal
variables� The detailed de�nition of F and R can be found in �FFL��	� In the

above expressions� � is the density� �U � 
u� v�T is the velocity vector and E
is the total energy per unit volume�
We are interested in unsteady� external �ows around an airfoil as pictured

in Fig�
� The domain boundary is � � �w � �� and the far �eld velocity
is �U�� On the wall boundary �w� a no�slip condition on �U and a Dirichlet
condition on the temperature T are imposed� i�e�� �U � �� and T � Tw� No
boundary conditions are speci�ed for the density� In the far �eld� the viscous
e�ect is assumed to be negligible� therefore a uniform free�stream velocity
�U� is imposed on ��� More precisely� � � ��� �U� � 
cos �� sin ��T � and
the pressure p� � 
�
�M�

��� where � is the angle of attack and M� is the
free�stream Mach number�

��� Discrete Formulation

Let the temporal variable t be discretized as tn�� � tn � �tn� where �tn

is the discrete time increment� We also consider the increment �Wn�� �
Wn�� � Wn� where Wn is an approximation of W 
�� tn� � We note that
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Figure � The computational domain

�

�w

��

�U� �

when an algorithm is written in the �delta� form� the increment �Wn�� is
the unknown variable rather than Wn��� Here� we use a �rst�order accurate
temporal di�erence approximation� namely� the backward Euler scheme given
as

�Wn��

�tn��
� �rW �Fn� � r�x� �W

n��
�

�

Re
�rW �Rn� � r�x� �W

n�� � r � ��Fn� �
�

Re
r �R

n
� �����

where Fn and Rn are approximations of F
W 
�� tn�� and R
W 
�� tn���
respectively�
The computational domain is discretized by an unstructured� triangular

grid� We locate the variables at the vertices of the grid� This gives rise to a cell�
vertex scheme� The space of solutions is taken to be the the space of piecewise
linear functions� The discrete system is obtained via a mixed Galerkin �nite
element��nite volume formulation� see e�g� Farhat et al� �FFL��	� and Fezoui
and Stou�et �FS��	� In short� the discrete system for 

��� is obtained by using
a �mass�lumping� technique for the time derivative� a �rst�order MUSCL
scheme with a Roe approximate Riemann solver for the convective terms of
the LHS� and a Galerkin �nite element 
�rst�order quadrature integration� for
the di�usive terms of the LHS� For the RHS� we use a second�order MUSCL
scheme with a Roe approximate Riemann solver and Van Albada�s limiting
procedure for the convective terms� and a Galerkin �nite element method for
the di�usive terms�
For the initial values� we assume that W� satis�es strongly the wall

boundary conditions on �w and the far �eld boundary conditions at in�nity�
In the interior nodes of �� W� takes the free�stream boundary condition�

��� Algebraic Schwarz Algorithms

At each time step� we solve a linear system� Au � f� where A is a
nonsymmetric sparse matrix with symmetric non�zero pattern� Each element
of A can be considered as a ��� matrix� and each unknown of the vector u is
a ���size� vector� Thus� there is a bijection between unknowns and vertices� We
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denote the set of vertices 
or nodes� byN � f
� � � � � ng� where n represents the
total number of nodes 
or unknowns�� To de�ne algebraic Schwarz algorithms
�CS��	� we �rst partition the set N into n� nonoverlapping subsets Ni whose
union is N � We use the TOP�DOMDEC mesh partitioning package of Farhat
et al� �FLS��	 to obtain sets Ni� The recursive spectral bisection method with
certain optimization is used in the partitioning� The number of nodes in each
Ni is roughly the same� To generate an overlapping partition� we further
expand each subgrid Ni by ovlp number of neighboring nodes� denoted as �Ni�
We denote by Li the vector space spanned by the set �Ni� For each subspace

Li we de�ne an orthogonal projection operator Ii as follows� Ii is a n�nmatrix
whose diagonal elements are set to ��� identity matrices if the corresponding
nodes belong to �Ni and to �� � zero matrices otherwise� With this we de�ne
Ai � IiAIi � which is an extension to the whole subspace� of the restriction of
A to Li� Note that although Ai is not invertible� we can invert its restriction

to the subspace spanned by �Ni� and de�ne A��
i

� Ii
�

Ai�jLi

���
Ii� The

additive and multiplicative Schwarz algorithms can now be simply described
as follows� Solve the equation MAu � Mf by a Krylov subspace method�
where M � A��� � � � ��A��

n�
� for the additive Schwarz algorithm� and M A �

I � 
I � A��
�

A� � � � 
I � A��
n�
� for the multiplicative Schwarz algorithm� We

remark that in the algorithms discussed above all subproblems are assumed
to be solved exactly� e�g�� with sparse Gaussian elimination� In our numerical
experiments we also consider inexact solvers�

��� Numerical Results

The main goal of this section is to compare the e�ectiveness of various
preconditioners for unsteady subsonic and transonic �ows� The experiments
were performed using PETSc �GSM��	 on a DEC Sable workstation�
We consider �ows past a NACA��
� airfoil at an angle of attack of ��

degrees and Reynolds number ���� Problem 
 corresponds to a Mach number
��
 and CFL 
��� Problem � to a Mach number ��� and CFL 
��� and Problem
� to a Mach number ��� and CFL ��� The iteration numbers and CPU times
that we report are for one single time step and for a non�dimensionalized
time far from the initial transient regime� i�e� time equals to ���� In the
CPU time� we do not include the time for constructing the preconditioner
since the same preconditioner can be frozen for several time steps� We used
left preconditioners and we stopped the iterations when the l� norm of the
preconditioned residuals were reduced by a factor of 
����
We found that we can take CFL up to 
�� without losing much accuracy for

the unstructured grid with 
���� nodes� see the left �gure in Fig��� Therefore�
using the implicit methods has a clear advantage over the explicit one in which
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the CFL must be less than 
���
Table � illustrates the results for additive and multiplicative Schwarz

methods� The multiplicative OSM had better convergence properties although
it is not as parallelizable as the additive OSM� We can also see that a small
overlap gave generally less GMRES iterations than zero overlap� For Problem
� and �� we detected some pathological cases in which an increase in the
overlap resulted in more GMRES iterations� We note� however� that when
the subdomains were relatively large� a small overlap resulted in a signi�cant
decrease in the CPU time� We will expect promising results when we run
our code on parallel machines with coarse granularity� We observed a slight
increase in the number of GMRES iterations when we increased the number
of subdomains� thus� it is not clear that for unsteady problems an additional
coarse space would decrease the CPU time�
Table � represents the behavior of the GMRES�OSM iteration numbers

with di�erent inexact local solvers� We found that if we increased the overlap�
the number of GMRES iterations increased when the local problems are
not solved to a certain tolerance� We tested several cases of additive OSM

� subdomains� with GMRES�ILU
fill� as the inexact solvers� The best
performance in terms of CPU time was zero overlap and zero fill with
local stopping tolerance 
����� see Table 
� We noted also that as a local
solvers� using LU gave smaller CPU time than using GMRES�ILU
��� We
note� however� that for larger problems we might obtain di�erent conclusions�
We studied the behavior of other preconditioners� see Table �� We observed

that the �� � block Jacobi iterative method required a very large number of
iterations� The family of global ILU
fill� gave the best results but it would
not be trivial to code them on parallel machines�
Finally� we examined the e�ect of using the same preconditioner for several

time steps� thus� we did not need to form the preconditioner or factorize it at
every time step� see the right �gure in Fig��� We considered a case in which
we used LU local solver in one time step and then used this LU factorization
as a preconditioner for local problems 
with one Richardson iteration� for the
following time steps� We found that for additive OSM with � subdomains and

 overlap the convergence did not deteriorate for �� time steps�

��� Conclusions

We report the performance of GMRES�ILU
fill� and GMRES�OSMmethods
for solving systems that arise from the discretization of unsteady� compressible
N��S equations� The best results in terms of CPU time were obtained for the
GMRES �ILU
fill� methods� where fill is around �� However� the ILU
fill�
is not easy to parallelize� We then tested several additive OSM� For problems
in which the size of the subdomains were not too small� we observed that we
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reduced the CPU time if we used a small overlap rather than zero overlap� We
note that the local problems were solved by Gaussian elimination�When using
inexact local solvers� we noted that an overlap did not improve performance�
and that the inexact local solver GMRES�ILU
�� gave the smallest CPU
time� we must mention however that this observation may change if we can
run problems with large subdomains� We also found that a slight increase in
the number of GMRES iterations occurred when we increased the number
of subdomains� We suspect that an improvement in performance might be
obtained if we were to add a coarse space�
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Figure � The left �gure compares the solutions obtained by both explicit and

implicit methods	 The right �gure shows the number of GMRES iterations when

preconditioners are frozen for a number of time steps	

Table � GMRES iteration number and CPU time in seconds using Additive

OSM with zero overlap	 Number of nodes is �����	 We use GMRES�ILU
�� as

local solvers reducing the local preconditioned residual by � ���e��	

Problem � Problem � Problem �
SUB � 	 �
 ������ �� ����
� 	 ������
SUB � �� �� ������ �� ��
��� 	 � ����
SUB � �� �� ����
� �
 ������ �� ����	�
SUB � �� �
 ������ �
 ������ �� ������
SUB � ��	 �� ��
�
� �� ������ �� ����
�
SUB � �
� �
 ������ �� ��
�
� �� ������
SUB � 
�� �� ������ �
 ������ �� ����
�

Table � Iteration numbers and 
CPU time in seconds� to reduce the

preconditioned residual to ���e�� using GMRES�ILU
fill� and Richardson�
��

� block Jacobi�	

Problem � Problem � Problem �
�X� BJ ��� ������ ��� ������ �	 ��	���
FILL � � �� ������ �� ��
��� �� �
�
�
FILL � � �� ������ �� ������ 
 ���	�
FILL � � �� ������ �� ����
� � �����
FILL � � � ������ � �	��	� � �
�
�
FILL � � 
 � ���� 
 � 
�
� � ���	�
FILL � 
 � � 	��� � � ��
� � �
���
FILL � � � � 	�
� � � ��
� � �����
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Table � Iteration numbers and CPU time per time step GMRES�OSM


tolerance � ���e��� for Problems �� � and � using ����� nodes	 As local solvers

we use LU	

Problem � ovlp � ovlp � ovlp � ovlp �
SUB � 	 �a� �
 ��
�	� �� ������ �� ����
� � ����	�

�m� 	 ��
��� 
 ����
� � ������ � ������
SUB � ���a� �
 ��
��� �� ������ �� ������ �� ��
���

�m� �� ��	��� � ������ 
 ������ 
 ����
�
SUB � ���a� �� ��
��� �� ����
� �
 ������ �
 ������

�m� �� ��
�
� 
 ������ � ��
��� 
 ��
�
�
SUB � ���a� �� ��
��� �� ������ �� ������ �� ��
�
�

�m� �� ����	� � ��
��� 
 ��
��� � ����
�
Problem �
SUB � 	 �a� �� ������ � ��	��� 
 ������ 	 ����
�

�m� 
 ��
��� � �	��� � ����� � ���
�
SUB � ���a� �� ����	� � ����
� �� ����	� �� ������

�m� 
 ����
� � ���
� � ����	� � �����
SUB � ���a� �� ��	��� �� ����	� �� ������ �� ��	���

�m� 	 ������ 
 ������ � ����
� � ������
SUB � ���a� �
 ��
�
� �
 ������ �
 ������ �
 ��	���

�m� � ������ 
 ������ � ������ � ������
Problem �
SUB � 	 �a� 	 ��
��� 
 ������ � ������ � ��
���

�m� 
 ������ � ����� � ���
� � �
���
SUB � ���a� 	 ������ 
 ������ 	 ������ 	 ������

�m� 
 ������ � �
��� � �	�
� � �
���
SUB � ���a� �� ������ � ��
��� 	 ����
� � ����	�

�m� � ����� � �
��� � �	�
� � �
���
SUB � ���a� �� ����	� �� ��
��� �� ������ �� ������

�m� � �	�
� � ���
� � �	�	� � ������

ovlp�� Problem � Problem � Problem �
SUB � ��	 �
 ����
� �
 ��
�
� �� ������
SUB � �
� �� ����
� �� ��	��� �� ������
SUB � 
�� �� ��
�
� �� ����
� �
 ����
�

Table � GMRES iteration numbers to reduce the preconditioned residual of

Problem � 
����� nodes� to ���e�� using GMRES�
Additive OSM� with �

subdomains	 We use GMRES�ILU
�� inexact local with di�erent local solvers

stopping criteria	

tolerance ovlp � � ovlp � � ovlp � � ovlp � �
� iteration �
 �� �� �	


��e�� �� �� �� ��

���e�� �	 �� �� ��

���e�� �� �
 �� ��

���e�� �
 �� �� ��
exact �
 �� �� �


