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ABSTRACT
Several of the top ranked supercomputers are based on the

hybrid architecture consisting of a large number of CPUs

and GPUs. Very high performance has been obtained for

problems with special structures, such as FFT-based im-

age processing or N-body based particle calculations. How-

ever, for the class of problems described by partial differen-

tial equations discretized by finite difference (or other mesh

based methods such as finite element) methods, obtaining

even reasonably good performance on a CPU/GPU cluster

is challenging. In this paper, we propose and test a hybrid

algorithm that matches the architecture of the cluster. The

scalability of the approach is realized by a domain decompo-

sition method, and the high performance on GPU is realized

by using a smoothed aggregation based algebraic multigrid

method. Incomplete factorization, which performs beauti-

fully on CPU but poorly on GPU, is completely avoided in

the approach. We report some numerical results obtained by

using up to 32 CPU/GPU pairs for solving a PDE problem

with up to 32 millions unknowns.

1. INTRODUCTION
Many scientific and engineering problems can be studied by

solving partial differential equations (PDEs) discretized by a

mesh based method such as finite element or finite difference.

Mature and general purpose computational algorithms and

high performance software are available for CPU-based large

scale supercomputers, for example, PETSc [1]. In the past

few years, several of the top ranked supercomputers have

moved to hybrid architectures consisting of a large number

of CPUs and GPUs. Tremendous speedup has been ob-

served, in comparison with CPU-only calculations, for some

computational problems with special structures, for exam-

ple, Fast Fourier Transforms (FFT) on a single GPU card

[13] and GPU clusters [3], Fast Multipole Method (FMM)

based particle simulations [7, 9, 10]. Although success has

been made in solving dense linear algebra problems using

GPUs (see, e.g., [18]), most of the general sparse matrix

based parallel solvers don’t work well on GPUs, because of

the unstructured and irregular nature of the problems and,

in particular, the poor performance of incomplete factoriza-

tion algorithms that are often in the inner-most loop of a

preconditioned iterative solver. Efforts have been made in



exploiting GPU for sparse matrix calculations. For exam-

ple, the development version [12] of PETSc begins recently

to have GPU support via the Cusp [4] and Thrust [17] li-

braries from NVIDIA. Rocha et. al. [14] implemented a

Jacobi-preconditioned conjugate gradient method to solve

sparse linear systems arising in cardiac electrophysiology,

where both CSR and ELLPACK matrix formats are inves-

tigated. More advanced GPU-based preconditioning tech-

niques such as the algebraic multigrid method is employed

in [5] and about 100 times speedup is observed on an eight-

GPU configuration than a typical server CPU core.

In this paper, in order to avoid the use of incomplete factor-

ization based components in a preconditioner, we propose

and test a hybrid algorithm based on a domain decompo-

sition method and an algebraic multigrid method. The ba-

sic assumption required by the proposed algorithms is that

equal number of CPUs and GPUs are used on each of the

computing node in the cluster. The extension of the algo-

rithm to the case of more GPU cards attached to a CPU

is straightforward, but has not been studied in this paper.

In the algorithm, the partial differential equation is first di-

vided by a partition of the underlying mesh into a number

of overlapping submeshes, each is mapped onto a pair of

CPU and GPU. Within a computing node, we perform the

subdomain preconditioning operation on the GPU and all

the other operations on the CPU. To take architectural ad-

vantage of the GPU card, we use a smoothed aggregation

(SA) based multigrid method which further partitions the

submesh into several much smaller aggregates and the basis

of each aggregate gives rise to a set of degrees of freedom

on the coarse level. The coarsest level of the SA subdomain

preconditioner is solved by a dense LU solver.

The rest of the paper is organized as follows. In Section 2,

a hybrid algorithm based on an additive Schwarz precondi-

tioner and an SA subdomain solver is introduced. Numerical

results on a NVIDIA Tesla S1070 cluster are then provided

in Section 3 to show the efficiency of the proposed method.

The paper is concluded in Section 4.

2. A HYBRID ALGORITHM
In many applications, the discretization of a PDE with finite

element or finite difference method results in a linear system

of equations

Ax = b, (1)

where A is a large sparse matrix and b a given vector. In this

paper, we assume that A is also symmetric positive definite,

which is true if, for example, the PDE is a self-adjoint elliptic

problem. There are several software packages offering effi-

cient parallel solvers for such problems on supercomputers

made of CPUs [1, 6, 8, 19], but algorithms and software that

are efficient on a cluster of CPU/GPUs are still lacking. We

consider the class of preconditioned iterative methods that

solves the preconditioned system

M−1Ax = M−1b,

where the preconditioner M is an approximation of A−1.

We first make two observations:

• The performance of this approach depends heavily on

how M−1 is defined and implemented, because the

computation of M−1v is usually much more expensive

than the computation of Av in terms of the compute

time, the communication time, and the memory re-

quirement.

• The accuracy of the solution of (1) has (almost) noth-

ing to do with M−1. This means that we have lots of

flexibilities about how M−1 is computed, and some-

times, we don’t have to compute it too accurately in

order to obtain higher level of efficiency.

Base on the above observations, we propose to allocate all

calculations related to M−1 to the GPUs and keep all other

calculations on the CPUs. On the GPUs, we approximately

compute M−1 using a suitable algorithm. Such an approach

may not be the best in terms of the total number of floating

point operations, but offers much better results in terms of

the total compute time.

Because our algorithm is based on domain decomposition

and multigrid methods, we further assume that associated

with the matrix A, there is a computational domain Ω, with



which we obtain mesh based partitions of A. This assump-

tion can be replaced by any graph-based algorithm if the

mesh information is not avaliable.

For the model problem studied in this paper, we employ an

additive Schwarz preconditioned Conjugate Gradient (CG)

algorithm ([15]) to solve (1). The procedure of the precon-

ditioned CG algorithm is provided in Algorithm 1, where

M−1 is a Schwarz preconditioner.

Algorithm 1 Preconditioned CG for Ax = b

1. r0 = b−Ax0, z0 = M−1r0, p0 = z0

2. do j = 0, 1, ... until convergence

3. αj = (rj , zj)/(Apj , pj)

4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. zj+1 = M−1rj+1

7. βj = (rj+1, zj+1)/(rj , zj)

8. pj+1 = zj+1 + βjpj

9. end do

Denote np as the number of CPU/GPU pairs. We partition

the computational domain Ω into np non-overlapping sub-

domains. An overlapping decomposition can be obtained by

extending each subdomain with δ mesh layers. Each overlap-

ping subdomain Ωk is managed by an MPI process assigned

to a CPU/GPU pair. The procedure of the additive Schwarz

(AS) preconditioner is provided in Algorithm 2, where RT
k

and Rk serve as a restriction operator and an interpolation

operator respectively; their detailed definitions can be found

in, e.g., [16].

Algorithm 2 Additive Schwarz: z ← AS(r)

1. For k = 1, 2, ..., np

Restriction: rk = Rkr

Solve the subdomain problem zk = B−1
k rk

End for

2. Interpolation: z ←
np∑
k=1

RT
k rk

For each CPU/GPU pair, the subdomain matrix C = Bk

and the right-hand side vector d = rk are both copied to

Ωk

GPU: SA

CPU: CG

�

�
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Figure 1: Sketch of the additive Schwarz precon-

ditioned CG algorithm. Left: overlapping domain

decomposition of a two-dimensional rectangular do-

main. Right: Each subdomain is assigned to a MPI

process that is further assigned to a CPU/GPU pair.

the local memory of the GPU card before solving the sub-

domain problem on GPU using a SA algorithm described

later. Then the solution vector x = zk on the GPU side is

copied back to the local memory of the CPU, which requires

synchronization to make sure the global vector is completely

assembled. Note that the subdomain matrix is copied to

GPU only once and does not need to be copied back. The

data between CPU and GPU within each MPI process is

typically transfered through the PCI-Express path between

the host CPU memory and the GPU memory. A sketch

of the additive Schwarz preconditioned CG algorithm is il-

lustrated in Figure 1. We implement the additive Schwarz

preconditioned CG algorithm on a cluster of CPU/GPUs,

where SA is allocated and executed on the GPUs and all

other operations are performed on the CPUs.

We employ a smoothed aggregation (SA) based algebraic

multigrid method to solve the subdomain problems B−1
k in

the AS preconditioner. The SA algorithm [2] is defined re-

cursively by using several operators. Let P be the prolonga-

tion operator which is a full rank matrix whose range con-

tains the algebraically smoothed components of the residual

corresponding to an approximate solution of Cx = d, where

C and d are the subdomain matrix and the right-hand side

for a subdomain problem. With the prolongator, we can de-

fine a coarse version of C, as Cc = PTCP , and an iterative

method is defined as

x← x− Py,



where y is obtained by solving a coarse grid problem

Ccy = PT (Cx− d).

Let n = n1 be the dimension of C, and denote the fine level

linear system Cx = d as C1x = d1. We introduce a sequence

of coarse matrices as

Cl+1 = (Ill+1)TClI
l
l+1,

where the prolongator Ill+1 is defined as the product of a

given prolongation smoother, Sl, and a tentative prolonga-

tor, P l
l+1

Ill+1 = SlP
l
l+1

for l = 1, ..., L− 1. One popular choice for the prolongation

smoother is Richardson’s method:

Sl = I − 4

3λl
Cl

where λl is an upper bound on the spectral radius of the

matrix on level l. At each level, for the system Clx = dl, we

need a smoother

x← (ITlCl)x+ Tldl,

where Tl is an approximate inverse of Cl for l = 1, ..., L− 1.

Then, SA can be defined as in Algorithm 3.

Algorithm 3 Smoothed Aggregation: xl = AMGl(xl, dl)

0. If on the coarsest level, then:

Solve Clxl = dl by direct LU, else:

1. Apply µ steps of smoothing to Clx = dl

2. Coarse grid correction:

(a). Set dl+1 = (Ill+1)T (dl − Cxl) and xl+1 = 0

(b). Solve the coarse problem Bl+1xl+1 = dl+1

by γ applications of xl+1 = AMGl+1(xl+1, dl+1)

(c). Then correct the solution on the level l

by xl ← xl + Ill+1xl+1

3. Apply µ steps of smoothing to Clx = dl.

Since SA is only used as part of a preconditioner, as observed

earlier in the paper, the convergence of SA is not neces-

sary. In our implementation, we only apply the smoother

for a small number (µ) of sweeps for the best performance

in terms of the total compute time. Increasing the number

of smoothing steps helps in reducing the total number of

outer iterations, but may increase the overall compute time

Figure 2: Some possible aggregate candidates on a

regular rectangular mesh.

according to our experiments. Between levels, we use either

a Jacobi or a polynomial smoother. When the later is used,

the basis functions we choose are the Chebyshev polynomials

of the first kind. The polynomial of matrices can be com-

puted by a sequence of sparse matrix-vector multiplication

(SpMV) that can be applied in a very efficient way.

In the SA algorithm, a hierarchy of coarse problems is con-

structed based on the linear system itself and on certain

assumptions about the smooth components of the error. At

each level, the prolongation matrix is defined by a decom-

position of the set of degrees of freedom associated with the

matrix Cl into an aggregate partition, {C1
l , ....C

Nl
l } where

each aggregate Ci
l is formed based on the connectivity and

strength of connection between the elements of Cl, without

the need for explicit knowledge of the problem geometry.

Figure 2 shows a few possible aggregate candidates on a

regular rectangular mesh. The level hierarchy in the SA al-

gorithm is extended until the number of rows in the matrix

of the coarsest level is less than 500, which usually results

in 4 ∼ 5 levels. Then the matrix on the coarsest level is

factorized using a dense LU factorization and is solved by

an triangular solver. We employ the MAGMA library[11]

which is a dense linear algebra library similar to LAPACK

but for heterogeneous/hybrid architectures.

The performance of SA on a GPU depends mainly on three

operations: BLAS-axpy (in 2.(a), 2.(c)), SpMV (in 1., 3.),

and the dense triangular solver (0.). On a GPU, thread

blocks are assigned to handle rows of the vector associated

with some unknowns and the corresponding rows of matrix.



3. NUMERICAL EXPERIMENTS
The experiments were carried out on a NVIDIA S1070 GPU

cluster with 14 nodes. Each node is equipped with two quad-

core 2.26 GHz Intel Xeon E5520 CPU processors and four

1.3 GHz NVIDIA Tesla C1060 GPU cards. Nodes are in-

terconnected by a 20Gb InfiniBand DDR network. CUDA

Toolkit 3.2 are used for programming and the CUDA ker-

nels in the code are compiled by NVIDIA CUDA Compiler

with flag -arch_sm 13 in order to enable double precision.

The CPU code is compiled by Intel MPI compiler using -O3

optimization level.

In this paper, we study the numerical solution of the Poisson

equation with homogeneous Dirichlet boundary conditions

on the computational domain Ω = [0, 1]2. A 5-point finite

difference scheme is employed to discretize the problem on a

uniform N ×N rectangular mesh. The resulting sparse ma-

trix is symmetric positive definite. The stopping condition

for the iterative solver is when the relative residual is smaller

than 10−6. Even though not tested, we expect the code to

work for other second or forth order elliptic problems with

variable coefficients.

In the rest of the section, “Iter” is the number of CG iter-

ations, “TSolve” is the total compute time, “TData” is the

data transfer time between CPU and GPU, “Eff” is the par-

allel efficiency as compared with the run using the smallest

number of processors in the same table.

First we discuss the parameters of this algorithm and dis-

tinguish the optimal. Both the Jacobi and the Chebyshev

polynomial smoothers are tested in the experiments. Table 1

shows the impact on the number of iterations and total com-

pute time by using different numbers of sweeps in Jacobi or

different degrees of the Chebyshev polynomial. The number

of MPI processes is fixed to 32 and the mesh is 8193× 4097.

The overlap of the additive Schwarz preconditioner is fixed

to 1 here. We observe that the number of iterations can be

reduced by increasing the number of sweeps of Jacobi or the

degree of polynomial of the Chebyshev smoother, however,

if the interest is the compute time, 1 sweep of Jacobi is the

clear winner.

Table 1: Performance comparison between the

Jacobi smoother and the Chebyshev polynomial

smoother, with mesh size 8193 × 4097 and np = 32,

time is shown in seconds.

Jacobi smoother Polynomial smoother

Sweeps Iter TSolve Degree Iter TSolve

1 249 26.687 - - -

2 242 28.175 2 306 36.719

3 241 29.579 3 316 39.557

4 240 31.631 4 304 39.489

5 236 33.267 5 285 39.517

6 230 34.093 6 283 40.399

Multiple cycles of SA solves the subdomain problem more

accurately, thus results in less iteration count of the outer

CG. Table 2 reveals how the iteration count is influenced

by the cycles of SA. All cycles are executed on GPU so as

to avoid multiple data copies between CPU and GPU. In

this test, the Jacobi smoother is used. From the table we

see that, as expected, the number of iterations is reduced

significantly, and the solving time does not increase until

cycles= 3.

Table 2: Influence by the number of cycles of SA,

with mesh size 8193×4097 and np = 32, time is shown

in seconds.

Cycles Iter TSolve

1 249 26.687

2 209 26.277

3 188 26.919

4 182 29.497

5 178 31.586

We next investigate the optimal size of overlap in the ad-

ditive Schwarz preconditioner. Generally speaking, a larger

overlap usually results in fewer number of iterations due to

more communications between subdomains. But the overall

compute time may not decrease since the size of the sub-

domain system, as well as the communication time between

the CPUs grow relatively. Table 3 shows the impact of the

overlapping size, where the sweeps of Jacobi is 1 and the



SA cycles is 3. As shown, it is a little strange that both

the number of iterations and the compute time first grow to

some extent, then quickly reduce as the overlap increases.

Table 3: Impact of overlapping size in the additive

Schwarz preconditioner, with mesh size 8193 × 4097

and np = 32, time is shown in seconds.

Overlap Iter TSolve

0 185 25.85

1 188 26.92

2 191 27.71

3 177 26.53

4 161 24.46

5 153 23.78

We then examine the mesh scalability of the hybrid solver

by fixing the number of MPI processes to 32 and increasing

the mesh size. The results are provided in Table 4, where

results using a CPU-based sparse LU factorization (instead

of the GPU-based SA method) as subdomain solvers are also

included for comparison. The optimal parameters discussed

above are used for all tests from now on. The overlap is

fixed to 1 since the CPU-based LU approach requires too

much memory when the mesh is very fine. It can be seen

from Table 4 that when the mesh is small, the hybrid ver-

sion costs more time than the pure CPU version, but this

situation quickly changes when the mesh size grows up to

2049 × 2049. It is also observed that the number of itera-

tions of the hybrid solver is greater than that of the pure

CPU version, due to the fact that SA is unable to solve the

subdomain problems as exactly as direct LU. Table 4 also

indicates that the time spent on the data transfer (TData)

between the CPU and GPU within the same MPI process is

almost negligible compared to the total solution time.

In the strong scaling test, we use a fixed 2049× 2049 mesh

and increase the number of MPI processes. In the ideal situ-

ation, the compute time should be reduced proportionally as

more MPI processes are deployed. Strong scaling results us-

ing both the CPU-based and the hybrid one-level approaches

are provided in Table 5, from which we see that the hybrid

approach is always faster than the CPU-based approach.

Table 4: Performance comparison on the mesh scal-

abilities between the CPU-based and the hybrid ap-

proaches, np = 32, time is shown in seconds.

CPU approach Hybrid approach

Mesh Iter TSolve Iter TData TSolve

513× 513 63 0.29 73 0.01 0.67

1025× 1025 77 0.77 94 0.04 2.54

2049× 2049 98 4.52 126 0.16 3.64

4097× 4097 101 24.78 159 0.66 12.68

Superlinear speedup is observed for the CPU-based imple-

mentation, but the speedup for the hybrid implementation

is not as good.

Table 5: Performance comparison on the strong scal-

abilities between the CPU-based and the hybrid ap-

proaches, mesh size is 2049 × 2049, time is shown in

seconds.

CPU approach Hybrid approach

np Iter TSolve Eff Iter TSolve Eff

2 12 87.37 n/a 62 16.28 n/a

4 55 51.96 84.1% 75 11.77 69.2%

8 79 21.74 100.4% 96 7.88 51.7%

16 75 9.73 112.2% 104 6.79 30.0%

32 98 4.49 121.7% 126 3.57 28.5%

In the weak scaling test, starting from a relatively small

2049× 2049 mesh with 4 processes, we increase the number

of MPI processes and the mesh size at the same time, so that

the mesh size per MPI process is fixed. In the ideal situa-

tion, the compute time should remain unchanged which is in

fact hard to achieve due to the increasing cost of communi-

cation between MPI processes. Table 6 again indicates that

the hybrid approach is superior to the CPU-based approach

although the parallel efficiency is poor.

4. CONCLUDING REMARKS
In this paper, we proposed and tested a hybrid algorithm

based on domain decomposition and smooth aggregation

multigrid method for solving elliptic partial differential equa-

tions on a cluster of CPUs and GPUs. In the preconditioned

Krylov subspace framework, we allocate and execute all pre-



Table 6: Performance comparison on the weak scal-

abilities between the CPU-based and the hybrid

approaches, starting from a 2049 × 2049 mesh with

np = 4, time is shown in seconds.

CPU approach Hybrid approach

np Iter TSolve Eff Iter TSolve Eff

4 55 51.97 n/a 98 12.09 n/a

8 85 60.09 86% 159 18.40 66%

16 84 60.24 86% 177 20.56 59%

32 114 68.66 76% 188 26.92 45%

conditioner related operations on the GPUs and all other

operations are performed of the CPUs. We carefully in-

vestigated the impact of several important parameters that

determine the performance of the algorithms. In terms of

the number of iterations, the CPU-only approach is clearly

better, but for large meshes the hybrid CPU/GPU approach

is better in terms of the overall compute time. On the GPU,

the mathematically simple Jacobi based smoother performs

much better than the more sophisticated Chebyshev poly-

nomial smoother. Our numerical experiments were obtained

on a CPU/GPU cluster using up to 32 CPU/GPU pairs, and

for a problem with up to 32 millions unknowns.

In this paper, we only considered the case when the num-

ber of CPU/GPU pairs in the cluster is relatively small.

Multilevel domain decomposition will be necessary for larger

clusters. To deal with the additional communication among

GPU cards, in multilevel methods, the new feature, GPUDi-

rect, offered in CUDA 4.0 that supports peer-to-peer com-

munication between GPUs over PCIe in the same system,

will be very useful. This feature benefits the communication

between subdomains in the overlapping Schwarz method,

where the input right-hand side and the solution can be

sent to the neighboring processors without the aid of CPU

memory.
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