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We discuss our preliminary experiences with several parallel two-level additive Schwarz
type domain decomposition methods for the simulation of three-dimensional transonic
compressible flows. The focus is on the implementation of the parallel coarse mesh solver
which is used to reduce the computational cost and speed up the convergence of the
linear algebraic solvers. Results of a local two-level and a global two-level algorithm
on a multiprocessor computer will be presented for computing steady flows around a
NACAQ012 airfoil using the Euler equations discretized on unstructured meshes.

1. INTRODUCTION

We are interested in the numerical simulation of three-dimensional inviscid steady-state
compressible flows using two-level Schwarz type domain decomposition algorithms. The
class of overlapping Schwarz methods has been studied extensively in the literature [11],
especially, the single level version of the method [6,9]. Tt is well-known, at least in theory,
that the coarse space plays a very important role in the fast and scalable convergence of
the algorithms. Direct methods are often used to solve the coarse mesh problem either
redundantly on all processors or on a subset of processors [3]. This presents a major
difficulty in a fully parallel implementation for 3D problems, especially when the number
of processors is large. In this paper, we propose several techniques to solve the coarse
mesh problem in parallel, together with the local fine mesh problems, using two nested
layers of preconditioned iterative methods.

The construction of the coarse mesh is an interesting issue by itself. We take a different
approach than what is commonly used in the algebraic multigrid methods in which the
coarse mesh is obtained from the given fine mesh — not the given geometry. In our two-
level methods to be presented in this paper, we construct both the coarse and the fine
mesh from the given geometry. To better fit the boundary geometry, the fine mesh nodes
may not be on the faces of the coarse mesh tetrahedrons. In other words, the coarse space
and fine space are not nested. This does not present a problem as long as the proper
interpolation is defined [2].

As a test case, we consider a symmetric nonlifting flow over a NACAO0012 airfoil in



a three-dimensional setting. In the presented approach, we construct the fine mesh by
refining an existing coarse mesh and updating the nodes of the fine mesh according to the
boundary geometry of the given physical domain. Such approach is easy to implement
since the same computer code can be used on both the fine and the coarse level, and only a
minimal additional programming is required to construct the restriction and prolongation
operators. Moreover, it gives a natural partition of the fine mesh from the partition of the
coarse mesh. In the tests, the system of Euler equations is discretized using the backward
difference approximation in the pseudo-temporal variable and a finite volume method in
the spatial variables. The resulting system of nonlinear algebraic equations is linearized
using the Defect Correction (DeC) scheme. At each pseudo-temporal level, the linear
system is solved by a restricted additive Schwarz preconditioned FGMRES method [10]
and the coarse mesh problem is solved with an inner level of restricted additive Schwarz
preconditioned FGMRES method.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Let Q C R? be a bounded flow domain with the boundary consisting of two parts: a
wall boundary T',, and an infinity boundary T'.. Let p be the density, @ = (u, v, w)?
the velocity vector, e the total energy per unit volume, and p the pressure. We consider
p, @, e and p as the unknowns at point (z, y, z), and the pseudo-temporal variable t.
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Set U = (p, pu, pv, pw, e)", V = (%, % %) . An inviscid compressible flow in € is

described by the Euler equations
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where ' = (F, G, H)T is the flux vector with the Cartesian components defined as on
page 87 of [7]. The equation (1) is closed by the equation of state for a perfect gas
p = (v—1) (e — p||@||3/2), where 7 is the ratio of specific heats and ||-||» is the 2-norm in
R3. We specify the initial condition U|;—g = Uy, where Uy is an initial approximation to a
steady-state solution, and the following boundary conditions. On the wall boundary I",,
we impose a no-slip condition for the velocity @ - 77 = 0, where 7 is the outward normal
vector to the wall boundary. On the infinity boundary ', we impose uniform free stream
conditions p = pu, ¥ = iy, and py, = 1/(yM2), where M, is the free stream Mach
number. We seek a steady-state solution, that is, the limits of p, @, e and p as t — oc.

3. DISCRETIZATION

In this section, we present an outline of the discretization of the Euler equations; for
more details, see [5]. Let €, be a tetrahedral mesh in Q, and N be the number of mesh
points. For the pseudo-temporal discretization, we use a first-order backward difference
scheme. For the spatial discretization of (1), we use a finite volume scheme in which
control volumes are centered on the vertices of the mesh. For upwinding, we use Roe’s
approximate Riemann solver which has the first order spatial accuracy. Second order ac-
curacy is achieved by the MUSCL technique [13] which uses piecewise linear interpolation
at the interface between control volumes.

Fori=1,2,...., Nand n =0,1 ..., let U" denote the value of the discrete solution

at point (z;, y;, z;) and at the pseudo-temporal level n and set Uy = (U7, Uy, ..., U)T.



Let U = Uy(xy, yi, z:) and Uy, (Uy) = (U (Uy), ..., Iy (Uh))T, where U; (Uy,) denotes
the described second order approximation of convective fluxes V - I at point (x;, y;, z;).
We define the local time step size by

At = Copr hi [ (Ci + |7 |2),

where Cop, > 015 a preselected number, 7; is a control volume centered at node i, h; is its
characteristic size, C; is the sound speed and @ is the velocity vector at node i. Then,
the proposed scheme has a general form

(Ut —Um /At + O (UMY =0, i=1,2,....N, n=0,1,.... (2)

We note, the finite volume scheme (2) has the first order approximation in the pseudo-
temporal variable and the second order approximation in the spatial variable. On T,
no-slip boundary condition is enforced. On I', a non-reflective version of the flux splitting
of Steger and Warming [12] is used.

We apply a DeC-Krylov-Schwarz type method to solve (2); that is, we use the Defect
Correction scheme as a nonlinear solver, the restarted FGMRES algorithm as a linear
solver, and the restricted additive Schwarz algorithm as the preconditioner.

At each pseudo-temporal level n, the equation (2) represents a system of nonlinear
equations for the unknown variable UT'. This nonlinear system is linearized by the
Defect Correction (DeC) scheme [1] formulated as follows. Let \I//L(U ) be the first-order
approximation of convective fluxes V - F obtained in w ay similar to that of \Dh(Ch). and
let 9T, (U,) denote its Jacobian. Suppose that, for fixed n, an initial guess Ut is given
(say Uy ™" = UP). For s =0, 1, ..., solve for U”+l S+ the following linear system

(DZ 400, (U}?H,o)) (U:+1,s+l U bl s> — D! (Un+1 s U”) o, (C -, s) 7

where D}t = diag (1/At}, ..., 1/At}) is a diagonal matrix. The DeC scheme (3) preserves
the second order approximation in the spatial variable of (2). In our implementation, we
carry out only one DeC iteration at each pseudo-temporal iteration, that is, we use the
scheme

(Dp + 0%, (Tp)) (Gt = 0) = =0, (T) . m=0.1,.... U)=U}. (3)

4. LINEAR SOLVER AND PRECONDITIONING

Let the nonlinear iteration n be fixed and denote
A vn y
A= Dp+ov, (07). (4)
Matrix A is nonsymmetric and indefinite in general. To solve (4), we use two nested levels

of restarted FGMRES methods [10]; one at the fine mesh level and one at the coarse mesh
level inside the additive Schwarz preconditioner (AS) to be discussed below.



4.1. One-level AS preconditioner

To accelerate the convergence of linear iterations in the FGMRES algorithm, we use
an additive Schwarz preconditioner. The method splits the original linear system into a
collection of independent smaller linear systems which could be solved in parallel.

Let €y, be subdivided into k non-overlapping subregions Qp, 1, Qp9, ..., Qp 5. Let Q) |,
Vo, .., 2, be overlapping extensions of Qp, 1, Q4. ... . Q, respectively, and be
also subsets of Q,. The size of overlap is assumed to be small, usually one mesh layer.
The node ordering in €2, determines the node orderings in the extended subregions. For
= 1,2, ..., k, let R; be a global-to-local restriction matrix that corresponds to the
extended subregion €} ;, and let A; be a “part” of matrix A that corresponds to €}, ;. The
AS preconditioner is defined by /

k
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For certain matrices arising from the discretizations of elliptic partial differential op-
erators, an AS preconditioner is spectrally equivalent to the matrix of a linear system
with the equivalence constants independent of the mesh step size h, although, the lower
spectral equivalence constant has a factor 1/H, where H is the subdomain size. For some
problems, adding a coarse space to the AS preconditioner removes the dependency on
1/H, hence, the number of subdomains [11].

4.2. One-level RAS preconditioner

It is easy to see that, in a distributed memory implementation, multiplications by
matrices R} and R; involve communication overheads between neighboring subregions.
It was recently observed [4] that a slight modification of R allows to save half of such
communications. Moreover, the resulting preconditioner, called the restricted AS (RAS)
preconditioner, provides faster than the original AS preconditioner convergence for some
problems. The RAS preconditioner has the form

ke
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Mpis = > R AT'R;,
=1

where R;T corresponds to the extrapolation from €, ;. Since it is too costly to solve linear

systems with matrices A;, we use the following modification of the RAS preconditioner:
k o s

M7 = Y R!B'R;, (5)
i=1

where B; corresponds to the ILU(0) decomposition of A;. We call M; the one-level RAS

preconditioner (ILU(0) modified).

4.3. Two-level RAS preconditioners

Let Qg be a coarse mesh in ), and let Ry be a fine-to-coarse restriction matrix. Let
Ap be a coarse mesh version of matrix A defined by (4). Adding a scaled coarse mesh
component to (5), we obtain

k
My' = (1-a) Y R'BT'R; + a RyT AT Ry, (6)

=1



where o € [0, 1] is a scaling parameter. We call M, the global two-level RAS precondi-
tioner (ILU(0) modified). Preconditioning by M, requires solving a linear system with
matrix Ag, which is still computationally costly if the linear system is solved directly and
redundantly. In fact, the approximation to the coarse mesh solution could be sufficient for
a better preconditioning. Therefore, we solve the coarse mesh problem in parallel using
again a restarted FGMRES algorithm, which we call the coarse mesh FGMRES, with a
modified RAS preconditioner.

Let Qy be divided into k subregions Q0 1, Qo ..., Qpp with the extented counterparts
Qi1 Vgas ooy Q. To solve the coarse mesh problem, we use FGMRES with the one-
level ILU(0) modified RAS preconditioner

k

A'fo_,]l = > ’0,7:)1‘30_}30,% (7)
i=1

where, fori =1, 2, ..., N, Ry, is a global-to-local coarse mesh restriction matrix, ( 61lf)T

is a matrix that corresponds to the extrapolation from Q;, and By, is the ILU(0)
decomposition of matrix Ay, a part of Ay that corresponds to the subregion Q.. After
7 coarse mesh FGMRES iterations, A, ' in (6) is approximated by flal = poly,(ﬁif(—;]lAD)
with some [ < r, where poly,(z) is a polynomial of degree [, and its explicit form is often
not known. We note, [ maybe different at different fine mesh FGMRES iterations, and
it depends on a stopping condition. Therefore, FGMRES is more appropriate than the
regular GMRES. Thus, the actual preconditioner for A has the form

k
Myt = (1—a) Y R'B7'Ri + o Ry" A7 ' Ry. (8)
=1

For the fine mesh linear system, we also use a preconditioner obtained by replacing Ay’
in (6) with Mg, defined by (7):

k T i 1

Myt = Y (1= o) R B Ri+ a Ry" (R )" By} Ro.ilto) - (9)
i=1

We call Mj a local two-level RAS preconditioner (1 LU (0) modified) since the coarse mesh

problems are solved locally, and there is no global information exchange among the subre-
gions. We expect that M3 works better than A and that 17\7[2 does better than M;5. Since
no theoretical results are available at the present, we test the described preconditioners
M, My, and My numerically.

5. NUMERICAL EXPERIMENTS

We computed a compressible flow over a NACA0012 airfoil on the computational do-
main with the nonnested coarse and fine meshes. First, we constructed an unstructured
coarse mesh Qg; then, the fine mesh €2, was obtained by refining the coarse mesh twice.
At each refinement step, each coarse mesh tetrahedron was subdivided into 8 tetrahe-
drons. After each refinement, the boundary nodes of the fine mesh were adjusted to the
geometry of the domain. Sizes of the coarse and fine meshes are given in Table 1.



Table 1

Coarse and fine mesh sizes
Coarse  Fine  Fine/coarse ratio

Nodes 2976 117,525 39.5
Tetrahedrons 9,300 595,200 64
1-levelRAS || | mmmmms 1-level RAS
local 2-level RAS o s |=====- local 2-level RAS
global 2-level RAS g25 rin global 2-level RAS
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Figure 1. Comparison of the one-level, local two-level, and global two-level RAS pre-
conditioners in terms of the total numbers of linear iterations(left picture) and nonlinear
iterations (right picture). The mesh has 32 subregions.

For parallel processing, the coarse mesh was divided, using METIS [8], into 16 or 32
submeshes with nearly the same number of tetrahedrons. The fine mesh partition was
obtained directly from the corresponding coarse mesh partition. The size of overlap both
in the coarse and the fine mesh partition was set to one, that is, two neighboring extended
subregions share a single layer of tetrahedrons. In (8) and (9), R} was set to a matrix of a
piecewise linear interpolation. Multiplications by R} and Ry, solving linear systems with
My, 1\7[2, and Mj, and both the fine and the coarse FGMRES algorithm were implemented
in parallel. The experiments were carried out on an IBM SP2.

We tested convergence properties of the preconditioners defined in (5), (8), and (9) with
a = N./Ny, where N, and Ny are the numbers of nodes in the coarse and fine meshes,
respectively. We studied a transonic case with M, set to 0.8. Some of the computation
results are presented in Figures 1 and 2.

The left picture in Figure 1 shows residual reduction in terms of total numbers of linear
iterations. We see that the algorithms with two-level RAS preconditioners give significant
improvements compared to the algorithm with the one-level RAS preconditioner. The
improvement in using the global two-level RAS preconditioner compared to the local two-
level RAS preconditioner is not very much. Recall, that in the former case the inner
FGMRES is used which could increase the CPU time. In Table 2, we present a summary
from the figure. We see that the reduction percentages in the numbers of linear iterations
drop with the decrease of the nonlinear residual (or with the increase of the nonlinear
iteration number). This is seen even more clear in the right picture in Figure 1. After



Table 2
Total numbers of linear iterations and the reduction percentages compared to the algo-
rithm with the one-level RAS preconditioner (32 subregions).

One-level RAS  Local two-level RAS  Global two-level RAS

Residual Iterations Iterations Reduction Iterations Reduction
102 859 o213 40% 371 57%
1074 1.205 700 42% 003 58%
106 1,953 1,397 28% 1,245 36%
1078 2,452 1,887 23% 1,758 28%
- — & — - 1-level RAS / 16 subregions - — & — — 1-level RAS /16 subregions
100 ——— 1-level RAS / 32 subregions 100 ——— 1-level RAS / 32 subregions
- — & — — |ocal 2-level RAS / 16 subregions - — & — - global 2-level RAS / 16 subregions
10-1 ——=s—— |ocal 2-level RAS / 32 subregions 10-1 ——s—— global 2-level RAS / 32 subregions
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Figure 2. Comparison of the one-level RAS preconditioner with the local two-level RAS
(left picture) and the global two-level RAS preconditioner (right picture) on the meshes
with 16 and 32 subregions.

approximately 80 nonlinear iterations, the three algorithms give basically the same number
of linear iterations at each nonlinear iteration. This suggests that the coarse mesh may
not be needed after some number of initial nonlinear iterations.

In Figure 2, we compare the algorithms on the meshes with different numbers of subre-
gions, 16 and 32. The left picture shows that the algorithms with the one-level and local
two-level RAS preconditioners initially increase the total numbers of linear iterations as
the number of subregions was increased from 16 to 32. On the other hand, we see in the
right picture in Figure 2 that the the increase in the number of subregions almost did
not affect the convergence of the algorithm with the global two-level RAS preconditioner.
These results suggest that the algorithm with the global two-level RAS preconditioner is
well scalable to the number of subregions (processors) while the other two are not. In
both pictures we observe the decrease in the total number of linear iterations to the end
of computations. This is due to the fact that only 4 or 5 linear iterations were carried out
at each nonlinear iteration in both cases, with 16 and 32 subregions (see the right picture
in Figure 1), with linear systems in the case of 32 subregions solved just one iteration
faster than the linear systems in the case of 16 subregions.



6. CONCLUSIONS

When both the fine and the coarse mesh is constructed from the domain geometry, it is
fairly easy to incorporate a coarse mesh component into a one-level RAS preconditioner.
The applications of the two-level RAS preconditioners give a significant reduction in total
numbers of linear iterations. For our test cases. the coarse mesh component seems not
needed after some initial number of nonliner iterations. The algorithm with the global
two-level RAS preconditioner is scalable to the number of subregions (processors). Sizes
of fine and coarse meshes should be well balanced. that is, if a coarse mesh is not coarse
enough, the application of a coarse mesh component could result in the CPU time increase.
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