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Abstract. We develop a class of V-cycle type multilevel restricted additive Schwarz (RAS)
methods and study the numerical and parallel performance of the new fully coupled methods for
solving large sparse Jacobian systems arising from the discretization of some optimization problems
constrained by nonlinear partial differential equations. Straightforward extensions of the one-level
RAS to multilevel do not work due to the pollution effects of the coarse interpolation. We then
introduce, in this paper, a pollution removing coarse-to-fine interpolation scheme for one of the
components of the multi-component linear system, and show numerically that the combination of the
new interpolation scheme with the RAS smoothed multigrid method provides an effective family of
techniques for solving rather difficult PDE-constrained optimization problems. Numerical examples
involving the boundary control of incompressible Navier-Stokes flows are presented in detail.
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1. Introduction. There are two major families of Newton techniques for solving
nonlinear optimization problems: reduced space methods, characterized by the par-
tition of the problem into smaller ones at each Newton step, and full space ones. As
computers become more powerful in processing speed and memory capacity, full space
methods become more attractive, as exemplified by Lagrange-Newton-Krylov-Schur
[3, 4] and one-level Lagrange-Newton-Krylov-Schwarz [25].

A key element of any successful full space approach is the Jacobian preconditioner,
which needs to be able to simultaneously reduce the condition number and provide
good parallel scalability [20]. In this paper, we focus on fully coupled Schwarz type
preconditioners in which all components of the linear system are treated equally, i.e.,
no variables are eliminated as in some Schur complement type approaches. Among
Schwarz type preconditioners [29, 30], the recently introduced restricted versions [6, 9]
seem to be more robust and computationally more efficient, especially for harder
problems such as those indefinite, highly ill-conditioned, multi-components systems
arising from PDE-constrained optimizations. The extension of the one-level restricted
additive Schwarz method (RAS) to multilevel using the multigrid V-cycle idea and
standard coarse to fine interpolations is straightforward, but may not work as ex-
pected due to the pollution effects of the interpolation. After many experiments with
some flow control problems, we identified the source of the pollution at one of the
three components of the Jacobian system, namely the Lagrange multiplier. Using a
pollution removing interpolation scheme we have then been able to restore the robust
and fast convergence of RAS. We only discuss linear versions of Schwarz methods
even though nonlinear versions can also be obtained [8, 13]. We refer to [2, 19, 28]
for the analysis of some preconditioning techniques for optimal control problems and
general saddle point problems.
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In this paper we only consider optimization problems with equality constraints:
{

min
x∈W

F(x)

s.t. C(x) = 0 ∈ Y.
(1.1)

Here W and Y are normed spaces, W is the space of optimization variables, F :
W → R is the objective functional and C : W → Y. The associated Lagrangian
functional L : W ×Y∗ → R is defined as

L(x, λ) ≡ F(x) + 〈λ,C(x)〉Y , ∀ (x, λ) ∈ W ×Y∗,

where Y∗ is the adjoint space of Y, 〈·, ·〉Y denotes the duality pairing and variables
λ are called Lagrange multipliers or adjoint variables. In many cases it is possible to
prove that, if x̂ is a (local) solution of (1.1) then there exist Lagrange multipliers λ̂

such that (x̂, λ̂) is a critical point of L. So, under sufficient smoothness assumptions,
one proves that a solution has to necessarily solve a system of equations, called Karush-
Kuhn-Tucker (KKT) or optimality system.

For the numerical solution of (1.1) we discretize it with a mesh Ωh of characteristic
size h > 0, obtaining a finite dimensional optimization problem with W = Rnh and
Y = Rmh = Y∗. The KKT system becomes ∇Lh(x̂, λ̂) = 0 ∈ Rnh+mh . Omitting
symbols “h” and “ ·̂ ”, and denoting N ≡ n + m and X ≡ (x, λ) ∈ RN , one has
L : RN → R and an optimality system ∇L(X) = 0 ∈ RN , which is solved in this
paper by inexact Newton’s method [15, 23] globalized by line search, according to the
heuristic explained in [25].

Let ξ be some real value and x̂(ξ) denote the solution, if it exists, of the finite
dimensional problem





min
x∈Rn

F(x)

s.t. C1(x) = 0,
...
Ci−1(x) = 0,
Ci(x) = ξ,
Ci+1(x) = 0,
...
Cm(x) = 0,

with arbitrarily fixed 1 6 i 6 m. Under appropriate assumptions, one can prove
[16, 26]

∂F(x̂(ξ))
∂ξ

∣∣∣∣
ξ=0

= λi, (1.2)

that is, the Lagrange multiplier λi indicates how sensitive the optimal value is to
changes on the i-th constraint. The module |λi| gives a measure of how “effective” the
corresponding constraint is. In the case of constraints corresponding to the discretized
equations of boundary value problems, one might intuitively expect (1) different equa-
tions to have different effects on the objective function and (2) the “effectiveness” of
a given original PDE constraint to have a “smooth behavior” throughout the domain
where the PDE acts over. Such intuitive expectations match result (1.2). One less
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obvious symptom, however, is the potential discontinuity between those Lagrange
multipliers corresponding to PDEs governing the system behavior inside the problem
domain and those Lagrange multipliers corresponding to boundary and initial bound-
ary conditions. Indeed, we have observed such discontinuity in our test problems.

The rest of the paper is organized as follows. Section 2 explains multilevel re-
stricted Schwarz preconditioners and Section 3 introduces the pollution removing
interpolation. In Section 4 we test the combination of both approaches on some
boundary flow control problems. Final conclusions are given in Section 5.

2. Multilevel restricted Schwarz preconditioners. Schwarz methods can
be used in one-level or multilevel variants and, in each case, in combination with
additive and/or multiplicative algorithms [30]. They can be also used as linear [14]
and nonlinear preconditioners [8].

In this section we introduce a multilevel version of the one-level RAS precondi-
tioner initially studied in [6, 9]. The multilevel preconditioner is applicable to general
linear systems arising from the discretized PDEs on a mesh using finite element or
finite difference methods. Let Ω ⊂ R2 be a bounded open domain on which a PDE is
defined and a discretization is performed with a mesh Ωh of characteristic size h > 0.
To obtain the overlapping partition, we first divide Ωh into non-overlapping subdo-
mains Ωj , j = 1, . . . , NS . We then expand each Ωj to Ω

′
j , i.e., Ωj ⊂ Ω

′
j . The overlap

δ > 0 is defined as the minimum distance between ∂Ω
′
j and ∂Ωj , in the interior of Ω.

For boundary subdomains we simply cut off the part outside Ω. Let H > 0 denote
the characteristic diameter of {Ωj}.

Let N and Nj denote the number of degrees of freedom associated to Ω and Ω
′
j ,

respectively. Let K be a N ×N sparse matrix of a linear system

Kp = b (2.1)

that needs to be solved during the application of an algorithm for the numerical
solution of the discretized differential equations. Let d indicate the number of degrees
of freedom per mesh point. For simplicity let us assume that d is the same throughout
the entire mesh. We define the Nj ×N matrix Rδ

j as follows: its d× d block element
(Rδ

j)l1,l2 is either (a) an identity block if the integer indices 1 6 l1 6 Nj/d and
1 6 l2 6 N/d are related to the same mesh point and this mesh point belongs to Ω

′
j

or (b) a zero block otherwise. The multiplication of Rδ
j with a N ×1 vector generates

a smaller Nj × 1 vector by discarding all components corresponding to mesh points
outside Ω

′
j . The Nj × N matrix R0

j is similarly defined, with the difference that its
application to a N × 1 vector also zeros out all those components corresponding to
mesh points on Ω

′
j \ Ωj . Let K̃j be defined as

K̃j ≡ Rδ
j K

(
Rδ

j

)T
,

that is, as the Nj ×Nj matrix related to a subdomain problem having zero Dirichlet
boundary conditions at regions of ∂Ω

′
j not coinciding with ∂Ω. We assume K̃j to

be nonsingular and denote by B̃−1
j either the inverse of or a preconditioner for K̃j .

The one-level classical, right restricted (r-RAS) and left restricted (l-RAS) additive
Schwarz preconditioners for K respectively are defined as [6, 9, 14]

B−1
δδ =

Ns∑

j=1

(
Rδ

j

)T
B̃−1

j Rδ
j , B−1

δ0 =
Ns∑

j=1

(
Rδ

j

)T
B̃−1

j R0
j , B−1

0δ =
Ns∑

j=1

(
R0

j

)T
B̃−1

j Rδ
j .
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When the distinction is not important, we will denote a Schwarz preconditioner sim-
ply by B−1. We refer to [17, 21, 22] for further analysis and examples of one-level
restricted preconditioning techniques.

For the description of multilevel Schwarz preconditioners [31], let us use index
i = 0, 1, . . . , L− 1 to designate any of the L > 2 levels. All previously defined entities
using the subindex “j” will now use double subindexes “i, j”: Ωi,j , Ω

′
i,j , Ni,j , Rδ

i,j ,
R0

i,j , K̃i,j and B̃−1
i,j . All previously defined entities using no subindex will now use

the subindex “i”: hi, Ni, NS,i, Hi, δi, B−1
i,δδ, B−1

i,δ0, B−1
i,0δ, B−1

i and Ki, with the
eventual notation KL−1 = K. The L meshes are not assumed to be either nested or
structured. Let Ii denote the identity operator and, for i > 0, let

Ii−1
i : RNi → RNi−1

denote a linear restriction operator from level i to level i− 1 and let

Ii
i−1 : RNi−1 → RNi

denote a linear interpolation operator from level i−1 to level i. Given the iterate used
for the computation of KL−1, the computation of coarse matrices Ki (i.e., 0 6 i 6
L−2) proceeds recursively from the finest coarse level i = L−2 until the coarsest level
i = 0 by simply first restricting or injecting the finer iterate and then computing the
Jacobian. Multilevel Schwarz preconditioners are obtained through the combination
of one-level Schwarz preconditioners B−1

i assigned to each level. Here we focus on
multilevel preconditioners that can be seen as multigrid (MG) V-cycle algorithms [5]
having Schwarz preconditioned Richardson working as the pre and the post smoother
at each level i > 0, with B−1

i,pre preconditioning the µi > 0 pre smoother iterations
and B−1

i,post preconditioning the νi > 0 post smoother iterations. In a general MG
V-cycle algorithm with L > 2 levels, given the current iterate p(`) for the solution of
(2.1), the next iterate is computed as p(`+1) = AlgV (b, L,p(`)), where the procedure
vi = AlgV (bi, i,vi) consists of the following steps:

if i = 0
Solve K0v0 = b0; /* Coarsest correction */

else
Smooth µi times Kivi = bi : /* Pre-smoothing */
(bi −Kivi) = (Ii −KiB−1

i,pre)
µi(bi −Kivi);

bi−1 = Ii−1
i (bi −Kivi); /* Residual restriction */

vi−1 = AlgV (bi−1, i− 1, 0); /* Recursivity */
vi = vi + Ii

i−1vi−1; /* Correction interpolation */
Smooth νi times Kivi = bi : /* Post-smoothing */
(bi −Kivi) = (Ii −KiB−1

i,post)
νi(bi −Kivi);

end

In this paper we consider multilevel Schwarz preconditioners with coarsest cor-
rection computed as

v0 = B−1
0 b0,

where B−1
0 might denote either a Schwarz preconditioner or an exact solver.
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Then, as iterative methods for (2.1), with r(`) denoting the residual at iteration
` = 0, 1, 2, . . ., such multilevel Schwarz procedures can be described in the case L = 2
as

r(`+1) = (I1 −K1B−1
1,post)

ν1(I1 −K1I1
0B

−1
0 I0

1 )(I1 −K1B−1
1,pre)

µ1r(`). (2.2)

In the case of L = 3 and the usual choices of Ii−1
i = Ri and Ii

i−1 = RT
i , for some

Ni−1 ×Ni matrix Ri, a graphical representation is given in Figure 2.1.

p(
�
)

p(
�
+1)

K v = b2   2   2

solve

K v = b1  1        1

K v = b0  0        0

K v = b1   1       1

K v = b2  2        2

r2

r1

c = v0 0

c = v1 1

b = R  r1         2   2

b = R  r0         1   1

v = v +R  c1        1       1    0
T

v = v +R  c2        2       2    1
T

“smooth”
� times

2

“smooth”
� times

2

“smooth”
� times

1

“smooth”
� times

1

Fig. 2.1. Graphical representation of a three-level MG V-cycle method: r1 and r2 denote
residuals, c0 and c1 denote corrections.

When classic Schwarz preconditioners are applied to symmetric positive definite
systems arising from the discretization of elliptical problems defined in H1

0 (Ω), the
condition number κ of the preconditioned system satisfies κ 6 C (1 + H/δ) /H2 for
one-level methods and κ 6 C (1 + H/δ) for two-level methods, where C is independent
of h, H and δ. The factor 1/H2, associated to the number of subdomains on the fine
level, relates itself to the increase on the number of iterations (needed for the exchange
of information among distant subdomains) with the increase in the total number of
subdomains. The use of a coarse level helps the exchange of information. The necessity
of information exchange among distant domain regions can be understood through the
expression of the solutions of elliptic problems in terms of Green’s functions: although
the solution value at a point strongly depends on surrounding values, there is weaker
dependence w.r.t. the entire domain [29]. Regarding the application of two-level
methods to indefinite model problems, the study in [10] suggests that the coarse mesh
needs to be sufficiently fine for the two-level Schwarz preconditioner to perform well.

Theoretically, however, these results may not be directly applied to the case of
symmetric indefinite KKT Jacobians. Let ` be the average number of linear itera-
tions per Newton step. We then look for the following more general properties when
applying a two-level preconditioner:

For fixed h and H/δ, ` is not very sensitive to H decreasing, (2.3)
For fixed H and δ, ` is not very sensitive to the mesh refinement. (2.4)

Also, it might happen that a presumed “enhancement” of the preconditioner, aiming
to cluster the eigenvalues around 1, eventually results in negative eigenvalues getting
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too close to 0. Although there is no necessary relationship between the eigenvalue
distribution and ill-conditioning for general matrices [24], this process might qualita-
tively explain an eventual degradation of the linear convergence before it finally gets
better [12, page 199]. So,

presumed “enhancements” of the preconditioner, e.g. increase of H or (2.5)
δ, eventually result in a worse preconditioned Krylov convergence.

We report such temporary degradation in some of our numerical experiments in Sec-
tion 4.

3. Pollution removing interpolation. The motivation of including, additively
or multiplicatively, coarse preconditioners to an existing fine mesh preconditioner is
to make the overall preconditioner scalable w.r.t. the number of processors, or the
number of subdomains. In most cases, the addition of coarse preconditioners reduces
the total number of iterations, as expected. However, for some classes of important
problems, the unexpected happens: the number of iterations increases when a coarse
preconditioner is involved. We refer to this phenomenon as coarse mesh pollution. To
figure out the source of the pollution for a general problem is a highly nontrivial task.
For the constrained optimization problems being considered we have discovered that
the pollution is due to the coarse-to-fine mesh interpolation for one of the three types of
variables (state variables, control variables and Lagrange multipliers) of the problem,
namely the Lagrange multipliers [26]. Due to the sharp jumps often encountered on
the multiplier values over those regions of Ω where constraints are greatly affecting the
behavior of the optimized system, we introduce a new interpolation for these particular
components. Such modified interpolation constitutes, indeed, a key procedure in
our proposed multilevel preconditioner. Although the evidence of this discontinuity
property of Lagrange multipliers is just empirical in this paper, it is consistent with
their interpretation (1.2): the value of a Lagrange multiplier at a mesh point gives
the rate of change of the optimal objective function value w.r.t. to the respective
constraint at that point.

In the case of the problem corresponding to Figure 3.1, for instance, an external
force causes the fluid to move clockwise and the boundary consists of rigid slip walls
(see Figure 4.1). The vertical walls greatly affect the overall vorticity throughout
the domain, i.e., the value of the objective function, because they completely oppose
the horizontal velocity component v1. The values of λ1 at the walls then reflect this
situation. Similarly, λ2 develops sharp jumps at the other two walls opposing v2. In
all our experiments the discontinuities are located only across the boundary and not
around it, even for very fine meshes. Common coarse-to-fine interpolation techniques
will then smooth the sharp jumps present in coarse solutions, with a more gradual
change, from interior mesh points towards boundary mesh points, appearing in those
fine cells (elements, volumes) located inside coarse boundary ones, as represented in
Figure 3.2-b. That is, the good correction information provided by the coarse solution
is lost with a common interpolation. We refer to the smoothed jump as “pollution”,
in contrast to the “clean” sharp jump that is expected at the fine level as well.

We therefore propose a modified coarse-to-fine interpolation procedure that is
based on a general and simple “removal of the pollution”. Let Ii

i−1 denote, as before,
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any unmodified interpolation operator, while

Zi is the operator that zeros out, from a vector at level i, the (3.1)
Lagrange multipliers at all those mesh points with equations that
have a greater influence on the objective function.

For the case of PDEs describing physical systems, the number of such points can be
expected to be relatively small. Our modified interpolation is then expressed by

Ii
i−1,modif = Ii

i−1 −ZiIi
i−1(Ii−1 −Zi−1). (3.2)

This procedure removes the smoothed contributions due to the coarse discontinuities,
maintaining, at the fine level, the sharp jumps originally present at the coarse level.
It should be noted that the operator Ii

i−1 is usually available for the coding of a
multilevel procedure and, once the locations where the operator Zi needs to act over
are known, the implementation of (3.2) is extremely easy and can be performed on
any mesh in any dimension, with any number of components.

The Lagrange multipliers reflect an eventual “discontinuity” of the type of equa-
tions (or their physical dimensions) between equations in different regions of Ω. ¿From
this point of view, it seems “natural” to apply different interpolations to the Lagrange
multipliers depending on their location on Ω. In the case of the problems in Section 4,
for instance, a clear difference exists between those equations in Ω and those on ∂Ω,
that is, for those problems the operator Zi zeros the Lagrange multiplier components
located at the boundary. A schematic representation of (3.2) for such situation is then
given in Figure 3.2 for the simpler case of a piecewise linear interpolation. However,
the modified interpolation (3.1)-(3.2) is not at all restricted to situations where the
discontinuities are located at the boundary. Figure 3.3-a gives an schematic example
where Lagrange multiplier discontinuities are spread throughout different regions of
the domain. With the specification of the region where the operator Zi acts over,
given by Figure 3.3-b, the pollution (smoothed jumps) created by usual interpolation
operators Ii

i−1 will be removed in a way similar to the way exemplified in the simpler
situation of Figure 3.2.

Whenever the shape of the Lagrange multipliers in the final solution of a PDE-
constrained optimization problem, the eventual sharp jumps will tend to appear more
on the first Newton steps and, at each Newton iteration, on the coarse corrections
related to the first Krylov iterations. As both the Newton and Krylov iterations
progress towards the respective solutions, the steps and corrections will naturally
shrink in magnitude. Nonetheless, even when sharp jumps are not involved anymore,
the modified interpolation can still be applied with no harm: the interpolation of
an eventual smooth coarse correction with small values on the Lagrange multiplier
components will still present small values at the fine level. This fact facilitates the
programming of (3.1)-(3.2), since the application of the modified interpolation is not
conditional.

In our tests we apply the modified interpolation only for the Lagrange multiplier
components of coarse corrections, while the optimization variables continue to be
interpolated with the unmodified process Ii

i−1. Also, the restriction process remains
Ii−1

i for all variables, i.e., (2.2) becomes

r(`+1) = (I1 −K1B−1
1,post)

ν1(I1 −K1I1
0,modifB

−1
0 I0

1 )(I1 −K1B−1
1,pre)

µ1r(`).
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Fig. 3.1. Lagrange multiplier λ1 related to the horizontal velocity v1 of a steady-state flow
inside a unit square box with rigid slip walls.

Two important aspects of our proposed modified interpolation operator should
be highlighted before we proceed to the presentation of numerical experiments and
results in the next section. First, the operator (3.2) is nonlinear, even for linear
operators Ii

i−1. Consequently, the multilevel preconditioner will become nonlinear
as well. The linearity of preconditioners is usually theoretically desired because one
can then guarantee the same solution when going from the original system (2.1) to
the preconditioned one. In our tests, however, the same solution was obtained with
both linear and nonlinear preconditioners. Second, the application of the modifica-
tion process to an already modified interpolation operator gives the same modified
operator: denoting

Ii
i−1,modif,modif = Ii

i−1,modif −ZiIi
i−1,modif(Ii−1 −Zi−1),

we have

ZiIi
i−1,modif(Ii−1 −Zi−1) = Zi

[Ii
i−1 −ZiIi

i−1(Ii−1 −Zi−1)
]
(Ii−1 −Zi−1)

= Zi

[Ii
i−1(Ii−1 −Zi−1)−ZiIi

i−1(Ii−1 −Zi−1)2
]

= Zi

[Ii
i−1(Ii−1 −Zi−1)−ZiIi

i−1(Ii−1 −Zi−1)
]

= Zi(Ii −Zi)Ii
i−1(Ii−1 −Zi−1)

= (Zi −Z2
i )Ii

i−1(Ii−1 −Zi−1)

= (Zi −Zi)Ii
i−1(Ii−1 −Zi−1),

the null operator. This result might be important for eventual theoretical demonstra-
tions of preconditioning properties.
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(1)

(2)

(3) (4)

(5)

(5)

(a) (b) (c)

(d) (e) (f)

Coarse
Solution

“Polluted”
Fine
Solution

“Clean”
Fine
Solution

Coarse
Pollution
Source

“Polluted”
Interpolation

“Pollution”

Fig. 3.2. Representation of the modified coarse-to-fine interpolation (3.2), with (a) input ϕi−1

and (c) output ϕi. The five steps are: (1) interpolation Ii
i−1ϕi−1, (2) coarse jump values ϕ̃i−1 =

(Ii−1−Zi−1)ϕi−1, (3) polluted ϕ̃i = Ii
i−1ϕ̃i−1, (4) pollution isolation Ziϕ̃i, (5) pollution removal

ϕi = Ii
i−1ϕi−1 −Ziϕ̃i.

4. Numerical experiments. Our numerical experiments in this paper focus
on optimal control problems, where the optimization space in (1.1) is generally given
by W=S × U, with S being the state space and U the control space. Upon dis-
cretization, one has n=ns+nu, where ns (nu) is the number of discrete state (con-
trol) variables. More specifically, we treat the boundary control of two-dimensional
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(a)

(b)

+ + +

+ + +

+

+

+

+

+

+

Fig. 3.3. (a) A schematic example of a possible distribution of Lagrange multiplier components
throughout a coarse mesh at level i− 1. (b) The corresponding coarse (and fine) mesh points where
the operator Zi−1 (and Zi) would act over. The plus sign refers to the fine mesh points where Zi

would act over as well.

steady-state incompressible Navier-Stokes equations in the velocity-vorticity formula-
tion: v = (v1, v2) is the velocity and ω is the vorticity. Let Ω ⊂ R2 be an open and
bounded smooth domain, Γ = ∂Ω its boundary, ν the unit outward normal vector
along Γ and f a given external force defined in Ω. Let L2(Ω) and L2(Γu) be the spaces
of square Lebesgue integrable real functions in Ω and Γu ⊂ Γ respectively. The control
problems consist on finding (s,u) = (v1, v2, ω, u1, u2) ∈ S ×U = L2(Ω)3 × L2(Γu)2

such that the minimization

min
(s,u)∈S×U

F(s,u) =
1
2

∫

Ω

ω2 dΩ +
c

2

∫

Γu

‖u‖22 dΓu (4.1)
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is achieved subject to the constraints




−∆v1 − ∂ω

∂x2
= 0 in Ω,

−∆v2 +
∂ω

∂x1
= 0 in Ω,

−∆ω + Re v1
∂ω

∂x1
+ Re v2

∂ω

∂x2
−Re curl f = 0 in Ω,

vi − vD,i = 0 on ΓD,i, i = 1, 2,
∂vi

∂ν
− vN,i = 0 on ΓN,i, i = 1, 2,

v − u = 0 on Γu,

ω +
∂v1

∂x2
− ∂v2

∂x1
= 0 on Γ,

∫
Γ
v · ν dΓ = 0,

(4.2)

where curl f = −∂f1/∂x2 + ∂f2/∂x1 and, for i = 1, 2, Γ = ΓD,i ∪ ΓN,i ∪ Γu and
ΓD,i (ΓN,i) is the part of the boundary where the velocity component vi is speci-
fied through a Dirichlet (Neumann) condition with a prescribed velocity vD,i (vN,i).
The parameter c > 0 is used to adjust the relative importance of the control norms
in achieving the minimization, so indirectly constraining their sizes. The physical
objective in (4.1)-(4.2) is the minimization of turbulence [18] The last constraint is
necessary for the consistency with the physical law of mass conservation, making
m 6= ns and causing the complexity of the parallel finite difference approximation of
Jacobians to increase, since non-adjacent mesh points become coupled by the inte-
gral. An alternative formulation, that compromises between the physical law of mass
conservation and the complex computation of Jacobians, eliminates the integral con-
straint but adds to the objective function the term c̃

[∫
Γ
v · ν dΓ

]2
/2, with c̃ À 1 [4].

We restrict our numerical experiments to tangential boundary control problems, i.e.,
u · ν = 0 on Γu and the velocity v is assumed to guarantee mass conservation along
Γ \ Γu, so that m = ns.

We consider rectangular domains Ω = (0, L1) × (0, L2), L2 6 L1. We define
E1,a = {(x1, x2) ∈ E1 : 0 < x1 6 L2}, E1,b = E1 \ E1,a, E4,a = {(x1, x2) ∈
E4 : L2

2 6 x2 < L2} and E4,b = E4 \ E4,a. Two flow problems are considered:
cavity and backward-facing step. In each case we consider both simulation prob-
lems and tangential boundary control problems. In the descriptions below we only
define Γu and the velocity boundary conditions on Γ \ Γu, since all control prob-
lems seek the minimization of the objective function (4.1) with c = 10−2 and have
in common the three PDEs in Ω, the ω boundary condition on Γ and the tangen-
tial boundary control on Γu. In the case of cavity flows, L1 = L2 = 1, Γu = Γ
and f = (f1, f2) =

(−sin2(πx1) cos(πx2) sin2(πx2), sin2(πx2) cos(πx1) sin2(πx1)
)
. In

the case of backward-facing step flows, L1 = 6, L2 = 1, Γu = E4,b ∪ {C1} ∪ E1,a

and f = 0. The velocity boundary conditions on Γ \ Γu are v1 = 0 on E1,b ∪ E3,
v1 = 8(1− x2)(x2 − 1/2) on E4,a, v1 = x2(1− x2) on E2 and v2 = 0. All correspond-
ing simulation problems, used for comparison with control problems, impose v ·ν = 0
and ∂v/∂ν = 0 on Γu, i.e., Γu becomes a (set of) slip rigid wall(s).

4.1. Details of numerical approaches. For discretization we use a five-point
second order finite difference method on a uniform nonstaggered mesh. We divide
the horizontal edges on N1,div equally spacing subintervals and the vertical edges on
N2,div also equally spacing subintervals, generating a rectangular grid with a total of
Ng = (1 + N1,div)(1 + N2,div) points. We denote h1 = L1/N1,div and h2 = L2/N2,div.
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Each grid point is assigned an integer index k and denoted xk = (x1,k, x2,k), k ∈ K =
{k ∈ N, 0 6 k < Ng}. Kb is the set of indexes related to the Nb = 2(N1,div + N2,div)
grid points located at the boundary, lk is the elementary boundary length surrounding
a point xk, k ∈ Kb, and ak is the elementary area surrounding a point xk, k ∈ K,
that is:

lk = h1, ak =
h1h2

2
for points on horizontal edges,

lk = h2, ak =
h1h2

2
for points on vertical edges,

lk =
h1 + h2

2
, ak =

h1h2

4
for points on corners,

ak = h1h2 for k ∈ K \Kb.

The total number of discrete state variables is ns = 3Ng. For code implementation
convenience, both discrete control components are defined everywhere in the domain,
i.e., the total number of discrete control variables is nu = 2Ng. There is no problem
with such approach since all control components not used as Dirichlet controls (i.e., not
appearing in the constraints) are automatically forced to zero in the optimality system.
The discrete state space is Sh = Rns and the discrete control space is Uh = Rnu . The
discretized version of (4.1) then reads

min
(s,u)∈Sh×Uh

Fh(s,u) =
1
2

∑

k∈K

ω2
kak +

c

2

∑

k∈Kb

‖uk‖22lk +
c

2

∑

k∈K\Kb

‖uk‖22ak.

All derivative terms in (4.2) are discretized with a second order scheme, including the
ω boundary condition. For parallel performance reasons, only mesh points adjacent
to the boundary are used by applying the definition ω = −∂v1/∂x2+∂v2/∂x1 at these
points as well [25].

In order to form the algebraic system of nonlinear discretized equations, we need
to order the unknowns and the corresponding functions. The unknowns are ordered
mesh point by mesh point, in contrast to physical variable by physical variable as
usually required by other methods. At each mesh point the unknowns are ordered
as v1, v2, ω, u1, u2, λ1, λ2 and λ3. The mesh points are ordered subdomain by sub-
domain, for the purpose of parallel processing. The ordering of the subdomains is
not important since we use, at each level other than the coarsest, additive methods
whose performance has nothing to do with the subdomain ordering. In order to avoid
pivoting during the sparse LU method (used in our experiments), the corresponding
functions are ordered as ∇λ1L,∇λ2L,∇λ3L, ∇u1L,∇u2L, ∇v1L,∇v2L and ∇ωL. Be-
cause the orderings for the unknowns and for the function components are different,
the Jacobian matrix becomes nonsymmetric and so we use GMRES [27].

The Jacobian matrix is constructed approximately using a multi-colored central
finite difference method [11] with step size 10−5. In problem (4.1)-(4.2), since there
is no variable with power greater than two, central finite difference approximations of
the Jacobian are exact up to roundoff errors. To solve the Jacobian systems we use
restarted GMRES with an absolute (relative) tolerance equal to 10−8 (10−4), a restart
parameter equal to 90 and a maximum number of iterations equal to 5,000. When
using left preconditioning, the GMRES tolerances are checked over preconditioned
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residuals. Regarding the one-level additive Schwarz preconditioner, the number of
subdomains is equal to the number of processors, and the extended subdomain prob-
lems have zero Dirichlet interior boundary conditions and are solved with sparse LU.
All subdomains Ωj and Ω

′
j are rectangular and made up of integral number of mesh

cells. The computation of coarse matrices at each Newton iteration proceeds recur-
sively from the finest coarse level until the coarsest level by simply first injecting the
finer iterate and then computing the Jacobian. We use nested meshes, the redundant
LU solver at the coarsest level (all processors construct and solve a full coarsest linear
system by sending their local portions of the Jacobian and of the right-hand side to
all other processors) and the interpolation is piecewise linear. Richardson smoothers
are all used with damping factor equal to 1. Line search is performed with augmented
Lagrangian merit function and cubic backtracking. For Newton iterations, the max-
imum allowed number is 100 and the absolute (relative) stopping tolerance is 10−6

(10−10). Simulation problems are solved with Newton-Krylov-Schwarz [7]. We do not
use Reynolds continuation in any of the algorithms.

If not stated otherwise, the modified interpolation process explained in Section 3
is always used in multilevel tests.

4.2. Results of numerical experiments. We have performed tests on a cluster
of Linux PCs and developed our parallel object-oriented software using the C++
programming language and the Portable, Extensible Toolkit for Scientific Computing
(PETSc) from Argonne National Laboratory [1]. Since the cluster network is relatively
slow and is shared with other processes, and since the redundant LU solver used at
the coarsest level is not scalable in time w.r.t. the number of processors, our analysis
focuses on the number of Newton and Krylov iterations, not on computing times.

4.2.1. Cavity Flows. Figure 4.1-b shows the controlled velocity field for the
cavity flow with Re = 200: although the fluid in the interior follows the clockwise
direction imposed by the external force, the movement near the boundary is much
less intense than in Figure 4.1-a. In fact, a zoom on the boundary velocity of Figure
4.1-b shows the control acting in the counter-clockwise way, making the integral of
ω2 on Ω to decrease from the value of 55.4 for the simulation with slip walls to the
controlled value of 32.5. Figure 3.1 shows the sharp jump of the Lagrangian multiplier
function λ1 at the boundary. The other two Lagrangian multipliers behave similarly,
no matter how fine the mesh is.

Tables 4.1-4.4 show results for one-level preconditioners. In Tables 4.1-4.2 we fix
the mesh size in 280 × 280 and the preconditioning side to left. Then, for Re=200
and 300, respectively, we perform tests with 25 and 49 processors, varying the combi-
nations of Schwarz preconditioner type (ASM, l-RAS or r-RAS) and relative overlap
(1/8, 1/4 or 1/2). In Table 4.3, we do the same for Re = 300, only fixing the precondi-
tioning side to right. Most of the results in these first three Tables are consistent with
the behavior of one-level Schwarz preconditioners for positive-definite systems: the
average number ` of Krylov iterations per Newton iteration grows with the number Np

of processors and decreases as the overlap gets larger. Whenever some Newton step
demanded 5, 000 Krylov iterations to be computed, the overall test was considered to
fail. This was the case in the six tests not reported in Tables 4.2 and 4.3.

The results in these first three Tables suggest that the more robust combination
is the left l-RAS with δ/H=1/2, which is then fixed for the next set of tests, shown in
Table 4.4, with varying Re, mesh size and number of processors, with the number of
processors going up to 100 now. However, even with the pretty large relative overlap
δ/H = 1/2 the method fails for Re = 250 with 100 processors.
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Fig. 4.1. Computed velocity fields for the cavity flow problems with Re = 200: (a) simulation
problem and (b) tangential boundary control problem. The Lagrange multiplier λ1 corresponding to
v1 is shown in Figure 3.1.

Table 4.1
One-level left Schwarz preconditioner results for the cavity flow control problem with Re=200

and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of processors,
relative overlap δ/H and Schwarz preconditioner B−1. k is the total number of Newton iterations
and ` is the average number of Krylov iterations per Newton iteration.

B−1 Np Relative overlap δ/H
1/8 1/4 1/2

ASM 25 k = 6; ` ≈ 110 k = 7; ` ≈ 64 k = 7; ` ≈ 60
49 k = 6; ` ≈ 196 k = 6; ` ≈ 148 k = 7; ` ≈ 142

l-RAS 25 k = 7; ` ≈ 114 k = 7; ` ≈ 67 k = 8; ` ≈ 52
49 k = 6; ` ≈ 205 k = 7; ` ≈ 158 k = 7; ` ≈ 83

r-RAS 25 k = 7; ` ≈ 113 k = 7; ` ≈ 67 k = 7; ` ≈ 50
49 k = 6; ` ≈ 238 k = 7; ` ≈ 356 k = 7; ` ≈ 540

Table 4.2
One-level left Schwarz preconditioner results for the cavity flow control problem with Re=300

and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of processors,
relative overlap δ/H and Schwarz preconditioner B−1. k is the total number of Newton iterations
and ` is the average number of Krylov iterations per Newton iteration.

B−1 Np Relative overlap δ/H
1/8 1/4 1/2

ASM 25 k = 11; ` ≈ 123 k = 10; ` ≈ 84 k = 11; ` ≈ 111
49 k = 10; ` ≈ 324 k = −; ` ≈ − k = 11; ` ≈ 333

l-RAS 25 k = 11; ` ≈ 165 k = 10; ` ≈ 96 k = 11; ` ≈ 74
49 k = 10; ` ≈ 454 k = −; ` ≈ − k = 11; ` ≈ 216

r-RAS 25 k = 11; ` ≈ 172 k = 10; ` ≈ 86 k = 11; ` ≈ 72
49 k = 10; ` ≈ 498 k = −; ` ≈ − k = 10; ` ≈ 180



MULTILEVEL POLLUTION REMOVING SCHWARZ PRECONDITIONERS 15

Table 4.3
One-level right Schwarz preconditioner results for the cavity flow control problem with

Re=300 and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of
processors, relative overlap δ/H and Schwarz preconditioner B−1. k is the total number of Newton
iterations and ` is the average number of Krylov iterations per Newton iteration.

B−1 Np Relative overlap δ/H
1/8 1/4 1/2

ASM 25 k = 10; ` ≈ 184 k = 10; ` ≈ 109 k = 10; ` ≈ 108
49 k = 10; ` ≈ 413 k = −; ` ≈ − k = 10; ` ≈ 313

l-RAS 25 k = 10; ` ≈ 231 k = 10; ` ≈ 136 k = 10; ` ≈ 82
49 k = 10; ` ≈ 494 k = −; ` ≈ − k = 10; ` ≈ 266

r-RAS 25 k = 10; ` ≈ 201 k = 10; ` ≈ 122 k = 10; ` ≈ 67
49 k = 10; ` ≈ 646 k = −; ` ≈ − k = 10; ` ≈ 202

Table 4.4
One-level left l-RAS preconditioner results for the cavity flow control problem with relative

overlap δ/H = 1/2, for different combinations of Re, number Np of processors and mesh size. k is

the total number of Newton iterations and ` is the average number of Krylov iterations per Newton
iteration. The number of variables is 2, 517, 768 on the case of finest mesh.

Re Np Mesh
140× 140 280× 280 560× 560

25 k = 8; ` ≈ 46 k = 8; ` ≈ 52 out of memory
200 49 k = 8; ` ≈ 73 k = 7; ` ≈ 83 out of memory

100 k = 8; ` ≈ 247 k = 7; ` ≈ 277 k = 6; ` ≈ 205
25 k = 12; ` ≈ 53 k = 9; ` ≈ 57 not tested

250 49 k = 13; ` ≈ 112 k = 9; ` ≈ 117 not tested
100 k = −; `(10)=5, 000 k = −; `(5)=5, 000 not tested

Clearly, then, some stabilization is needed. This stabilization is achieved with
the use of a coarse mesh and the modified interpolation process explained in Section
3. The results so far suggest that one can focus on RAS preconditioners on the
Richardson smoothers and not use ASM. We however made some experiments with
ASM preconditioned smoother and in all cases the preconditioned GMRES diverged,
with either left or right preconditioning. We also tried to avoid tests with δ = H/2
as well, in order to check if the two-level method can be used with smaller and larger
overlaps.

In Table 4.5 we fix the mesh size in 280×280, the preconditioning side to left and,
for Re=200 and 250, we test two-level Schwarz with 25 and 49 processors, varying the
combinations of Schwarz preconditioner type (l-RAS or r-RAS) and relative overlap
(1/8 or 1/4). The method with left preconditioning diverges in many cases. The
divergences were caused by the fact that the true linear residuals at the Newton steps
did not decrease as much as the preconditioned linear residuals used for the Krylov
stopping criteria. The overall algorithm then failed after some Newton iterations,
either by computing steps that did not provide descent directions or by computing
step lengths too small.

In Tables 4.6-4.8 we do basically the same as in Table 4.5, but now we fix the
preconditioning side to right and test up to Re = 300 and 100 processors. In the case
of Re = 300 (Table 4.8) the method demanded too many iterations for convergence
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with δ = H/8 and so we report experiments with δ = H/2.
It is interesting to observe in Tables 4.7 and 4.8 that, fixing the overlap, one of

the RAS smoothers (l-RAS or r-RAS) causes the preconditioner to converge with
a smaller average number of Krylov iterations for 25 subdomains, while the other
RAS smoother contributes for a better average Krylov convergence in the case of 100
subdomains. That is, there is no concept such as a unique RAS version that is always
the best smoother for all possible number of processors.

Table 4.5
Two-level left Schwarz preconditioner results for the cavity flow control problem with a 280×

280 mesh (631, 688 variables), for different combinations of Re, number Np of processors, relative
overlap δ/H and Schwarz preconditioner B−1 for the Richardson smoother. k is the total number
of Newton iterations and ` is the average number of Krylov iterations per Newton iteration.

Re B−1 Np Relative overlap δ/H
1/8 1/4

l-RAS 25 k = 8; ` ≈ 16 k = −; ` ≈ −
200 49 k = 7; ` ≈ 16 k = 8; ` ≈ 13

r-RAS 25 k = −; ` ≈ − k = 8; ` ≈ 19
49 k = 10; ` ≈ 32 k = 8; ` ≈ 22

l-RAS 25 k = −; ` ≈ − k = −; ` ≈ −
250 49 k = −; ` ≈ − k = 10; ` ≈ 18

r-RAS 25 k = 12; ` ≈ 24 k = 12; ` ≈ 17
49 k = 20; ` ≈ 36 k = 11; ` ≈ 24

Table 4.6
Two-level right Schwarz preconditioner results for the cavity flow control problem with

Re=200 and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of
processors, relative overlap δ/H and Schwarz preconditioner B−1 for the Richardson smoother. k is
the total number of Newton iterations and ` is the average number of Krylov iterations per Newton
iteration.

B−1 Np Relative overlap δ/H
1/8 1/4

25 k = 6; ` ≈ 20 k = 6; ` ≈ 17
l-RAS 49 k = 6; ` ≈ 23 k = 6; ` ≈ 17

100 k = 6; ` ≈ 28 k = 6; ` ≈ 18
25 k = 6; ` ≈ 102 k = 6; ` ≈ 21

r-RAS 49 k = 6; ` ≈ 59 k = 6; ` ≈ 25
100 k = 6; ` ≈ 32 k = 6; ` ≈ 26

Based on the results of Tables 4.6-4.8, we perform the tests shown in Tables
4.9-4.11, where we fix the preconditioning side to right and vary Re, mesh size and
number of processors. Clearly, the two-level method performed in a very robust way,
solving problems for which the one-level version has previously failed. In all three
Tables 4.9-4.11, the average number ` of Krylov iterations per Newton iteration is
kept stable in the tested range of mesh size and number of processors. The results
are consistent with predictions (2.3)-(2.4): in each column of the tables, ` is not very
sensitive to the increase in the number Np of processors (prediction (2.3)), and in
each line of the tables, ` is not too sensitive to mesh refinement (prediction (2.4)).
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Table 4.7
Two-level right Schwarz preconditioner results for the cavity flow control problem with

Re=250 and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of
processors, relative overlap δ/H and Schwarz preconditioner B−1 for the Richardson smoother. k is
the total number of Newton iterations and ` is the average number of Krylov iterations per Newton
iteration.

B−1 Np Relative overlap δ/H
1/8 1/4

25 k = −; `(6) > 2, 518 k = 8; ` ≈ 87
l-RAS 49 k = −; `(7) = 3, 150 k = 8; ` ≈ 21

100 k = 8; ` ≈ 33 k = 8; ` ≈ 23
25 k = 8; ` ≈ 29 k = 8; ` ≈ 22

r-RAS 49 k = 8; ` ≈ 106 k = 8; ` ≈ 28
100 k = 8; ` ≈ 251 k = 8; ` ≈ 86

Table 4.8
Two-level right Schwarz preconditioner results for the cavity flow control problem with

Re=300 and 280 × 280 mesh (631, 688 variables), for different combinations of number Np of
processors, relative overlap δ/H and Schwarz preconditioner B−1 for the Richardson smoother. k is
the total number of Newton iterations and ` is the average number of Krylov iterations per Newton
iteration.

B−1 Np Relative overlap δ/H
1/4 1/2

25 k = −; `(6) > 4,290 k = 10; ` ≈ 43
l-RAS 49 k = 10; ` ≈ 73 k = −; `(6)= 1,794

100 k = 10; ` ≈ 26 k = 10; ` ≈ 25
25 k = 10; ` ≈ 23 k = 10; ` ≈ 21

r-RAS 49 k = 10; ` ≈ 48 k = 10; ` ≈ 21
100 k = 10; ` ≈ 52 k = 10; ` ≈ 29

As intuitively expected, the Jacobian ill-conditioning gets worse as we increase Re
and refine the mesh, demanding Schwarz preconditioning with bigger overlap and/or
more smoothing iterations.

Many of the results reported so far, for both one-level and two-level Schwarz
preconditioners, might be related to comment (2.5). Namely, the fact that the average
number of Krylov iterations per Newton step gets eventually worse with an increase in
the size H of subdomains or in the overlap δ. Such behavior is “strange” if we consider
the literature results on the application of Schwarz preconditioners to the solution of
positive definite systems. In the case of one-level tests, examples of strange results
exist in Table 4.2, with 49 processors, and in Table 4.3, also with 49 processors. In the
case of two-level tests, examples of strange results exist in Table 4.5, with Re = 200
and with Re = 250, l-RAS preconditioner and relative overlap δ/H = 1/4, in Table
4.7, with l-RAS preconditioner and relative overlap δ/H = 1/8, and in Table 4.8,
with l-RAS preconditioner.

Figures 4.2-a and 4.2-b clearly show the stabilization on the average number of
Krylov iterations provided by the two-level preconditioner with modified interpolation.
The one-level preconditioner fails with 100 processors for Re = 250 and Re = 300.

Table 4.12 shows the efficacy of the modified interpolation process, which per-
forms much better than the unmodified one, causing the two-level preconditioner to
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Table 4.9
Two-level right Schwarz preconditioner results for the cavity flow control problem with

Re=200, Schwarz preconditioner B−1 for the Richardson smoother and relative overlap δ/H, for
different combinations of number Np of processors and mesh size. k is the total number of Newton

iterations and ` is the average number of Krylov iterations per Newton iteration. The number of
variables is 2, 517, 768 on the case of finest mesh.

Np

[
B−1

] (
δ
H

)
Mesh

140× 140 280× 280 560× 560
25 [l-RAS]

(
1
4

)
k = 7; ` ≈ 10 k = 6; ` ≈ 17 not tested

49 [l-RAS]
(

1
4

)
k = 7; ` ≈ 10 k = 6; ` ≈ 17 not tested

100 [l-RAS]
(

1
4

)
k = 7; ` ≈ 11 k = 6; ` ≈ 18 k = 6; ` ≈ 22

Table 4.10
Two-level right Schwarz preconditioner results for the cavity flow control problem with

Re=250, Schwarz preconditioner B−1 for the Richardson smoother and relative overlap δ/H, for
different combinations of number Np of processors and mesh size. k is the total number of Newton

iterations and ` is the average number of Krylov iterations per Newton iteration. The number of
variables is 2, 517, 768 on the case of finest mesh.

Np

[
B−1

] (
δ
H

)
Mesh

140× 140 280× 280 560× 560
25 [r-RAS]

(
1
4

)
k = 12; ` ≈ 17 k = 8; ` ≈ 22 not tested

49 [l-RAS]
(

1
4

)
k = 12; ` ≈ 14 k = 8; ` ≈ 21 not tested

100 [l-RAS]
(

1
4

)
k = 12; ` ≈ 14 k = 8; ` ≈ 23 k = 7; ` ≈ 31

Table 4.11
Two-level right Schwarz preconditioner results, for the cavity flow control problem with

Re=300 and a 70 × 70 coarse mesh, for different situations of number Np of processors and mesh

size. k is the total number of Newton iterations and ` is the average number of Krylov iterations
per Newton iteration. To each situation corresponds a combination of the number σ of Richardson
iterations, the RAS preconditioner and the relative overlap δ/H used in the pre and post smoothers.
The number of variables is 2, 517, 768 in the case of finest mesh.

Np

(
δ
H

)
Mesh

140×140 280×280 560×560
25

(
1
4

)
σ = 1; r-RAS σ = 1; r-RAS −

k = 13; ` = 20 k = 10; ` = 23 −
49

(
1
2

)
σ = 1; r-RAS σ = 1; r-RAS −

k = 13; ` = 18 k = 10; ` = 21 −
100

(
1
2

)
σ = 1; l-RAS σ = 1; l-RAS σ = 2; r-RAS

k = 13; ` = 18 k = 10; ` = 25 k = 8; ` = 27

outperform the one-level preconditioner.

4.2.2. Backward-Facing Step Flows. The numerical behavior observed in
these problems is very different than the one observed in the cavity flows of the
previous section. The backward-facing step problems demand more Newton iterations,
but the computation of each Newton step is easier. In fact, the one-level Schwarz
preconditioner now works for problems with 100 processors for all three Re = 200, 250
and 300, the same happening for the two-level method with the polluted (unmodified)
interpolation procedure. Also, similarly to the case of positive-definite systems, left
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Fig. 4.2. Cavity tangential boundary control problem results for (a) one-level and (b) two-level
right Schwarz preconditioned with 49 processors, a 280×280 mesh (631, 688 variables) and a 70×70
coarse mesh.

Table 4.12
Right Schwarz preconditioner results for the cavity flow control problem with Re=250, a 280×

280 mesh (631, 688 variables), 49 processors, relative overlap δ/H = 1/4 and a 70×70 coarse mesh,
for different combinations of number L of levels, piecewise linear interpolation type, number σ of pre
and post smoother iterations, and RAS preconditioner. k is the total number of Newton iterations
and ` is the average number of Krylov iterations per Newton iteration.

L Linear Inter- σ RAS preconditioner
polation Type l-RAS r-RAS

1 − − k = 8; ` = 336 k = 9; ` = 973
2 Unmodified 1 k = 8; ` = 1, 110 k = 8; ` = 1, 150
2 Unmodified 2 k = 8; ` = 356 k = 8; ` = 222
2 Modified 1 k = 8; ` = 21 k = 8; ` = 28

preconditioner now works better than right preconditioner, as shown by Tables 4.13
and 4.14.

Nonetheless, the pollution free two-level RAS preconditioner was the best choice,
as exemplified by Table 4.15, where the use of the modified interpolation decreases the
average number of Krylov iterations by a further factor of two w.r.t. the unmodified
interpolation. Figures 4.3-a and 4.3-b also show the stabilization on the average
number of Krylov iterations provided by the preconditioner. Finally, as in the case of
cavity flow control problems, Figure 4.3-b is consistent with prediction (2.3).

5. Conclusions. We have developed a parallel multilevel Schwarz precondi-
tioner that has shown a robust performance when tested on some tangential boundary
flow control problems. With such preconditioner we were able to extend the one-level
Lagrange-Newton-Krylov-Schwarz presented in [25, 26] to a multilevel method.

In general, the success of Lagrange-Newton methods with line search rests on
four tasks: the computation of the Jacobian, the computation of a Newton step
with descent direction, the choice of a penalty parameter in the merit function, and
the computation of the step length. Although we addressed all these issues in our
work, our main contribution in this paper consists in the combination of a general
multigrid V-cycle preconditioner with (1) RAS preconditioned Richardson smoothers
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Table 4.13
Two-level left Schwarz preconditioner results for the backward-facing step flow control problem

with Re=300, r-RAS preconditioned Richardson smoother and relative overlap δ/H = 1/4, for
different combinations of number Np of processors and mesh size. k is the total number of Newton

iterations and ` is the average number of Krylov iterations per Newton iteration. The number of
variables is 1, 780, 232 on the case of finest mesh.

Np Mesh
288× 48 576× 96 1, 152× 192

24 k = 46; ` ≈ 4 k = 36; ` ≈ 4 not tested
54 k = 46; ` ≈ 4 k = 36; ` ≈ 5 not tested
96 k = 46; ` ≈ 5 k = 36; ` ≈ 6 k = 25; ` ≈ 7

Table 4.14
Two-level right Schwarz preconditioner results for the backward-facing step flow control prob-

lem with Re=300, r-RAS preconditioned Richardson smoother and relative overlap δ/H = 1/4, for
different combinations of number Np of processors and mesh size. k is the total number of Newton

iterations and ` is the average number of Krylov iterations per Newton iteration. The number of
variables is 1, 780, 232 on the case of finest mesh.

Np Mesh
288× 48 576× 96 1, 152× 192

24 k = 46; ` ≈ 6 k = 36; ` ≈ 7 not tested
54 k = 46; ` ≈ 7 k = 36; ` ≈ 8 not tested
96 k = 46; ` ≈ 8 k = 36; ` ≈ 10 k = 26; ` ≈ 11

Table 4.15
Left Schwarz preconditioner results for the backward-facing step flow control problem with

Re=300, a 1152 × 192 mesh (1, 780, 232 variables), 96 processors, r-RAS with relative overlap
δ/H = 1/4 and a 144× 24 coarse mesh, for different combinations of number L of levels, piecewise
linear interpolation type and number σ of pre and post smoother iterations. k is the total number
of Newton iterations and ` is the average number of Krylov iterations per Newton iteration.

L Linear inter- σ r-RAS preconditioner
polation type

1 − − k = 26; ` = 404
2 Unmodified 1 k = 27; ` = 14
2 Modified 1 k = 25; ` = 7

and (2) a modified interpolation procedure that removes the pollution often generated
by the application of common interpolation techniques to the Lagrange multipliers.
Such combination is the key for the successful application of the two-level Schwarz
preconditioner in our experiments and the consequent improvement over the one-level
method, handling flow control problems with higher Reynolds number, finer meshes
and more processors. Surprisingly, RAS preconditioners performed much better than
the classical ones.

We expect multilevel pollution removing preconditioners to have a wide applica-
tion in many scientific and engineering applications.
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Fig. 4.3. Backward facing-step tangential boundary control problems results for (a) one-level
and (b) two-level left Schwarz preconditioner with 54 processors, a 576×96 mesh (447, 752 variables)
and a 144× 24 coarse mesh.
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