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Abstract. Optimization problems constrained by nonlinear partial differential equations have
been the focus of intense research in scientific computing lately. Current methods for the parallel
numerical solution of such problems involve sequential quadratic programming (SQP), with either
reduced or full space approaches. In this paper we propose and investigate a class of parallel full space
SQP Lagrange-Newton-Krylov-Schwarz (LNKSz) algorithms. In LNKSz, a Lagrangian functional is
formed and differentiated to obtain a Karush-Kuhn-Tucker (KKT) system of nonlinear equations.
Inexact Newton method with line search is then applied. At each Newton iteration the linearized
KKT system is solved with a Schwarz preconditioned Krylov subspace method. We apply LNKSz to
the parallel numerical solution of some boundary control problems of two-dimensional incompressible
Navier-Stokes equations. Numerical results are reported for different combinations of Reynolds num-
ber, mesh size and number of parallel processors. We also compare the application of LNKSz method
to flow control problems against the application of NKSz method to flow simulation problems.
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1. Introduction. In this paper we describe a general framework for solving opti-
mization problems in interaction with nonlinear partial differential equations (PDEs).
The focus is on how to adapt state-of-the-art PDE solvers to the requirements of opti-
mization methods, while allowing for an efficient parallel implementation. Our method
treats the differential equations as equality constraints. In order to demonstrate its
effectiveness, the problem of optimizing fluid flows modeled by incompressible Navier-
Stokes equations on two-dimensional domains is considered. Among optimization
problems with constraints, those constrained by nonlinear PDEs are very challenging,
both mathematically and computationally. Examples of such problems are inverse,
optimal design and optimal control problems. In inverse problems some parameters
of the governing equations of the system behavior are not known and must be esti-
mated by analysis of experimental system output data [3, 34, 45]. Optimal design
problems usually refer to problems where the variable is the shape of a domain and
one has to find the best shape that minimizes or maximizes an objective function
[35]. In optimal control problems one usually searches for the best feasible control
variables, such as boundary values or external forces that minimize or maximize a
certain system behavior, such as turbulence [4, 6, 10, 23, 43]. In this paper, we only
consider boundary control problems, which refer to the control of the system through
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boundary conditions. In general, a control problem can be described as







Find controls u ∈ U and states s ∈ S
such that F(s,u) is minimized,
subject to C(s,u) > 0.

Here S and U are called state and control spaces respectively; the state variables s
represent the state of the system being controlled; the control variables u represent the
means one has to control the system; the objective or cost functional F : S×U→ R
to be minimized (or maximized) represents the reason why one wants to control the
system; constraints C(s,u) > 0 represent the system behavior and other constraints
imposed to state and control variables.

In flow control problems [16, 26, 28, 29], typical state variables are velocity, pres-
sure, temperature and internal energy. Control variables might be defined on the
boundary or inside the flow domain and can be the temperature, velocity, exter-
nal force etc. The objective can be, for instance, minimization of turbulence, or
maximization of mixing. The constraints are given by the physical equations that
must be obeyed by the system being controlled, e.g. Navier-Stokes equations, and
by eventual bounds on the state and control variables. The discipline of flow control
comprises many other disciplines, e.g. fluid mechanics, nonlinear PDEs, optimization
algorithms, discretization techniques, numerical methods, high-performance comput-
ing, control engineering, micro electro-mechanical systems, nano electro-mechanical
systems [7]. In addition, the control of fluid flows has many applications as well,
e.g. internal combustion engines (efficiency and emissions), heat transfer, chemical
reactors, aerodynamic surfaces [40].

For finite dimensional equality constrained optimization problems there are two
major families of techniques: reduced space sequential quadratic programming (SQP)
methods and full space SQP methods. Reduced space methods have been the method
of choice until recently since they require much less memory, even though many sub-
iterations are needed to converge the outer-iterations and the parallel scalability is less
ideal. As more powerful computer systems with lots of memory and many processors
become available, full space methods seem to be more appropriate due to their in-
creased scalability. One such method, Lagrange-Newton-Krylov-Schur (LNKSr), was
introduced in [8, 9], where four block factorization based preconditioners, as well as
globalization techniques and heuristics, are proposed and tested. In this paper we
replace the Schur type preconditioner with an overlapping Schwarz method which has
a better asymptotic convergence rate and is easier to convert to a nonlinear precon-
ditioner [13, 14, 31] for highly nonlinear problems.

The rest of the paper is organized as follows. Section 2 discusses the numerical
solution of optimal control problems with equality constraints. Section 3, the core of
this paper, presents the full space SQP Lagrange-Newton-Krylov-Schwarz (LNKSz)
method for the parallel numerical solution of such problems and also briefly describes
some current methods already appeared in the literature. Section 4 presents some
boundary flow control problems, which are then solved in Section 5 with LNKSz.
Numerical experiments are performed and analyzed for different combinations of
Reynolds number, mesh size and number of parallel processors. Final conclusions
are given in Section 6.
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2. Optimal control with equality constraints. In this paper we focus on
optimal control problems with equality constraints:

{

min
(s,u)∈S×U

F(s,u)

s.t. C(s,u) = 0 ∈ Y,
(2.1)

where S, U and Y are normed spaces, F : S × U → R is the objective function,
C : S × U → Y represents the constraints and C(·, ·) = 0 is referred to as state
equations or forward problem . The Lagrangian functional L : S × U × Y∗ → R
associated with (2.1) is defined by

L(s,u,λ) ≡ F(s,u) + 〈λ,C(s,u)〉Y , ∀ (s,u,λ) ∈ S×U×Y∗, (2.2)

where Y∗ is the adjoint space of Y, 〈·, ·〉Y denotes the duality pairing and variables
λ are called Lagrange multipliers or adjoint variables.

When the constraints are PDEs over a domain Ω, the discretization necessary
for the solution of (2.1) can occur at two different points in the logical development
of an algorithm. In the first case, the optimize-then-discretize (OTD) approach, one
demonstrates that, if (ŝ, û) is a (local) solution of (2.1) then there exist Lagrange mul-

tipliers λ̂ such that (ŝ, û, λ̂) is a critical point of L. So, under sufficient smoothness
assumptions, one obtains, as necessary condition for a solution, a system of equa-
tions, called the Karush-Kuhn-Tucker (KKT) or optimality system, which is then
discretized, generating a finite dimensional system of nonlinear equations [27, 32, 41].

In the second case, the discretize-then-optimize (DTO) approach, one begins by
creating a mesh Ωh of characteristic size h > 0 and then discretizing problem (2.1), ob-
taining a finite dimensional equality constrained optimization problem with S = Rns,h ,
U = Rnu,h and Y = Rmh = Y∗. Under sufficient smoothness conditions the KKT
system becomes ∇Lh(ŝ, û, λ̂) = 0 ∈ Rns,h+nu,h+mh . The theory for finite dimensional
constrained optimization problems guarantees, under appropriate assumptions, the
existence of such Lagrange multipliers λ̂. It should be pointed out that the discrete
KKT systems from both approaches are not necessarily the same.

No approach, however, has a clear advantage over the other [26]. In both cases,
the derivation of the Lagrangian w.r.t. state (control, Lagrange multiplier) variables
results in the adjoint (control, state, respectively) equations. OTD usually demands
the weak formulation of the state PDEs and allows the use of different meshes and
techniques (e.g. boundary conditions for infinite domains, or shock-wave capturing
schemes for the case of flows) for the state and adjoint equations. DTO on the other
hand, guarantees a consistency between the gradients of the objective function and of
the Lagrangian functional, and is also suited for the use of automatic differentiation.

From now on, we only work with the discretize-then-optimize approach. For
simplicity, let us omit the symbols “h” and “ ·̂ ”, and use the notation N ≡ ns+nu+m
and X ≡ (x,λ) ≡ (s,u,λ) ∈ RN . The KKT system becomes

F(X) ≡

(

∇xL
∇λL

)

=

(

∇F +∇CTλ

C(s,u)

)

=





∇sF +∇sC
Tλ

∇uF +∇uC
Tλ

C(s,u)



 = 0, (2.3)

where F : RN → RN , ∇xL denotes the gradient of L w.r.t. state and control vari-
ables, with similar meaning holding for ∇λL, ∇sF and ∇uF , while ∇C denotes the
Jacobian of C and ∇sC and ∇uC denote the Jacobian of C w.r.t. state and control
variables, respectively. In (2.3), we refer to ∇sC as the linearized forward operator.
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System (2.3) can be solved with an inexact Newton method [21, 22]. Given an
initial guess X(0), at each iteration k = 0, 1, 2, . . . an approximate solution

p(k) ≡
(

p(k)x ,p
(k)
λ

)

≡
(

p(k)s ,p(k)u ,p
(k)
λ

)

of the linearized KKT system

K(k) p(k) = − F(k) (2.4)

is computed, where K(k) = ∇F(X(k)) and F(k) = F(X(k)). The KKT matrix K(k)

is the transpose of the Hessian of the Lagrangian L, is symmetric indefinite under
sufficient smoothness assumptions and can be computed by a finite difference ap-
proximation. System (2.4) can also be written as (all terms should be understood as
evaluated at X(k))

[

∇2
xxL

(k) ∇C(k)
T

∇C(k) 0

](

p
(k)
x

p
(k)
λ

)

= −

(

∇xL
(k)

C(k)

)

,

Thus, if ∇C(k) has full rank and ∇2
xxL

(k) is positive definite in the tangent space of
the constraints (i.e., dT [∇2

xxL
(k)]d > 0 for all d 6= 0 such that [∇C(k)]d = 0), then

we can interpret (p
(k)
x ,p

(k)
λ ) as being the unique solution and Lagrange multipliers of







min
px∈S×U

1

2
pTx [∇

2
xxL

(k)]px +∇xL
(k)Tpx

s.t. ∇C(k)px +C
(k) = 0 ∈ Y.

This interpretation justifies the use of terminology sequential quadratic programming

(SQP) for methods involving (2.4), [36]. Alternatively, one can interpret (p
(k)
x ,λ(k)+

p
(k)
λ ) as the solution and Lagrange multipliers for the QP using, in its objective
function, ∇F (k) instead of ∇xL

(k).
After approximately solving (2.4), one may use a globalization method such as

line search or trust region [44]. In this study we focus on a line search approach, where
the next iterate is X(k+1) = X(k) + α(k)p(k) and the step length α(k) is selected by
backtracking until the sufficient decrease condition

φ(X(k) + α(k)p(k)) 6 φ(X(k)) + α(k)c1∇φ(X
(k))

T
p(k) (2.5)

is satisfied. Here φ is a merit function and c1 is a constant satisfying 0 < c1 < 1/2. For
constrained optimization, merit functions such as l1 or augmented Lagrangian [5, 33]
are most commonly used. In contrast to the standard merit function ‖F(X)‖22/2,
which is commonly used for systems of nonlinear equations, these merit functions
try to balance the sometimes conflicting goals of reducing the objective function and
satisfying the constraints [36]. We use the augmented Lagrangian φAL : RN → R in
our experiments in this paper. Given a penalty parameter ρ > 0, it is defined by

φAL(X; ρ) = L(s,u,λ) +
ρ

2
‖C(s,u)‖22 ∀ X = (s,u,λ) ∈ S×U×Y.

At iteration k, ρ = ρ(k) must be such that we obtain descent directions p(k), i.e.,

(∇φAL(X
(k); ρ(k)))Tp(k) = (∇L(k))Tp(k) + ρ(k) C(k)

T
[∇C(k)]p(k)x < 0. (2.6)
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Since C(k)
T
[∇C(k)]p

(k)
x = −‖C(k)‖22 for an exact step, it is reasonable to expect

C(k)
T
[∇C(k)]p(k)x < 0 (2.7)

for approximate steps, if C(k) 6= 0 and the tolerances for the Krylov subspace method
are small enough and the preconditioner is good enough to guarantee that the Krylov
subspace method does not stop by achieving the maximum allowed number of iter-
ations. If (2.7) does not hold we can continue the Krylov iterations, with eventual
smaller tolerances, until it does. Once (2.7) holds, we then use a fairly common
strategy where we demand that ρ(k) satisfy

(∇φAL(X
(k); ρ(k)))Tp(k) 6

ρ(k)

2
C(k)

T
[∇C(k)]p(k)x ,

that is,

ρ(k) > ρ(k) = −2
(∇L(k))Tp(k)

C(k)
T
[∇C(k)]p

(k)
x

.

We then choose

ρ(k) = max{ρ(k), ρ(k−1)},

where ρ(−1) > 0 is a given positive value.
However, if C(k) = 0 then there is no way to guarantee a descent direction. This

is a fundamental issue with line search methods. Some algorithms handle this by
modifying the Hessian to make it positive definite on the null space of ∇C(k), but
for problems of the size we are considering there is no efficient way to check positive
definiteness.

In all tests described in this paper, (2.7) held for every step generated, as long as
we made the absolute Krylov tolerance small enough that at least one Krylov iteration
was performed. In addition, it is worth noting that, in each run, the value of ρ(k)

became fixed before 60% of the iterations had been made. Thus the heuristic merit
parameter updating strategy described above appeared to work well for the examples
of this paper.

3. Parallel full space SQP Lagrange-Newton-Krylov-Schwarz. In this
section we briefly review some existing techniques and then present a new parallel
algorithm based on Newton method with line search and an overlapping Schwarz pre-
conditioner for solving (2.1). The new algorithm will be referred to as the Lagrange-
Newton-Krylov-Schwarz (LNKSz) algorithm. All these methods differentiate them-
selves by the way (2.4) is solved.

3.1. Brief review of existing methods. In this subsection we assume that
the number of constraints is equal to the number of state variables, i.e.

m = ns (3.1)

in (2.1); that is, ∇sC is a square matrix of dimension m. Situation (3.1) usually hap-
pens after the discretization of PDE-constrained optimization problems that involve
well-posed boundary value problems as constraints. To explain the existing techniques
[8, 9] we need the following block-LU factorization

K(k) =





∇2
ssL∇sC

−1 0 I

∇2
suL∇sC

−1 I LT

I 0 0









∇sC ∇uC 0

0 H1 0

0 H2 ∇sC
T



 , (3.2)
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where H1 =∇2
uuL−L

TH2 −∇2
suLL, H2 =∇2

usL−∇2
ssLL, and L =∇sC

−1∇uC.

The matrix H1 is the Schur complement for p
(k)
u and is called the reduced Hessian of

the Lagrangian.
Full space SQP methods solve the entire system of linear equations (2.4) simul-

taneously, while reduced space SQP methods divide the problem into smaller ones,
first solving for the nu control variables only and then solving for state variables
and Lagrange multipliers. Newton reduced space SQP (N-RSQP) methods basically
correspond to the block-LU factorization (3.2). Quasi-Newton (QN-RSQP) methods
drop second order terms from the right-hand side of the equations in N-RSQP and
also substitute H1 by quasi-Newton approximations, usually via BFGS [36].

Reduced methods have the advantage of requiring less memory. However, N-
RSQP demands too many solutions of systems of m linear equations per outer iter-
ation, while in QN-RSQP the number of outer iterations tends to increase too much
as nu grows. Full space methods try to overcome the lack of parallel scalability of
reduced approaches but they also present difficulties, not only because a descent di-
rection is not guaranteed, but also due to the linearized KKT system: it is more than
twice the size of the forward problem, usually indefinite (a property known to slow
down Krylov solvers) and very ill-conditioned. One such method, Lagrange-Newton-
Krylov-Schur (LNKSr), was presented in [8, 9], where four preconditioners based on
the block factorization (3.2), as well as globalization techniques and heuristics (such
as maintaining a BFGS approximation of H1 and using a QN-RSQP step in case the
original LNKSr computed step fails), are proposed and tested. LNKSr attempts to
transform the problem of finding a good preconditioner for the KKT matrix to the
problem of finding a good preconditioner for the linearized forward operator.

3.2. Lagrange-Newton-Krylov-Schwarz. As mentioned earlier, the key el-
ement of a successful full space approach is the preconditioning of the Jacobian of
the KKT system, which is indefinite and extremely ill-conditioned. A good precon-
ditioner has to be able to substantially reduce the condition number and, at the
same time, to provide good scalability, so that the potential of massively parallel
computers can be realized. The Schur complement preconditioner used in LNKSr
is an operator-splitting type technique, in which a sequential block elimination step
is needed to form the Schur complement w.r.t. the control variable. In contrast to
operator-splitting, Schwarz type preconditioners are fully coupled in the sense that
all variables are treated equally and the partition is based completely on the physi-
cal domain Ω. Because there is no need to eliminate any variables from the system,
there is one less sequential step in the preconditioning process. Another advantage of
LNKSz method is that it does not demand assumption (3.1). With LNKSz we can,
for instance, deal directly with full [30] boundary control problems, where an equation
like (4.6) is explicitly added to the constraints.

Schwarz preconditioners can be used in one-level or multi-level approaches and,
at each case, with a combination of additive and/or multiplicative algorithms [39, 42].
In this paper we deal with one-level additive algorithms only [20]. Let Ω ⊂ R2 be
a bounded open domain on which the control problem is defined. We only consider
simple box domains with uniform mesh of characteristic size h here. To obtain the
overlapping partition, we first partition the domain into non-overlapping subdomains
Ω0j , j = 1, · · · , Ns. Then we extend each subdomain Ω

0
j to a larger subdomain Ω

δ
j , i.e.,

Ω0j ⊂ Ω
δ
j . Here δ > 0 indicates the size of the overlap. Only simple box decomposition

is considered in this paper; i.e., all the subdomains Ω0j and Ω
δ
j are rectangular and

made up of integral number of fine mesh cells. For boundary subdomains, we simply
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cut off the part that is outside Ω. Let H > 0 denote the characteristic diameter
of subdomains Ωj . Let N , N

0
j and Nj denote the number of degrees of freedom

associated to Ω, Ω0j and Ω
δ
j , respectively. Let K be a N × N matrix of a linear

system that needs to be solved during the numerical solution process of the differential
problem. Let d indicate the degree of freedom per mesh point. For simplicity let
us assume that d is the same throughout the entire mesh. We define the Nj × N
matrix Rδ

j as follows: its d× d block element (R
δ
j)`1,`2 is either (a) an identity block

if the integer indices 1 6 `1 6 Nj/d and 1 6 `2 6 N/d are related to the same

mesh point and this mesh point belongs to Ω
′

j or (b) a zero block otherwise. The

multiplication ofRδ
j with aN×1 vector generates a smallerNj×1 vector by discarding

all components corresponding to mesh points outside Ω
′

j . The Nj ×N matrix R0j is
similarly defined, with the difference that its application to a N ×1 vector also zeroes
all those components corresponding to mesh points on Ω

′

j \Ωj . We denote by Kj the
Nj ×Nj subdomain matrix given by

Kj = Rδ
j K

(

Rδ
j

)T
.

Let B−1
j be either an inverse of Kj or a preconditioner for Kj . The classical one-level

additive Schwarz preconditioner B−1
asm for K is defined as

B−1
asm =

Ns
∑

j=1

(

Rδ
j

)T
Bj

−1Rδ
j .

In addition to this standard additive Schwarz method (ASM) described above, we
also consider the newly introduced restricted version (RAS) of the method [11, 15].
For some applications, the restricted version requires less communication time since
one of the restriction or extension operations does not involve any overlap. The RAS
preconditioner is defined as

B−1
ras =

Ns
∑

j=1

(

Rδ
j

)T
Bj

−1R0j .

Some numerical comparisons of the ASM and RAS are presented later in the paper.

When the Schwarz preconditioner is applied to symmetric positive definite sys-
tems arising from the discretization of elliptical problems defined in H1

0 (Ω), the con-
dition number κ of the preconditioned system satisfies κ 6 C (1 +H/δ) /H2, where
C is independent of h, H, δ and the shapes of Ω and Ωδj [39], that is, a Schwarz
preconditioned Krylov subspace method is expected to have the following properties:

The number of iterations grows approximately proportional to 1/H; (3.3)

If δ is maintained proportional to H, the number of iterations is (3.4)

bounded independently of h and H/h (a parameter related to

the number of degrees of freedom of each subproblem);

The convergence gets better as δ is increased. (3.5)

Theoretically, results (3.3)-(3.5) may not be applied immediately to Krylov sub-
space methods, e.g. GMRES [24, 38], for the solution of indefinite linearized KKT
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systems. Nonetheless, we carefully examine all the properties in our numerical exper-
iments. In particular, let l be the average number of Schwarz preconditioned GMRES
iterations per linearized KKT system. We look for the following scalability properties:

For fixed h and δ, l increases as H decreases; (3.6)

For fixed H and δ, l is not very sensitive to the mesh refinement; (3.7)

For fixed h and H, l decreases as δ increases. (3.8)

4. Boundary control of incompressible Navier-Stokes flows. In this sec-
tion we discuss the boundary control of the two-dimensional steady-state incompress-
ible Navier-Stokes equations in the velocity-vorticity formulation. The velocity is
denoted by v = (v1, v2) and the vorticity by ω. Let Ω be an open and bounded
polygonal domain in the plane, Γ = ∂Ω its boundary and ν the unit outward normal
vector along Γ. Let f be a given external force defined in Ω. An example of a flow
simulation problem consists of finding (v1, v2, ω) such that















































−∆v1 −
∂ω

∂x2
= 0 in Ω,

−∆v2 +
∂ω

∂x1
= 0 in Ω,

−∆ω +Re v1
∂ω

∂x1
+Re v2

∂ω

∂x2
−Re curl f = 0 in Ω,

v − vD = 0 on Γ,

ω +
∂v1
∂x2
−
∂v2
∂x1

= 0 on Γ,

(4.1)

where Re is the Reynolds number, vD is a prescribed boundary velocity satisfying
∫

Γ
vD · ν dΓ = 0 and curl f = − ∂f1

∂x2
+ ∂f2

∂x1
. If v ∈ C3(Ω)× C3(Ω), then [18]

ω +
∂v1
∂x2
−
∂v2
∂x1

= 0 in Ω (4.2)

and

∇ · v = 0 in Ω. (4.3)

These two equations show the consistency of the two-dimensional velocity-vorticity
formulation of incompressible flows, since (4.2) is the formal definition of the vorticity
and (4.3) is related to the physical law of mass conservation.

An example of a boundary control problem consists of finding (v1, v2, ω, u1, u2)
such that the minimization

min
(s,u)∈S×U

F(s,u) =
1

2

∫

Ω

ω2 dΩ+
c

2

∫

Γu

‖u‖22 dΓ (4.4)
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is achieved subject to the constraints






















































































−∆v1 −
∂ω

∂x2
= 0 in Ω,

−∆v2 +
∂ω

∂x1
= 0 in Ω,

−∆ω +Re v1
∂ω

∂x1
+Re v2

∂ω

∂x2
−Re curl f = 0 in Ω,

vi − vD,i = 0 on ΓD,i, i = 1, 2,
∂vi
∂ν
− vN,i = 0 on ΓN,i, i = 1, 2,

v − u = 0 on Γu,

ω +
∂v1
∂x2
−
∂v2
∂x1

= 0 on Γ,
∫

Γ

v · ν dΓ = 0,

(4.5)

where, for i = 1, 2, Γ = ΓD,i∪ΓN,i∪Γu, ΓD,i (ΓN,i) is the part of the boundary where
the vi velocity component is specified through a Dirichlet (Neumann) condition with
a prescribed velocity vD,i, and Γu is the part of the boundary where the velocity
is specified through a Dirichlet condition with a control velocity u. The positive
constant parameter c is used to adjust the relative importance of the control norms
in achieving the minimization, thus indirectly constraining the size of those norms.
The physical objective behind problem (4.4)-(4.5) is the minimization of turbulence
[1, 7, 30].The last constraint, given by

∫

Γ

v · ν dΓ = 0, (4.6)

is necessary for the consistency with the physical law of mass conservation. There-
fore, the control u = (u1, u2) cannot be any control: it must belong to the space of
functions satisfying (4.6). We denote problems like (4.4) − (4.5), where controls are
allowed to assume nonzero normal values at the boundary, as full boundary control
problems (BCPs), [30]. In these kind of problems assumption (3.1) is not valid, due to
the extra constraint (4.6). This fact also complicates the parallel finite differences ap-
proximation of Jacobian matrices, since one does not have only PDEs (i.e., equations
with local behavior) anymore. The integral condition (3.1) couples non-neighboring
mesh points. An alternative formulation, that compromises between the physical law
of mass conservation and the complexity of parallel Jacobian approximations, elim-
inates the explicit constraint (4.6), so making (3.1) valid, but adds to the objective

function the term c̃
[∫

Γ
v · ν dΓ

]2
/2, with c̃À 1 [9].

One can also deal with tangential BCPs, where the control is allowed to be just
tangential to the boundary (i.e., u · ν = 0 on Γu) and the velocity v is assumed to
satisfy

∫

Γ\Γu
v · ν dΓ = 0 . So, (3.1) is valid. Since tangential BCPs restrict even

more the space where the control u = (u1, u2) can exist, one naturally expects better
objective function values with full BCPs. In this paper we only study tangential
boundary control problems.

5. Numerical experiments. In our numerical experiments we deal with two-
dimensional rectangular domains Ω = (0, L1)× (0, L2), L2 6 L1. All notation related
to the geometry of the computational domain is depicted in Figure 5.1. In particular,
we define E1,a = {(x1, x2) ∈ E1 : 0 < x1 6 L2}, E1,b = E1 \ E1,a, E4,a = {(x1, x2) ∈

E4 :
L2
2

6 x2 < L2} and E4,b = E4 \ E4,a.
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s s

ss

V1 V2

V3V4

(0,0) (L1,0)

(L1,L2)(0,L2)

E1

E2

E3

E4s

s

(0,
L2
2
)

(L2,0)E1,a E1,b

E4,a

E4,b

Ω

Fig. 5.1. General rectangular domain Ω = (0, L1) × (0, L2), with L2 6 L1, involved in our
numerical experiments.

5.1. Flow problems. In order to simplify the implementation, we rewrite (4.4)-
(4.5), defining the control u everywhere on Γ, but not necessarily allowing it to vary
everywhere. We consider two flow problems: cavity flow and backward-facing step
flow problems. In each case we describe a simulation problem and a tangential BCP.
Also, we only describe the boundary conditions on the velocity and the constraints
on the boundary controls, since all problems have in common the three differential
equations in Ω and the boundary condition on ω that appear in (4.1). All control
problems seek the minimization of the objective function (4.4) with c = 10−2 .

Cavity flow problems. In this case, L1 = L2 = 1 and (see Figure 5.2a)

f =
(

−sin2(πx1) cos(πx2) sin
2(πx2), sin

2(πx2) cos(πx1) sin
2(πx1)

)

.

The simulation problem assumes slip rigid walls on Γ:

{

v · ν = 0 on Γ,
∂v

∂ν
= 0 on Γ.

(5.1)

The tangential BCP has Γu = Γ and velocity and control constraints given by:

{

v − u = 0 on Γu,
u · ν = 0 on Γu.

(5.2)

Backward-facing step problems. In this case , L1 = 6, L2 = 1 and f = 0. We
define vin(x1, x2) = 8(1− x2)(x2 −

1
2 ) and vout(x1, x2) = x2(1− x2). See Figures 5.3

and 5.6. The simulation problem has velocity boundary conditions given by:











































v1 = 0 on {V1} ∪ E1,b ∪ E3 ∪ E4,b,
v1 = vin on E4,a,
v1 = vout on E2,
∂v1
∂ν

= 0 on E1,a,

v2 = 0 on Γ \ E4,b,
∂v2
∂ν

= 0 on E4,b.

(5.3)
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The tangential BCP has has Γu = E4,b ∪ {V1} ∪ E1,a and velocity and control
constraints given by:































v − u = 0 on Γu,
u · ν = 0 on Γu,
v1 = 0 on E1,b ∪ E3,
v1 = vin on E4,a,
v1 = vout on E2,
v2 = 0 on Γ \ Γu.

(5.4)

We run flow problems for Re = 200 and Re = 300. In this range of Reynolds
numbers the flow is known to be steady and two-dimensional [30].

5.2. Details of numerical approaches. To discretize the flow problems, we
use a five-point second order finite difference method on a uniform mesh1. All deriva-
tive terms of interior PDEs are discretized with a second order central difference
scheme. The boundary condition ω+ ∂v1/∂x2 − ∂v2/∂x1 = 0 on Γ is also discretized
with a second order approximation, using, however, only mesh points adjacent to the
boundary, by applying (4.2) at these points also. This combination of second order
approximation with only mesh points adjacent to the boundary is good for parallel
performance reasons. We show how to achieve this combination for the boundary
mesh points on edge E1 and at corner V1. Equations for the other boundary regions
are similarly deduced. Let h denote the uniform mesh spacing. Given a mesh point,
let subindices r, l, a, b denote mesh points located respectively to the right, to the
left, above and below of this given mesh point. The meanings for subindices ar, br,
bl, al, rr, ll, aa, bb etc are straightforward. For mesh points located on edge E1 we
know that

w = −
−3v1 + 4v1,a − v1,aa

2h
+
v2,r − v2,l
2h

+O(h2),

wa = −
v1,aa − v1
2h

+
v2,ar − v2,al

2h
+O(h2).

So, taking the sum of the expressions, v1,aa is cancelled:

w + wa + 2
v1,a − v1

h
−
v2,ar − v2,al

2h
−
v2,r − v2,l
2h

= O(h2).

Using a similar technique, we obtain, for corner V1,

w+wa +wr +war +2
v1,a − v1

h
+2

v1,ar − v1,r
h

− 2
v2,r − v2

h
− 2

v2,ar − v2,a
h

= O(h2).

To form an algebraic system of nonlinear equations from the finite difference
equations, we need to order the unknowns and the corresponding functions. The
unknowns are ordered mesh point by mesh point, in contrast to physical variable by
physical variable as required by all SQP methods related to the matrix structure (3.2).
At each mesh point the unknowns are ordered in the order of v1, v2, ω, u1, u2, λ1, λ2
and λ3. The mesh points are ordered subdomain by subdomain, for the purpose of

1Since our research focus in this paper is the iterative method LNKSz, we use a simple nonstag-
gered mesh. Another approach is to use staggered meshes in order to numerically better preserve
the physical conditions (4.2) and (4.3) [18, 25, 37].
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parallel processing. The ordering of the subdomains is not important since we use an
additive method whose performance has nothing to do with the subdomain ordering.
In order to avoid pivoting during the sparse LU method (used in our experiments), the
corresponding functions are ordered as ∇λ1

L,∇λ2
L,∇λ3

L, ∇u1
L,∇u2

L, ∇v1L,∇v2L
and ∇ωL. Because the orderings for the unknowns and for the function components
are different, the Jacobian matrix becomes nonsymmetric and so we use GMRES.

Some of the numerical results obtained using LNKSz for tangential boundary flow
control problems are compared with the corresponding simulation results obtained
using NKSz [12]. Although NKSz has been well studied for flow simulation problems,
little is known about its applicability and performance for solving KKT systems arising
from flow control problems. The NKSz algorithm can be briefly described as follows:






































1. Initialize the iteration k = 0 and X(0) = 0;
2. Decide whether to stop based on ‖F(X(k))‖2;
3. Approximately solve

[

∇F(X(k))
]

p(k) = −F(X(k)),
using GMRES with a left Schwarz preconditioner;

4. Perform line search X(k+1) = X(k) + α(k)p(k)

using the standard merit function ‖F‖22/2;
5. Set k ← k + 1; go to Step 2.

(5.5)

LNKSz is very similar to NKSz, except that it uses an augmented Lagrangian merit
function in Step 4 of (5.5). Note that Reynolds continuation is not used in any of the
algorithms.

In all experiments, the Jacobian matrix is constructed approximately using a
multi-colored central finite difference method with step size 10−5, [17]. In problem
(4.4)-(4.5), since there is no variable with power greater than two, central finite dif-
ference approximations of the Jacobian are exact up to roundoff errors . To solve the
Jacobian systems we use restarted GMRES with an absolute tolerance equal to 10−6,
a relative tolerance equal to 10−4, a restart parameter equal to 90 and a maximum
number of iterations equal to 5000. The GMRES tolerances are checked over pre-
conditioned residuals. Regarding the one-level additive Schwarz preconditioner, the
number of subdomains is equal to the number of processors and the extended subdo-
main problems have zero Dirichlet interior boundary conditions and are solved with
sparse LU. The line search with the merit function defined in Section 2 is performed
with cubic backtracking, with c1 = 10

−4 in (2.5) and a minimum allowed step length
α(k) equal to 10−6. For augmented Lagrangian merit functions we follow the strategy
explained in Section 2 with ρ(−1)=10. For Newton iterations we use an absolute stop-
ping tolerance equal to 10−6 and a relative tolerance equal to 10−10 times the initial
residual. The maximum allowed number of Newton iterations is 100.

5.3. Results of numerical experiments. All tests were performed on a cluster
of Linux PCs and our parallel object-oriented software was developed using the C++
programming language and the Portable, Extensible Toolkit for Scientific Computing
(PETSc) library [2], from Argonne National Laboratory. Our main concern is the
scalability of the algorithms in terms of the linear and nonlinear iteration numbers.
Computing times are also reported, but they should not be taken as a reliable measure
of the scalability of the algorithms because our network is relatively slow and is shared
with other processes.

Results are grouped into tables according to a unique combination of problem type
(simulation or control), Reynolds numberRe, ASM type (standard or restricted), over-
lap δ and merit function (standard or augmented Lagrangian). Each table presents
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results for nine situations, related to three different sizes of meshes (parameter h) and
three different numbers of processors (parameter H). For each case we report

• The total number of Newton iterations: n
• The average number of GMRES iterations per Newton iteration: l
• The total computing time in seconds spent on all Newton iterations: tn
• The average computing time, in seconds, per Newton iteration, spent on
solving for the Newton steps: tl

For each table we compare the behavior of l against (3.6)-(3.8). Predictions (3.6) and
(3.7) can be checked by observing the values of l in a column (fixed h and δ) and in
a row (fixed H and δ), respectively. Prediction (3.8) can be checked by observing the
values of l at the same situation (fixed problem type, Re, ASM type, merit function,
H and h) in different tables (different δ). We also compare approximate values of

‖ω‖2h =

∫

Ωh

ω2 dΩh. (5.6)

We show some parallel efficiency results, defined as follows: the base computing time
is obtained on 16 processors and the parallel efficiencies En (related to tn) and El

(related to tl) are given by the expression

[computing time (tn or tl) using 16 processors] × 16

[computing time (tn or tl) using Np processors] × Np

. (5.7)

5.3.1. Cavity flow problems. Table 5.1 presents results for the simulation
problem (5.1) with Re = 200. The preconditioner is ASM with δ = 1/64 and the
standard merit function is used in the line search. The total number of Newton
iterations does not change with the mesh size or the number of processors. The
average number of Krylov iterations per Newton iteration changes as expected in
predictions (3.6) and (3.7).

Table 5.1

Results for the cavity flow simulation problem with Re = 200, standard ASM with overlap
δ = 1/64 and standard merit function ‖F‖2

2
/2. n is the total number of Newton iterations, l is the

average number of Krylov iterations per Newton iteration, tn is the total time in seconds spent on
all Newton iterations and tl is the average time in seconds, per Newton iteration, spent on solving
for Newton steps. For the case of finest mesh, 256 × 256, the number of variables is 198, 147 and
‖ω‖2

h
≈ 55.4. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 5 tn ≈ 0.83 n = 5 tn ≈ 3.6 n = 5 tn ≈ 18.3

l ≈ 46 tl ≈ 0.13 l ≈ 47 tl ≈ 0.62 l ≈ 47 tl ≈ 3.29
32 n = 5 tn ≈ 0.71 n = 5 tn ≈ 2.7 n = 5 tn ≈ 12.1

l ≈ 60 tl ≈ 0.091 l ≈ 63 tl ≈ 0.46 l ≈ 63 tl ≈ 2.20
64 n = 5 tn ≈ 0.70 n = 5 tn ≈ 1.99 n = 5 tn ≈ 7.50

l ≈ 69 tl ≈ 0.077 l ≈ 80 tl ≈ 0.32 l ≈ 79 tl ≈ 1.35

The next three tables present results for the tangential BCP (5.2) with Re = 200.
An augmented Lagrangian merit function is used in the line search. Several different
overlap values are used in the ASM preconditioner and the results are summarized as
follows: Table 5.2 for δ = 1/64, Table 5.3 for δ = 1/32 and Table 5.4 for δ = 1/16.
Changes in the total number of Newton iterations w.r.t. the mesh size and the number
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Table 5.2

Results for the cavity tangential boundary flow control problem with Re = 200, standard ASM
with overlap δ = 1/64 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 32.5. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.92 n = 8 tn ≈ 52.1 n = 6 tn ≈ 238

l ≈ 92 tl ≈ 1.21 l ≈ 85 tl ≈ 5.78 l ≈ 100 tl ≈ 36.4
32 n = 7 tn ≈ 10.3 n = 8 tn ≈ 53.3 n = 6 tn ≈ 264

l ≈ 208 tl ≈ 1.34 l ≈ 204 tl ≈ 6.26 l ≈ 272 tl ≈ 42.5
64 n = 7 tn ≈ 5.39 n = 8 tn ≈ 25.6 n = 6 tn ≈ 108

l ≈ 187 tl ≈ 0.67 l ≈ 182 tl ≈ 2.96 l ≈ 216 tl ≈ 17.1

Table 5.3

Results for the cavity tangential boundary flow control problem with Re = 200, standard ASM
with overlap δ = 1/32 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 32.5. See (5.6). Case “(*)” is discussed in Subsection 5.3.1.

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 8.22 n = 8 tn ≈ 49.1 n = 7 tn ≈ 254

l ≈ 58 tl ≈ 0.96 l ≈ 59 tl ≈ 5.38 l ≈ 62 tl ≈ 33.1
32 n = 7 tn ≈ 8.32 n = 8 tn ≈ 46.6 n = 6 tn ≈ 199

l ≈ 119 tl ≈ 1.05 l ≈ 130 tl ≈ 5.41 l ≈ 140 tl ≈ 31.6
64 n = 7 (*) tn ≈ 6.21 n = 8 tn ≈ 27.6 n = 6 tn ≈ 110

l ≈ 155 tl ≈ 0.78 l ≈ 132 tl ≈ 3.18 l ≈ 143 tl ≈ 17.4

of processors are not pronounced. We observe that l follows (3.8). With the same δ
used on the simulation problem, we can see in Table 5.2 that the average number of
GMRES iterations is now more sensitive to both h and, especially, H. Table 5.3 is
the one where l best follows both (3.6) and (3.7) and the computing times tn and tl
for the finest mesh decrease with the increase in the number of processors. Table 5.4
shows that if δ gets too big then the consequent decrease on l might not compensate
the increased time taken by sparse LU on the larger extended subdomains; that is,
tl increases. Comparing values of tl in Tables 5.2 and 5.3 with the values in Table
5.1, we see that the average time spent on computing p(k) can be more than 10 times
bigger in control problems than in simulation problems on the same mesh, instead of
being around 8/3 ≈ 3 times bigger, in accordance to the ratio between the number of
variables per mesh point on control problems and on simulation problems.

As reported in Subsection 5.2, we use a GMRES relative tolerance of 1.0×10−4, a
GMRES absolute tolerance of 1.0×10−6 and a Newton absolute tolerance of 1.0×10−6.
Case “(*)” in Table 5.3, however, gives results for a Newton absolute tolerance of
1.2 × 10−6. When a Newton absolute tolerance of 1.0 × 10−6 is used, although full
steps are accepted in some iterations, the line search stalls once ||F ||2 ≈ 1.14× 10

−6.
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Table 5.4

Results for the cavity tangential boundary flow control problem with Re = 200, standard ASM
with overlap δ = 1/16 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 32.5. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.65 n = 8 tn ≈ 59.2 n = 7 tn ≈ 744

l ≈ 47 tl ≈ 1.16 l ≈ 44 tl ≈ 6.62 l ≈ 50 tl ≈ 103
32 n = 7 tn ≈ 10.8 n = 8 tn ≈ 75.1 n = 7 tn ≈ 616

l ≈ 100 tl ≈ 1.39 l ≈ 108 tl ≈ 8.96 l ≈ 149 tl ≈ 86.3
64 n = 6 tn ≈ 6.36 n = 8 tn ≈ 56.5 n = 7 tn ≈ 331

l ≈ 104 tl ≈ 0.94 l ≈ 115 tl ≈ 6.79 l ≈ 128 tl ≈ 46.4

Table 5.5

Results for the cavity tangential boundary flow control problem with Re = 200, restricted ASM
with overlap δ = 1/32 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 32.5. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 8.33 n = 9 tn ≈ 53.1 n = 7 tn ≈ 253

l ≈ 59 tl ≈ 0.98 l ≈ 57 tl ≈ 5.15 l ≈ 62 tl ≈ 32.9
32 n = 7 tn ≈ 8.47 n = 8 tn ≈ 46.9 n = 6 tn ≈ 211

l ≈ 131 tl ≈ 1.07 l ≈ 134 tl ≈ 5.45 l ≈ 154 tl ≈ 33.6
64 n = 7 tn ≈ 6.38 n = 8 tn ≈ 30.1 n = 6 tn ≈ 132

l ≈ 175 tl ≈ 0.81 l ≈ 162 tl ≈ 3.50 l ≈ 184 tl ≈ 21.1

If we change the GMRES relative tolerance to 1.0 × 10−6 and the GMRES absolute
tolerance to 1.0 × 10−13 (in order to obtain a more accurate Newton step) then we
achieve ||F ||2 < 1.00 × 10

−6 with n = 6, l ≈ 272, tn ≈ 9.38 and tl ≈ 1.42. Although
we performed our tests with fixed GMRES tolerances, this experiment suggests that
for more demanding Newton tolerances one might need to use decreasing GMRES
tolerances as the outer loop proceeds, as expected by the theory for superlinear con-
vergence of the inexact Newton method [19, 36].

In the next two tables, we change the preconditioner to RAS and everything else
stays the same; i.e., these results are for the tangential BCP (5.2) with Re = 200 and
we use an augmented Lagrangian merit function in the line search. We increase the
overlap size in the RAS preconditioner as follows: Table 5.5 for δ = 1/32 and Table
5.6 for δ = 1/16. The average number of GMRES iterations continues to follow (3.8)
but now it better follows (3.6) and (3.7). The computing times tn and tl for the finest
mesh in Table 5.6 decrease with the increase in the number of processors. The average
number of GMRES iterations is larger in Table 5.5 than in Table 5.3, but the saving
in communications of RAS compensates for this increase so that tl does not increase
proportionally. By comparing finest mesh results on Tables 5.6 and 5.4 we see that
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Table 5.6

Results for the cavity tangential boundary flow control problem with Re = 200, restricted ASM
with overlap δ = 1/16 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 32.5. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 7 tn ≈ 9.66 n = 8 tn ≈ 60.7 n = 7 tn ≈ 743

l ≈ 47 tl ≈ 1.15 l ≈ 46 tl ≈ 6.80 l ≈ 51 tl ≈ 103
32 n = 7 tn ≈ 9.49 n = 8 tn ≈ 65.5 n = 6 tn ≈ 436

l ≈ 90 tl ≈ 1.21 l ≈ 86 tl ≈ 7.7 l ≈ 98 tl ≈ 71.0
64 n = 7 tn ≈ 7.18 n = 9 tn ≈ 56.9 n = 7 tn ≈ 309

l ≈ 105 tl ≈ 0.91 l ≈ 97 tl ≈ 6.1 l ≈ 114 tl ≈ 43.3

Table 5.7

Results for the cavity tangential boundary flow control problem with Re = 250, restricted ASM
with overlap δ = 1/16 and augmented Lagrangian merit function. n is the total number of Newton
iterations, l is the average number of Krylov iterations per Newton iteration, tn is the total time in
seconds spent on all Newton iterations and tl is the average time in seconds, per Newton iteration,
spent on solving for Newton steps. For the case of finest mesh, 256× 256, the number of variables
is 528, 392 and ‖ω‖2

h
≈ 50.2. See (5.6).

# Mesh
Procs. 64× 64 128× 128 256× 256

16 n = 11 tn ≈ 15.8 n = 13 tn ≈ 110 n = 10 tn ≈ 1090

l ≈ 51 tl ≈ 1.22 l ≈ 55 tl ≈ 7.67 l ≈ 55 tl ≈ 106
32 n = 11 tn ≈ 17.2 n = 13 tn ≈ 126 n = 9 tn ≈ 726

l ≈ 107 tl ≈ 1.42 l ≈ 112 tl ≈ 9.23 l ≈ 123 tl ≈ 79.0
64 n = 10 tn ≈ 12.6 n = 13 tn ≈ 102 n = 9 tn ≈ 504

l ≈ 135 tl ≈ 1.16 l ≈ 139 tl ≈ 7.62 l ≈ 180 tl ≈ 55.1

RAS performs better than the standard ASM in terms of both l and tl, resulting on
a smaller tn.

Table 5.7 presents results for the tangential BCP (5.2) with Re = 250, restricted
ASM with δ = 1/16 and augmented Lagrangian merit function. We can see that,
with a Reynolds number greater than that in the previous table, both nonlinear (n)
and average linear (l) complexities increase.

In order to determine if tighter fixed GMRES tolerances would improve the num-
ber of Newton iterations and so, eventually, improve the total computing time, we
rerun the tests of Table 5.7 with the same parameters, except for a GMRES relative
tolerance of 1.0 × 10−6, instead of 1.0 × 10−4, and a GMRES absolute tolerance of
1.0×10−13, instead of 1.0×10−6. When compared to the results in Table 5.7, at least
one Newton step is saved in all nine tests, but the increase in l (and consequently tl)
makes tn increase in all cases with 32 and 64 processors. In fact, tn decreases just for
the case of 256× 256 mesh and 16 processors, from 1090 seconds to 1040 seconds. So,
although there was some improvement in the number of Newton steps, it was usually
not enough to compensate for the expected increase in linear complexity, resulting on
a bigger overall computing time tn.
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Table 5.8

Efficiency analysis of NKSz and LNKSz, w.r.t. the number of processors, for cavity flow prob-
lems with a 256 × 256 mesh and different values of Reynolds number Re and overlap δ. En is the
efficiency related to tn, the total time in seconds spent on all Newton iterations. El is the efficiency
related to tl, the average time in seconds, per Newton iteration, spent on solving for Newton steps.
See (5.7). Results are based on values of tn and tl from Tables 5.1, 5.6 and 5.7.

# Simulation Boundary Control
Procs. Re = 200, δ = 1/64 Re = 200, δ = 1/16 Re = 250, δ = 1/16

Standard ASM Restricted ASM Restricted ASM
En El En El En El

16 1.00 1.00 1.00 1.00 1.00 1.00
32 0.76 0.75 0.85 0.73 0.75 0.67
64 0.61 0.61 0.60 0.59 0.54 0.48

Next, in Table 5.8 we present some parallel efficiency results derived from data
presented in previous tables.

Finally, we present a comparison of computed velocity fields for Re = 200. Figure
5.2b refers to the simulation problem (5.1), and Figures 5.2c and 5.2d refer to the
tangential BCP (5.2). Recall that the objective of the tangential boundary control
is to minimize the intensity of the velocity field in the vortex shown in Figure 5.2b.
Figure 5.2d shows that the tangential boundary control acts in the opposite direction
of the interior flow. The achieved minimization can be observed in two ways: by
comparing Figure 5.2c against Figure 5.2b and by comparing the value ‖ω‖2h ≈ 32.5
in Tables 5.2-5.6 against the value ‖ω‖2h ≈ 55.4 in Table 5.1.

5.3.2. Backward-facing step flow problems. In this subsection we present
results for the backward-facing step problem. Table 5.9 contains results for the simu-
lation problem (5.3) with Re = 200. The standard merit function is used in the line
search and an overlap δ = 1/32 is used in the ASM preconditioner. The total number
of Newton iterations does not change with the mesh size or the number of processors.
The average number of GMRES iterations does not seem to follow (3.6) and (3.7) so
closely as in the case of cavity flow simulation problems. But l behaves better when
RAS is employed.

Table 5.9

Results for the backward-facing step flow simulation problem with Re = 200, standard ASM with
overlap δ = 1/32 and standard merit function ‖F‖2

2
/2. n is the total number of Newton iterations,

l is the average number of Krylov iterations per Newton iteration, tn is the total time in seconds
spent on all Newton iterations and tl is the average time in seconds, per Newton iteration, spent on
solving for Newton steps. For the case of finest mesh, 768× 128, the number of variables is 297, 603
and ‖ω‖2

h
≈ 3.35. See (5.6).

# Mesh
Procs. 192× 32 384× 64 768× 128

16 n = 5 tn ≈ 1.35 n = 5 tn ≈ 6.49 n = 5 tn ≈ 37.2

l ≈ 54 tl ≈ 0.22 l ≈ 59 tl ≈ 1.15 l ≈ 64 tl ≈ 6.85
32 n = 5 tn ≈ 1.37 n = 5 tn ≈ 5.96 n = 5 tn ≈ 30.7

l ≈ 92 tl ≈ 0.22 l ≈ 109 tl ≈ 1.09 l ≈ 121 tl ≈ 5.82
64 n = 5 tn ≈ 0.96 n = 5 tn ≈ 3.35 n = 5 tn ≈ 13.6

l ≈ 89 tl ≈ 0.13 l ≈ 102 tl ≈ 0.58 l ≈ 102 tl ≈ 2.50
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Table 5.10

Results for the backward-facing step tangential boundary flow control problem with Re = 200,
standard ASM with overlap δ = 1/16 and augmented Lagrangian merit function. n is the total
number of Newton iterations, l is the average number of Krylov iterations per Newton iteration, tn

is the total time in seconds spent on all Newton iterations and tl is the average time in seconds, per
Newton iteration, spent on solving for Newton steps. For the case of finest mesh, 768 × 128, the
number of variables is 793, 608 and ‖ω‖2

h
≈ 3.28. See (5.6).

# Mesh
Procs. 192× 32 384× 64 768× 128

16 n = 40 tn ≈ 89.1 n = 31 tn ≈ 392 n = 23 tn ≈ 1610

l ≈ 81 tl ≈ 1.92 l ≈ 85 tl ≈ 11.5 l ≈ 90 tl ≈ 64.8
32 n = 41 tn ≈ 322 n = 31 tn ≈ 2100 n = 23 tn ≈ 13400

l ≈ 605 tl ≈ 7.65 l ≈ 1110 tl ≈ 67.0 l ≈ 1800 tl ≈ 581
64 n = 41 tn ≈ 209 n = 31 tn ≈ 1460 n = 23 tn ≈ 8520

l ≈ 701 tl ≈ 4.97 l ≈ 1410 tl ≈ 46.6 l ≈ 2200 tl ≈ 369

Table 5.11

Results for the backward-facing step tangential boundary flow control problem with Re = 200,
restricted ASM with overlap δ = 1/8 and augmented Lagrangian merit function. n is the total
number of Newton iterations, l is the average number of Krylov iterations per Newton iteration, tn

is the total time in seconds spent on all Newton iterations and tl is the average time in seconds, per
Newton iteration, spent on solving for Newton steps. For the case of finest mesh, 768 × 128, the
number of variables is 793, 608 and ‖ω‖2

h
≈ 3.28. See (5.6).

# Mesh
Procs. 192× 32 384× 64 768× 128

16 n = 40 tn ≈ 111 n = 31 tn ≈ 648 n = 23 tn ≈ 4990

l ≈ 62 tl ≈ 2.44 l ≈ 61 tl ≈ 19.6 l ≈ 62 tl ≈ 211
32 n = 41 tn ≈ 87.9 n = 32 tn ≈ 367 n = 23 tn ≈ 2250

l ≈ 78 tl ≈ 1.93 l ≈ 80 tl ≈ 10.8 l ≈ 83 tl ≈ 94.9
64 n = 40 tn ≈ 50.0 n = 31 tn ≈ 246 n = 23 tn ≈ 1560

l ≈ 80 tl ≈ 1.12 l ≈ 83 tl ≈ 7.55 l ≈ 86 tl ≈ 66.4

Next, we consider the tangential BCP (5.4) with Re = 200 and an augmented
Lagrangian merit function in the line search. In this case the standard ASM with
δ = 1/32 does not result in a good enough preconditioner for GMRES; i.e., the
maximum allowed number (5000) of Krylov iterations is eventually achieved without
any tolerance being satisfied. Table 5.10 presents results for the standard ASM with
δ = 1/16. Interestingly, the total number of Newton iterations decreases as the mesh
is refined, although the overall effort to find a solution increases. Comparing with
Table 5.9, we can see that the average number of GMRES iterations is now much
more sensitive to both h and H.

With δ > 1/16 we expect a better convergence of LNKSz. But instead of applying
the standard ASM with δ = 1/8, we apply, in Table 5.11, RAS with δ = 1/8, trying to
balance more sparse LU time spent on bigger extended subdomains with less commu-
nication time spent on RAS. The number of Newton iterations continues to decrease
as the mesh is refined. With an overlap δ four times as large as the one used on the
simulation problem, the average number of GMRES iterations now follows (3.6) and
(3.7) more closely. Comparing values of tl in Tables 5.11 and 5.9, we see that the
average time spent on computing p(k) can be more than 20 times greater in control
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Table 5.12

Results for the backward-facing step tangential boundary flow control problem with Re = 300,
restricted ASM with overlap δ = 1/8 and augmented Lagrangian merit function. n is the total
number of Newton iterations, l is the average number of Krylov iterations per Newton iteration, tn

is the total time in seconds spent on all Newton iterations and tl is the average time in seconds, per
Newton iteration, spent on solving for Newton steps. For the case of finest mesh, 768 × 128, the
number of variables is 793, 608 and ‖ω‖2

h
≈ 3.65. See (5.6).

# Mesh
Procs. 192× 32 384× 64 768× 128

16 n = 53 tn ≈ 148 n = 41 tn ≈ 875 n = 30 tn ≈ 6600

l ≈ 61 tl ≈ 2.47 l ≈ 62 tl ≈ 20.1 l ≈ 63 tl ≈ 214
32 n = 55 tn ≈ 118 n = 41 tn ≈ 498 n = 31 tn ≈ 3090

l ≈ 81 tl ≈ 1.97 l ≈ 86 tl ≈ 11.5 l ≈ 88 tl ≈ 96.6
64 n = 53 tn ≈ 67.1 n = 41 tn ≈ 333 n = 30 tn ≈ 2050

l ≈ 82 tl ≈ 1.13 l ≈ 86 tl ≈ 7.75 l ≈ 89 tl ≈ 66.8

problems than in simulation problems with the same mesh, instead of being around
8/3 ≈ 3 times greater, in accordance to the ratio between the number of variables per
mesh point on control problems and on simulation problems.

We now increase the Reynolds number to Re = 300 and the performance data for
the tangential BCP (5.4) is provided in Table 5.12. We use the augmented Lagrangian
merit function in the line search and δ = 1/8 in RAS. With the increase in Re, both
nonlinear (n) and average linear (l) complexities increase, although the increase in
the total number of Newton iterations is more pronounced.

Again, as done in the case of cavity flow control problems, in order to determine
if smaller fixed GMRES tolerances would improve the number of Newton iterations
and so, eventually, improve the total computing time, we rerun the tests of Table
5.12 with the same parameters, except for a GMRES relative tolerance of 1.0× 10−6,
instead of 1.0 × 10−4, and a GMRES absolute tolerance of 1.0 × 10−13, instead of
1.0 × 10−6. When compared to the results in Table 5.12, one or two Newton steps
are saved in just two of the nine tests, while the increase in l (and tl, consequently)
makes tn increase in all nine cases.

In Table 5.13 some parallel efficiency results derived from data presented in pre-
vious tables are given.

Table 5.13

Efficiency analysis of NKSz and LNKSz, w.r.t. the number of processors, for backward-facing
step flow problems with a 768× 128 mesh and different values of Reynolds number Re and overlap
δ. En is the efficiency related to tn, the total time in seconds spent on all Newton iterations. El is
the efficiency related to tl, the average time in seconds, per Newton iteration, spent on solving for
Newton steps. See (5.7). Results are based on values of tn and tl from Tables 5.9, 5.11 and 5.12.

# Simulation Boundary Control
Procs. Re = 200, δ = 1/16 Re = 200, δ = 1/8 Re = 300, δ = 1/8

Standard ASM Restricted ASM Restricted ASM
En El En El En El

16 1.00 1.00 1.00 1.00 1.00 1.00
32 0.61 0.59 1.11 1.11 1.07 1.11
64 0.68 0.69 0.80 0.79 0.80 0.80
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Finally, we look at the computed velocity fields for Re = 200. Figures 5.3-
5.5 are for the simulation problem (5.3), and Figures 5.6-5.8 are for the tangential
BCP (5.4). The results are very similar to the cavity flow problem, more precisely
speaking, Figure 5.4 and Figure 5.8 show that the tangential boundary control acts
in the opposite direction of the interior flow. The achieved minimization values can
be measured either by comparing Figure 5.7 against Figure 5.4, or by comparing the
value ‖ω‖2h ≈ 3.28 in Tables 5.10-5.11 against the value ‖ω‖

2
h ≈ 3.35 in Table 5.9.
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Fig. 5.2. Information on cavity flow problems: (a) External force. (b) Computed velocity field
for the simulation problem (5.1) for Re = 200. (c) Computed velocity field for the tangential BCP
(5.2) for Re = 200. (d) Highlight of the boundary velocity in Figure (c).
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Fig. 5.3. Computed velocity for the backward-facing step problem (5.3) with Re = 200.
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Fig. 5.4. Highlight of the velocity field in the left bottom region of Figure 5.3.
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Fig. 5.5. Highlight of the boundary velocity in the left bottom region of Figure 5.3.

6. Conclusions. We have developed a general LNKSz algorithm for PDE con-
strained optimization problems and applied it to some tangential boundary control
problems involving two-dimensional incompressible Navier-Stokes equations. In our
numerical experiments the LNKSz algorithm, together with an augmented Lagrangian
merit function, provides a fully parallel and robust solution method. The one-level
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Fig. 5.6. Computed velocity for the backward-facing step tangential BCP (5.4) with Re = 200.
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Fig. 5.7. Highlight of the velocity field in the left bottom region of Figure 5.6.

additive Schwarz preconditioned GMRES, with a proper overlap, works well for the
indefinite linearized KKT systems. A proper overlap for a control problem seems
to be greater than a proper overlap for a simulation problem. More precisely, in our
experiments the proper overlaps are two to four times greater in the control problems.
For larger overlaps the restricted version of ASM seems to perform better than the
standard ASM as a preconditioner for linearized KKT systems.

Our experiments also show that control problems are computationally more de-
manding, in terms of the total number of nonlinear iterations, the average number
of linear iterations per Newton iteration and the total computing time, than the
corresponding simulation problems. The overall computational effort grows as Re
increases, in terms of the number of both nonlinear and average linear iterations .
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