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Abstract Direct numerical simulation of three-dimensional incompressible flows
at high Reynolds number using the unsteady Navier-Stokes equations is challeng-
ing. In order to obtain accurate simulations, very fine meshes are necessary, and
such simulations are increasingly important for modern engineering practices, such
as understanding the flow behavior around high speed trains, which is the target
application of this research. To avoid the time step size constraint imposed by
the CFL number and the fine spacial mesh size, we investigate some fully implicit
methods, and focus on how to solve the large nonlinear system of equations at
each time step on large scale parallel computers. In most of the existing implicit
Navier-Stokes solvers, segregated velocity and pressure treatment is employed. In
this paper, we focus on the Newton-Krylov-Schwarz method for solving the mono-
lithic nonlinear system arising from the fully coupled finite element discretization
of the Navier-Stokes equations on unstructured meshes. In the subdomain, LU or
point-block ILU is used as the local solver. We test the algorithm for some three-
dimensional complex unsteady flows, including flows passing a high speed train,
on a supercomputer with thousands of processors. Numerical experiments show
that the algorithm has superlinear scalability with over three thousand processors
for problems with tens of millions of unknowns.
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1 Introduction

Because of the advancement of supercomputing, parallel computational fluid dy-
namics has become an enabling technology supporting a wide range of applications
in science and engineering. For example, simulations of flow around an object with
a complicated shape are particularly useful in aerodynamic vehicle design. Many
engineering and atmospheric flows are turbulent, and understanding the behav-
ior of the flows is of great practical importance. Roughly speaking, turbulence
simulation methodologies can be classified into Reynolds-averaged Navier-Stokes
approaches (RANS), large-eddy simulation (LES), and direct numerical simulation
(DNS). RANS is based on the Reynolds decomposition of the flow variables into
their time-averaged and fluctuating quantities. We refer interested readers to [1]
for details. LES is intermediate between RANS and DNS, which ignores the small
turbulent scales and computes the dynamics of the large scales [26]. LES was the
most popular technique for the turbulence simulations in the last few decades [13,
18,22]. DNS is the most accurate method for the numerical simulation of turbulent
flows, and is also the most expensive one in terms of the computational cost. In
DNS, the Navier-Stokes equations are numerically solved without any turbulence
model, which means that the momentum equation of the Navier-Stokes equations
must be exactly solved. DNS is an useful tool in fundamental research on tur-
bulence, and using DNS it is possible to perform certain “experiments” that are
difficult or sometimes impossible to obtain in actual experiments. Some reviews
about the DNS can be found in the references [2,12,19]. In this study, we focus
on studying 3D incompressible flows around complex bodies. A key motivation for
the current work is to simulate unsteady realistic flow around a high speed train.
Because of the lack of parallel scalability, commercial CFD software packages can
only be used when the mesh is not too fine, and thus don’t offer sufficient accuracy.

In DNS, in order to obtain sufficiently accurate solutions, small spatial scales
of the complex flows must be resolved by the computational mesh, thus the com-
putation is usually very demanding, requiring large scale parallel computers for
their memory capacity and processing speed. It is clear by now that the increase
of computing power is no longer from faster processors, but from the increase of
the number of processors. This makes the scalability of the algorithm more impor-
tant than ever. Many researchers have studied parallel algorithms for DNS. For
examples, Yokokawa et al. [29] studied DNS of incompressible turbulence flows
with the Fourier spectral method using over 4000 processors; Chen [9] studied
DNS of chemistry turbulence on a Petascale supercomputer using a finite differ-
ence method for the spatial discretization and an explicit Runge-Kutta method
for the temporal discretization; Rahimian et al. [23] studied DNS of blood flows
using nearly 200 thousand processor cores with over 90 billion unknowns.

In this work, we present a Newton-Krylov-Schwarz (NKS) based parallel im-
plicit solver for the unsteady incompressible Navier-Stokes equations. NKS is a
general purpose parallel solver for nonlinear systems and has been widely used to
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solve different kind of nonlinear problems; see e.g., [6,14,15,20]. Our algorithm be-
gins with a discretization of the incompressible unsteady Navier-Stokes equations
on an unstructured tetrahedron mesh with a stabilized finite element method in
space and a fully implicit backward difference scheme in time. At each time step,
an inexact Newton method is employed to solve the discretized large sparse non-
linear system and in the Newton steps, a domain decomposition preconditioned
Krylov method is used to solve the Jacobian system which is constructed analyti-
cally in order to obtain the desired performance. The most important component
of the solver is the monolithic Schwarz preconditioner that keeps the strong cou-
pling of the velocity and pressure variables at each mesh point throughout the
entire algorithm.

The rest of the paper is organized as follows. In Section 2, we briefly intro-
duce the governing equations, and the discretization of the governing equations is
discussed in Section 3. In Section 4, the Newton-Krylov-Schwarz algorithm is in-
troduced, and some numerical results are presented in Section 5. Some concluding
remarks are given in Section 6.

2 Governing equations

The Navier-Stokes equations are the fundamental governing equations that de-
scribe the flow of a viscous fluid. In this paper, the incompressible unsteady Navier-
Stokes equations are used to model the flow. Let Ω ⊂ R3 be the spatial domain
of interest bounded by the boundary Γ = Γinlet ∪ Γwall ∪ Γoutlet. The equations
read as, in the vector form:

ρ

„

∂u

∂t
+ u · ∇u

«

−∇ · σ = f in Ω,

∇ · u = 0 in Ω,
(1)

where u is the velocity, σ = −pI + µ(∇u + (∇u)T ) is the Cauchy stress tensor, p
is the pressure, ρ is the fluid density, µ is the dynamic viscosity, and f represents
the body force or the source term. A given velocity profile g is chosen on the inlet
boundary Γinlet, no-slip boundary conditions are used on the wall Γwall and on
the outlet boundary Γoutlet the stress-free boundary conditions are imposed:

u = g on Γinlet,

u = 0 on Γwall, (2)

σ · n = 0 on Γoutlet,

where n is the outward unit normal vector on the domain boundary. The initial
condition for the velocity is specified as:

u = u0 in Ω at t = 0. (3)

Here u0 is a given function.
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3 Fully-implicit finite element discretization

We use a P1−P1 finite element method to discretize the Navier-Stokes equations
(1) in the spatial domain. To describe the finite element method, we first define
the trial and weighting function spaces as

U = {u(·, t) | u(·, t) ∈ [H1(Ω)]3, u(·, t) = g on Γinlet},

U0 = {u(·, t) | u(·, t) ∈ [H1(Ω)]3, u(·, t) = 0 on Γinlet ∪ Γwall},

P = {p(·, t) | p(·, t) ∈ L2(Ω)}.

Then, the weak form of the Navier-Stokes equations takes the form: Find u ∈ U ,
p ∈ P such that

ρ

Z

Ω

∂u

∂t
· ΦdΩ + µ

Z

Ω

∇u :∇ΦdΩ + ρ

Z

Ω

(u · ∇)u · ΦdΩ

−

Z

Ω

p∇ · ΦdΩ +

Z

Ω

(∇ · u)ϕdΩ =

Z

Ω

f · ΦdΩ, (4)

holds for all Φ ∈ U0 and ϕ ∈ P .
The finite element discretization begins with meshing the computational do-

main with an unstructured tetrahedral mesh T h = {K}. The finite dimensional
trial and weighting spaces can then be established as

Uh = {uh(·, t) | uh(·, t) =
Nu
X

i=1

Φh
i uh

i (·, t), uh(·, t) = g on Γinlet},

Uh
0 = {uh(·, t) | uh(·, t) =

Nu
X

i=1

Φh
i uh

i (·, t), uh(·, t) = 0 on Γinlet ∪ Γwall},

Ph = {ph(·, t) | ph(·, t) =

Np
X

i=1

ϕh
i ph

i (·, t)},

where uh
i ∈ R3, ph

i ∈ R are the nodal values of the velocity and pressure functions.
Nu and Np are the number of nodes for velocity and pressure, respectively. Each
of the three components of Φh

i and ϕh
i are the basis functions which are piecewise

linear functions. Since the P1 − P1 element does not satisfy the Ladyzenskaja-
Babuska-Brezzi (LBB) condition, we need to add suitable stabilization terms to
fulfill the LBB condition. For this purpose, we employ the stabilization technique
introduced in publications [5,11]. The semi-discrete stabilized finite element for-
mulation of (4) is given as follows: Find uh ∈ Uh, p ∈ Ph such that

ρ

Z

Ω

∂uh

∂t
· ΦhdΩ + µ

Z

Ω

∇uh :∇ΦhdΩ + ρ

Z

Ω

(uh · ∇)uh · ΦhdΩ

−

Z

Ω

ph∇ · ΦhdΩ +

Z

Ω

(∇ · uh)ϕhdΩ +
X

K∈T h

“

∇ · uh, τc∇ · Φh
”

K

X

K∈T h

 

∂uh

∂t
+ (uh · ∇)uh + ∇ph, τm(uh · ∇Φh + ∇ϕh)

!

K

=

Z

Ω

f · ΦhdΩ +
X

K∈T h

“

f , τm(uh · ∇Φh + ∇ϕh)
”

K
, (5)
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holds for all Φh ∈ Uh
0 and ϕh ∈ Ph. The underlined terms are the stabilization

terms where the parameters τc and τm are defined as follows:

τm =

0

@

s

4

∆t2
+ (u · Gu) + 36

„

µ

ρ

«2

G : G

1

A

−1

,

τc =
1

8τmtr(G)
.

Here Gij =
P

3

k=1

∂ξk

∂xi

∂ξk

∂xj
is the covariant metric tensor and ∂ξ

∂x
represents the

Jacobian of the mapping between the reference and the physical element.
We use an implicit backward finite difference formula with a fixed time step

size, ∆t, to discretize (5) in time. For a given semi-discretized system

dx

dt
= L(x),

the formula is defined as
xn − xn−1

∆t
= L(xn).

At the nth time step, we need to solve a nonlinear system

Fn(Xn) = 0, (6)

with the initial guess Xn−1 (the solution of the (n−1)th time step), to obtain the
solution of the nth time step Xn, which is the nodal values of the velocity and pres-
sure. The ordering of the nodal values and the corresponding nonlinear functions
is not important for the accuracy of the solution, but is very important for the
convergence of the algebraic solver and also the performance of the solver in terms
of the computing time. In most existing approaches, the field-by-field ordering is
often used, as a result, the Jacobian of the nonlinear system has a saddle point
structure, which plays a key role in the design of the iterative method and its pre-
conditioner. We do not use the field-by-field ordering. We order the variables and
functions element by element and in each element, the variables are ordered node
by node. This ordering helps constructing the point-block incomplete LU factor-
ization that is more stable than the classical pointwise ILU, and also improving the
cache performance and the parallel efficiency in load and communication balance.

4 Monolithic Newton-Krylov-Schwarz algorithm

In most Navier-Stokes solvers, such as the projection methods, the operator is split
into the velocity component and pressure component, and the algorithm takes the
form of a nonlinear Gauss-Seidel iteration with two large blocks. In the monolithic
approach that we consider in this paper, the velocity and pressure variables of a
grid point stay together throughout the computation. In this approach, the two
critical ingredients are the monolithic Schwarz preconditioner, and the point-block
ILU based subdomain solver.

The nonlinear system (6) is solved by a Newton-Krylov-Schwarz method which
uses an inexact Newton method [10] as the nonlinear solver, a Krylov subspace
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method (GMRES) [25] as the linear solver at each Newton step, and an overlapping
Schwarz method [7] as the preconditioner. The framework of the Newton-Krylov-
Schwarz method reads as
Algorithm NKS

Step 1. Use the solution of the previous time step as

the initial guess Xn
0 = Xn−1

Step 2. For k = 0, 1, · · · until convergence

• Construct the complete Jacobian matrix Jn
k

• Solve the following right-preconditioned Jacobian system

inexactly by a Krylov subspace method

Jn
k (Mn

k )−1Mn
kSn

k = −Fn(Xn
k ) (7)

• Do a cubic line search to find a step length τn
k

• Set Xn
k+1 = Xn

k + τn
k Sn

k

Here Jn
k is the full Jacobian of Fn(X) at point Xn

k , including the stabilization
terms, Mn

k is an additive Schwarz preconditioner to be introduced shortly. The
inexactness mentioned in Step 2 means that the accuracy of the solution to the
Jacobian system (7) is in the sense of

‖ Jn
k (Mn

k )−1Mn
kSn

k + Fn(Xn
k ) ‖≤ ηn

k ‖ Fn(Xn
k ) ‖, (8)

where ηn
k is the relative tolerance for the linear solver. For simplicity, we ignore

the scripts n and k for the rest of the paper.
In NKS, the most difficult and time-consuming step is the solution of the

large, sparse, and nonsymmetric Jacobian system (7) by a preconditioned GM-
RES method. In the Jacobian solver, the most important component is the pre-
conditioner; without which GMRES method doesn’t converge or converges very
slowly, and a good choice of preconditioner accelerates the convergence signifi-
cantly. Let np be the number of processors of the parallel machine. In this paper,
we use an overlapping restricted additive Schwarz preconditioner [7], where we
first partition the computational domain Ω into np nonoverlapping subdomains
Ωl (l = 1, · · · , np) and then extend each subdomain Ωl to an overlapping sub-
domain Ωδ

l by including δ layers of elements belonging to its neighbors. In each
overlapping subdomain, we define a local Jacobian matrix Jl which is the restric-
tion of the global Jacobian matrix J to Ωδ

l with the restriction operator Rδ
l . Rδ

l

is a matrix which maps the global vector of unknowns to those belonging to Ωδ
l

by simply extracting the unknowns that lie inside the subdomain. In practice, Jl

is obtained by taking the derivatives of the discretized Navier-Stokes equations
(1) in Ωδ

l with homogeneous Dirichlet boundary conditions in the interior of Ω,
and the physical boundary conditions on ∂Ω. The restricted additive Schwarz
preconditioner is defined as the summation of the local preconditioners B−1

l of Jl:

MRAS =

np
X

l=1

(R0
l )

T B−1

l Rδ
l , (9)

where the restriction operator R0
l is defined as the restriction to the unknowns

in the non-overlapping subdomain Ωl. In practice, we only need the application
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of B−1

l to a given vector, which can be obtained by solving a subdomain linear
system. Since B−1

l is used as a preconditioner here, the subdomain linear system
can be solved exactly or approximately. Both approaches are studied in this paper.
LU factorization is computationally expensive and requires large memory resources
when the local matrix Jl is large. An economical alternative is the incomplete
LU factorization (ILU) [8,24] which reduces the computation by dropping some
fill-in elements in predetermined nondiagonal positions that are generated during
the factorization process. In this paper, we use a point-block ILU as the local
preconditioner, where we group all physical components associated with a mesh
point as a block and always perform an exact LU factorization for this small block,
in addition, the velocity and pressure variables associated with a given mesh point
is either kept or dropped together. The effectiveness and the computational cost
of the subdomain preconditioner depend on the number of elements dropped.

5 Numerical experiments

In this section, we report some numerical results of the proposed algorithm. Our
solver is implemented on top of the Portable Extensible Toolkit for Scientific com-
putation (PETSc) [3]. Even though, most components of our discretization scheme
have been studied by others, but the overall finite element scheme is new. To test
its correctness, we first simulation a flow around a cylinder. The second test case
represents our target application. The unstructured tetrahedral meshes for the
first test case are generated with CUBIT [21] from Sandia National Laboratory
and the geometry of the second test case is generated with AutoCAD and meshed
by using ANSYS. The mesh partitions for the additive Schwarz preconditioner are
obtained with ParMETIS [17] of University of Minnesota. The results showed in
this section are obtained on the Dell PowerEdge C6100 Cluster at the University
of Colorado Boulder. The stopping conditions for the nonlinear and linear solver
are that when the residuals of the nonlinear and linear equations are reduced by
a factor of 10−12 and 10−6, respectively.

In the simulations, a very important parameter is the Reynolds number (Re)
which is a dimensionless number that determines the ratio of inertial forces to
viscous forces. Usually, a low Reynolds number implies a laminar flow and a high
Reynolds number corresponds to a turbulent flow. The Reynolds number is defined
as

Re =
ρuL

µ
, (10)

where u is the mean velocity of the object relative to the fluid. In this paper, we
choose u as the mean velocity at the inlet boundary. L is the characteristic length
and it is the diameter of the obstacle in this paper.

5.1 Benchmark problem

We first test the algorithm for a well-understood benchmark problem, flow around
a cylinder, defined in [4,27]. The detailed geometry of the problem is shown in
Fig. 1. As suggested in [27], two important features of this flow are the drag and
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Fig. 1 Flow passing a cylinder in a channel

the lift coefficient of the cylinder. The definitions of these two coefficients read as

Drag =
2Fd

ρU2
mDH

and Lift =
2Fl

ρU2
mDH

, (11)

respectively, where Fd and Fl are defined as

Fd =

Z

S

„

ρµ
∂ut

∂n
ny − pnx

«

dS and Fl = −

Z

S

„

ρµ
∂ut

∂n
nx − pny

«

dS. (12)

Here S is the surface of the cylinder, H = 0.41m is the height of the channel,
D = 0.1m is the diameter of the cylinder, nx and ny are the normal vectors, ut is
the tangential velocity of u with t = (ny,−nx, 0) and Um is the maximal inflow
uin = (uin, vin, win) ([27]) with

uin = 36 sin

„

πt

8

«

yz(H − y)(H − z)

H4
, vin = win = 0. (13)

In this test case, the kinematic viscosity µ = 10−3m2/s and the density ρ =
1kg/m3. The drag and lift coefficients of the cylinder are shown in Fig. 2. These
results are obtained on a mesh with about 1.6 × 107 elements (total degrees of
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Fig. 2 Drag coefficient (left) and lift coefficient (right) for the laminar flow.

Table 1 Number of iterations and total compute time for a laminar flow on a mesh with
1.6× 107 elements (mesh size h ≈ 0.001) using different time step sizes. The computations are
carried with 2400 processors.

∆t Newton GMRES Time
0.01 3.0 102.2 106.5
0.05 3.0 114.6 137.2
0.1 3.0 120.0 112.0
0.5 4.1 137.3 179.7
1.0 4.9 147.5 241.7

freedom DOF = 1.1 × 107) and a fixed time step ∆t = 0.01s with the zero
initial condition and zero body force. The maximal drag coefficient Dragmax =
3.2507, minimal lift coefficient Liftmin = −0.011427 and maximal lift coefficient
Liftmax = 0.002744. Another important parameter to compute is the difference
of the pressure at the final time t = 8s between the front and back of the cylinder,
and the value is −0.1131 in our test case and it agrees well with the results of [16,
27].

We next study the numerical performance of the algorithm. Since we use a
fully implicit method in which the time step size is no longer constrained by the
Courant-Friedrichs-Lewy (CFL) condition, we can use very large time step size.
Table 1 shows the number of linear and nonlinear iterations and the compute time
of the fully implicit method with respect to different time step sizes. From this
table, we see that the algorithm is stable, and converges quite well with different
time step size. The parallel performance of the algorithm is shown in Table 2. This
table shows that when we increase the number of processors, the average number
of Newton iterations (Newton) per time step does not change, the average number
of GMRES iterations per Newton step (GMRES) increases reasonably, and the
compute time per time step decreases quickly. The left figure of Fig. 3 shows the
speedup of the algorithm for this problem and it indicates that the algorithm has
a superlinear speedup. The blue line refers to the linear speedup which means that
the compute time is exactly halved when the number of processors is doubled, and
the red line is the actual speedup of the algorithm. The right figure of Fig. 3 is
the average compute time per time step with respect to the number of processors.
We note that the number of Newton iterations is small in the test cases. This is
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Table 2 Parallel performance of the algorithm for the laminar flow simulation. Here DOF =
1.1 × 107 and Re = 20.

np Newton GMRES Time
1024 3.1 61.5 597.5
1536 3.1 66.6 272.0
2048 3.1 80.3 180.1
3072 3.1 105.4 101.6

because the full Jacobian is used in the algorithm. If the derivative with respect
to some of the stabilization terms are dropped, the number of Newton iterations
increases.

1024 1536 2048 3072
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Fig. 3 The speedup and the average compute time per time step (log-log scaled) for the flow
passing a cylinder simulation. Here DOF = 1.1 × 107 and Re = 20.

5.2 High speed train simulation

In this section, we study a flow passing a high speed train with a realistic train ge-
ometry, and a realistic Reynolds number. Many engineering and safety problems
are being raised with the rapid development of high speed rail transportation.
The wind conditions around a train body influence the stability of the train sig-
nificantly. A thorough understanding of the wind around the train is extremely
important in the shape design of the train, and also in the control of the train
under different weather conditions, etc. The computation of this 3D problem is
very demanding because of the large computational domain, the complexity of the
geometry and the ill-conditionness of the discretized mathematical model.

A realistic three dimensional train model with two cars is considered in this
paper. The geometry is created by AutoCAD and the flow domain is meshed by
ANSYS; see Fig. 4 for the details of the train model, the computational domain
and a local view of the computational mesh. Standard flow parameters include the
dynamic viscosity µ = 1.831 × 10−5kg/(m · s) and the density ρ = 1.185kg/m3.
The boundary conditions are defined as follows: a time-varying boundary condition
uin = (0, vin · t, 0) is employed on the inlet Γinlet (when vin · t > 100, let uin =
(0, 100, 0)) where vin is a constant and t is a time, stress free boundary condition
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(σ ·n = 0) is used on the outlet boundary Γoutlet and a no-slip boundary condition
(u = 0) is given on the wall boundary Γwall (all the surfaces except Γinlet and
Γoutlet). The zero initial condition and zero body force are used for this test case.
We assume the velocity of the train is 360km/h, that is, vin = 100m/s for the
inlet boundary condition. The Reynolds number for this test case

Re =
ρvinL

µ
=

1.185kg/m3 · 100m/s · 3m

1.831× 10−5kg/(m · s)
= 1.9 × 107,

where the characteristic length L is chosen as the height of the train.

Fig. 4 Model for the simulation of the flow around a high speed train (top) and the mesh
around the train (bottom). Here the size of the box (top left) is 140m × 23m × 9m and the
dimension of the train (top right) is 19m × 3m × 2m.

The velocity magnitudes distribution around the train at t = 1.0s (time step
size ∆t = 0.01) is shown in Fig. 5 and Fig. 6. From these figures, we see that the
flow is very complicated at the end of the train and under the train, and more
details can be viewed in the stream trace figures Fig. 7 and Fig. 8.

To investigate the parallel performance and parallel scalability of the algorithm
for this complicated problem, we choose two meshes, one with about 1.1 × 107

elements (8 million degrees of freedom (DOF)), and the other with about 2.2×107
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Fig. 5 The velocity distribution around the train at t = 1.0s. Here vin = 100m/s, µ =
1.83 × 10−5pa · s, Re = 107.

Table 3 Parallel performance of the high speed train simulation. Here δ = 6 and Re = 107.

np
DOF = 8 × 106 DOF = 1.7 × 107

Newton GMRES Time Newton GMRES Time
1024 4.0 91.4 640.3 4.0 55.3 1501.2
1536 4.0 113.5 373.1 4.0 59.6 823.0
2048 4.0 136.2 266.8 4.0 62.1 420.6
3072 4.0 152.6 173.7 4.0 66.3 273.1

elements (17 million DOF). Table 3 shows the average number of Newton iterations
per time step, the average number of GMRES iterations per Newton step and the
average compute time per time step. The results are averaged values over the
first 10 time steps. From this table, we see that the number of Newton iterations
does not change and the average number of GMRES iterations increases mildly as
the number of processors increases. The compute time is more than halved as the
number of processors is doubled, which means that the algorithm has a superlinear
speedup. The superlinear speedup is also shown in the left figure of Fig. 9. The
right figure of Fig. 9 is the average compute time per time step with respect to the
number of processors.

In these experiments just shown, the subdomain problems are solved by LU
factorization which is expensive in both computation and memory requirement.
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Fig. 6 The velocity distribution at the end of the train at t = 1.0s. Here vin = 100m/s,
µ = 1.83 × 10−5pa · s, Re = 107.

Table 4 Comparison of different local solver for the high speed train simulation. Here DOF =
1.7 × 107 and Re = 107. The fill-in level of the ILU is 4.

np
Newton GMRES Time

LU ILU(4) LU ILU(4) LU ILU(4)
1024 4.0 4.0 55.3 73.6 1501.2 395.2
1536 4.0 4.0 59.6 79.8 823.0 327.1
2048 4.0 4.0 62.1 82.0 420.6 239.5
3072 4.0 4.0 66.3 89.5 273.1 182.7

As we mentioned in Section 4, an alternative approach is point-block ILU. We
show a comparison of the different subdomain solvers in Table 4 for this test case,
and this table reveals that while ILU takes more GMRES iterations than LU, it
takes much less compute time than LU, especially when the number of processors
is small.

For the overlapping Schwarz preconditioner, an important parameter that in-
fluences the strength of the preconditioner is the overlapping size δ. From the
theory of the overlapping Schwarz method, larger overlap often implies a faster
convergence (fewer GMRES iterations), at least for elliptic systems with sufficient
regularity [28]. However, larger overlap also means larger subdomain problems
and more information transfer between subdomains, as a result, the overall com-
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Fig. 7 The stream trace of the flow at the end of the train at t = 1.0s. Here vin = 100m/s,
µ = 1.83 × 10−5pa · s, Re = 107.

Table 5 The effect of various choices of the overlapping parameter δ for the high speed train
simulation. Here DOF = 8 × 106 and Re = 107.

δ np Newton GMRES Time
2 1024 4.0 209.6 338.0
4 1024 4.0 131.3 410.1
6 1024 4.0 91.4 510.6
2 2048 4.0 301.5 133.8
4 2048 4.0 169.2 175.7
6 2048 4.0 136.2 262.7

pute time may increase. Table 5 shows the effect of the overlapping parameter
for solving the high speed train simulation problem. The best result is obtained
with δ = 2. For δ = 0, 1, the preconditioner is so weak and the algorithm doesn’t
converge for some cases.

Besides the parallel performance and scalability, the robustness with respect to
the Reynolds number Re is another important consideration in the design of solu-
tion algorithms for the flow simulation problems. Table 6 shows that the algorithm
is quite robust for a wide range of Reynolds numbers.
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Fig. 8 The stream trace of the flow around the wheels of the train at t = 1.0s. Here vin =
100m/s, µ = 1.83 × 10−5pa · s, Re = 107.
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Fig. 9 The speedup and the average compute time per time step (log-log scaled) for the high
speed train simulation. Here DOF = 8 × 106 and Re = 107.

6 Concluding remarks

A domain decomposition based parallel algorithm for the direct numerical simula-
tion of complex flows is introduced and studied in this paper. The algorithm begins
with a fully implicit discretization of the unsteady incompressible Navier-Stokes
equations on an unstructured mesh with a stabilized finite element method, then
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Table 6 The robustness of the algorithm with respect to the Reynolds number Re for the
train simulation. Here DOF = 8 × 106.

Re np Newton GMRES Time
1.0 × 105 1024 3.0 109.1 390.4
1.0 × 106 1024 3.0 99.5 385.5
1.0 × 107 1024 4.0 91.4 512.7
1.0 × 105 2048 3.0 137.7 195.4
1.0 × 106 2048 3.0 129.9 195.1
1.0 × 107 2048 4.0 136.2 261.1

an inexact Newton method is employed to solve the large nonlinear system at each
time step, and a preconditioned GMRES method is employed to solve the linear
Jacobian system in each Newton step with a one-level additive Schwarz precondi-
tioner. We tested the algorithm for a benchmark problem and a high speed train
simulation problem with more than 17 million degrees of freedom. The numerical
experiments showed that the method has a superlinear speedup with up to 3072
processors.
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