OVERLAPPING DOMAIN DECOMPOSITION ALGORITHMS FOR
GENERAL SPARSE MATRICES *

XIAO-CHUAN CAI" AND YOUCEF SAAD?!

Abstract. Domain decomposition methods for Finite Element problems using a partition based on
the underlying finite element mesh have been extensively studied. In this paper, we discuss algebraic
extensions of the class of overlapping domain decomposition algorithms for general sparse matrices.
The subproblems are created with an overlapping partition of the graph corresponding to the sparsity
structure of the matrix. These algebraic domain decomposition methods are especially useful for
unstructured mesh problems. We also discuss some difficulties encountered in the algebraic extension,
particularly the issues related to the coarse solver.

Key words. Sparse matrix, iterative methods, preconditioning, graph partitioning, domain de-
composition.

1. Introduction. The aim of this paper is to develop parallel preconditioned it-
erative methods for solving general large sparse linear systems that arise from the dis-
cretization of partial differential equations, more particularly on unstructured meshes.
We are interested in the class of overlapping Schwarz domain decomposition precon-
ditioners that were previously introduced in the context of variational solution of par-
tial differential equations; see [5] and references therein. According to the divide-and-
conquer philosophy underlying the domain decomposition approach, the domain of def-
inition of the partial differential equation is partitioned into a set of subdomains whose
union is the original domain and the partial differential equations are then discretized
on each of the subdomains. The solution of the original PDE is obtained typically by a
Krylov space type iterative method, such as the generalized minimal residual algorithm
(GMRES) [15], which is preconditioned by an operator which typically incorporates the
solutions of the subproblems.

Our goal in this paper is to extend the framework of the overlapping domain de-
composition approach to general sparse linear systems. The fundamental principle
underlying this extension is to replace the domain of definition of the problem by the
adjacency graph of the sparse matrix, i.e., the graph that represents its non-zero pattern.
We note that by switching from a domain to a graph the concept of Euclidean distance,

* Appeared as Preprint 93-027, Army High Performance Computing Research Center, University of
Minnesota, 1993. (STAM J. Sci. Comp., submitted)

T Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309.
cai@cs.colorado.edu. The work of this author was supported in part by the National Science Foun-
dation and the Kentucky EPSCoR Program under grant STI-9108764 and in part by a contract between
the Army Research Office and the University of Minnesota for the Army High Performance Comput-
ing Research Center under grant number DAAL03-89-C-0038, while in residence at the University of
Minnesota.

! Department of Computer Science, University of Minnesota, Minneapolis, MN 55455.
saad@cs.umn.edu. The work of this author was supported in part by DARPA under grant number
60NANB2D1272 and in part by a contract between the Army Research Office and the University of
Minnesota for the Army High Performance Computing Research Center under grant number DAALO3-
89-C-0038.

which plays an important role in the optimality analysis of these domain decomposition
methods, is lost. We show in this paper, mostly by means of numerical experiments,
that the efficiency of the overlapping methods can be preserved to some extent with
certain well-balanced overlapping graph decomposition. Other preconditioned iterative
methods can also be used to solve this class of sparse systems and the interested reader
should refer to [1, 6, 13] for further references.

In the practical implementation of the algebraic Schwarz algorithms, a crucial step
resides in the non-numerical preprocessing of the problem, e.g.. graph partitioning,
graph coloring, etc.. As is well-known in graph theory many of the problems that arise
in this context, such as the perfect graph coloring problem, are NP-hard. However,
there are often very inexpensive heuristic algorithms that deliver more than adequate
results. In this paper we will restrict our attention to such heuristics.

The paper is organized as follows. In Section 2, we will briefly review that classical
(variational) Schwarz algorithms, which motivate the current paper. We then intro-
duce, in Section 3, an overlapping graph partitioning scheme based on which we define
the algebraic Schwarz algorithms. Both additive and multiplicative versions will be
discussed. In Section 4, we discuss a rather difficult issue regarding the use of coarse
solvers to speed up convergence. Section 5 is devoted to the discussion and description
of some useful tools for graph decompositions, graph coloring, etc. Finally, in Section
6, we present some preliminary numerical experiments.

2. Review of Variational Schwarz Algorithms. Before presenting the alge-
braic formulation of the Schwarz algorithms, we give a brief review of the classic Schwarz
algorithms, including the additive and multiplicative versions. Details of the classic ver-
sions can be found in [3, 4, 5]. To illustrate the ideas of Schwarz type algorithms, we
consider a homogeneous Dirichlet boundary value problem:

{Lu:fin Q,

(1) u = 0 on 09,

where € is a two- or three-dimensional domain with boundary 0€). Using a Green’s
formula, we obtain the weak form of the continuous and discrete problems: Find u € V/,
such that

2) a(u,v) = f(v), YoeV
and find uy, €V}, such that

(3) a(up,vp) = f(op), Yo, €V

respectively. Here V" is a finite dimensional subspace of the Sobolev space V = H(Q)
and a(-,-) is the usual bilinear form associated with the elliptic operator L. Following
the Dryja-Widlund construction of the overlapping decomposition of V" (cf. [5]), the
triangulation of () is introduced as follows. The region is first divided into nonoverlap-
ping substructures ;, ¢ = 1,---, N. Then all the substructures ;, which have diameter

2

of order H, are divided into elements of size h. The common assumption, in finite ele-
ment theory, that all elements are shape regular is adopted. To obtain an overlapping
decomposition of the domain, we extend each subregion €; to a larger region Q, i.e.
Q, C Q; We assume that the overlap is uniform and V; C V" is the usual finite element
space over (0. It clear that

Q=0
and
VE=Vi4-+ Wy
Equation (3) yields a large, sparse, linear system of equations,
W Au= g

which is usually not well-conditioned. Therefore, a good preconditioner plays an essen-
tial role in the success of any iterative methods used to solve it. For Schwarz methods,
cf. Dryja and Widlund [5], the preconditioner is constructed by solving a sequence of
subdomain problems of the form: Find T;e € V;, such that

a(Tie,v) = b(e,v), Yv € V.

T;e is a projection of the error onto the subspace V;. There are quite a few different ways
to construct preconditioners with the operators T;, see for example[2]. For simplicity,
we discuss only the additive and the multiplicative Schwarz algorithms. The additive
Schwarz preconditioned system can be written as

(5) M "Au= (T + -+ Ty)u = g.

We note that the action of T; on a vector u can be carried out simultaneously in parallel.
The preconditioned system for the multiplicative Schwarz can be written as

(6) M " Au=(I—(I—-Ty) (I =T)))u=g.

We remark that the operator 7; can be expressed in matrix form as 7; = RT A7 R A,
where R; is the restriction matrix and A; ' is the subdomain problem solve. In practice,
for the additive algorithm, we usually let the number N of subdomains be equal to
the number of available processors, and the size of subproblems, including the size of
overlap, be determined by the available memory on each processor. For the multiplica-
tive algorithm, in order to improve parallelism, the subdomains are usually colored and
before calling the multiplicative Schwarz algorithms the subdomain 2, therefore T, is
redefined as the union of the original disconnected subdomains that share the same
color 1.

Both algorithms discussed above are one-level algorithms and the convergence rates
deteriorate, linearly in the number of T;s, as the number of subdomains increases. A
coarse solver is usually included to prevent the loss of optimal convergence. We refer
to [2, 3, 4, 5] for further discussions of this issue.

3

3. Algebraic Schwarz Algorithms. We consider a linear system of the form,
7) Au= g

where A is a sparse matrix, having a symmetric pattern. To describe a model algebraic
Schwarz algorithm, let us define the graph GG = (W, E), where the set of vertices W =
{1,---,n}, represents the n unknowns and the edge set £ = {(¢,7) | a;; # 0} represents
the pairs of vertices that are coupled by a nonzero element in A. Here n is the size
of the matrix. Since we assume that the non-zero pattern is symmetric the adjacency
graph G is indirected. There are several algorithms described in the literature for
partitioning a graph into subgraphs [10, 11, 14]. The approach described in [10] is a
form of nested dissection algorithm, and the author proposes a number of strategies
to find good separators. In [11] a spectral analysis of Discrete Laplacian is exploited.
In section 5 we give a brief description of a technique presented in [14]. In summary,
the algorithm consists of two phases. The first phase finds a set of ng initial vertices
that are reasonably well spread apart in the graph. Ideally, ny should be equal to the
number of processors, but it is typically larger, and this issue is discussed in Section
5. We will refer to these nodes as centers. Once these centers are found we proceed
with a level-set expansion from each of them to build the subdomains. Each subdomain
initially consists of one node only, namely the center. At each step of the expansion
from a center, we add each unmarked node of the next level set. We recall that a level
set is defined recursively as the set all unmarked neighbors of all the nodes of a previous
level set. As soon as a level set is traversed its nodes are added to a subdomain and
they are marked. When all nodes are marked, a nonoverlapping partition of G into ng
subgraphs is obtained. To generate an overlapping partition of G, we further expand
each subgraph by a certain number, denoted as ovlp, of level sets as if all nodes are
unmarked. A detailed description of the graph partition algorithm will be given in
Section 5.

For the remaining discussion, we will assume that the graph partitioning has been
applied and has resulting in a number p of subsets W; whose union is W,

w=Jw.

Here p is generally smaller than ny as some of the subgraphs may be combined. The
result of the partitioning algorithm is illustrated with a simple example in Figure 1.

3.1. Additive Schwarz. We will denote by L; the vector space spanned by the
set W; in R"™ and by m; its dimension. For each subspace L; we define the orthogonal
projector onto L;. In matrix terms, this is defined by the sub-identity matrix I; of size
n X n whose diagonal elements are set to one if the corresponding node belongs to W;
and to zero otherwise. With this we define the matrix,

Ai =]ZA]Z R

which is an extension to the whole subspace, of the restriction of A to L;. This is
sometimes termed the section of A on L;. Its action on a vector is to project it on
4

C/ . ‘.' .)
Fia. 1. The graph partitioning algorithm wn action for a 15 x 15 grid on the unit square. The
circled nodes are the initial nodes of Sy, output of the coarsen algorithm. The ten subgraphs are bounded

by the dotted lines. The numbers, 1-5, in the circles indicate the color of the subdomains found by the
Coloring Algorithm.

L;, then apply A to the result and finally project the result back onto L;. Note that
although A; is not invertible, we can invert its restriction to the subspace spanned by

W;, and define
-1
AT =L ((AD) 1

With this definition, the additive Schwarz algorithm can now be simply described as
follows

ALGORITHM 1 (ADDITIVE SCHWARZ). Solve the equation
M7 'Au=M1f
by a Krylov subspace method, where the preconditioning M is defined by

M7t =A7 -+ A

We note that the particular case where there is no overlapping, i.e., when the W;’s
form an actual partition of W, then the Additive Schwarz algorithm is nothing but a
block Jacobi preconditioned Krylov subspace iteration.

5

3.2. Multiplicative Schwarz. We next define the multiplicative Schwarz algo-
rithm. It can be seen easily that if the multiplicative Schwarz algorithm is used as
in the form of (6), then it is a purely sequential algorithm, however, if we color and
regroup the subgraphs such that each is a union of several disconnected subgraphs then
a great deal of parallelism can be introduced (see discussion in [4]), i.e. the subproblems
defined on the disconnected subgraphs can be solved independently in parallel. Simple
greedy heuristic subgraph coloring algorithms have been discussed in the literature, see
for example, [13]. For the completeness of this paper, we will give a description of one
such coloring algorithm in Section 5.

Let us define the matrix 1212 as the sum of all the matrices A; that share the same
color. Here the color of the matrix is the same as that of its subgraph. 1212»_1 can also be
defined accordingly. The multiplicative Schwarz algorithm can now be defined as

ALGORITHM 2 (MULTIPLICATIVE SCHWARZ). Solve the equation
M Y"Au=M"'f

by a Krylov subspace method, where the preconditioning operation w := M~1v is defined
by the sequence of operations,

A

vy = A7l
T —I—zzlj_l(v—Avj_l) , for g=2,...,J
w = vj.

We note that the independent subproblems within each of the above sequential
steps can be solved in parallel and that the preconditioned matrix has the form,

M7'A=1—(I—A7"A)--- (I — A;'A).

With a straightforward implementation, the Multiplicative Schwarz algorithm will
require a number of sequential steps equal to the number of colors, since only one color
set can be active at a time. This may limit the efficiency of the algorithm. In such a case
it would be important for the coloring algorithm to use as small a number of colors as
possible, in order to minimize the number of sequential steps. In addition, we note that
the convergence rate of the multiplicative Schwarz depends inversely on the number of
colors, cf [4]. As a result, minimizing the number of colors will not only increase the
parallelism but it will also improve the intrinsic convergence rate. We found that the
greedy coloring algorithm just mentioned does give satisfactory results in practice. A
overlapping subdomain example with ten subdomains, can be found in Fig. 1, where
the colors are indicated by the circled numbers.

However, regarding the reduction in efficiency we note that there are many possible
remedies. The simplest of these remedies is to have more subdomains than there are
processors and to assign at least one subdomain from each color to each processor. In
practice, this is quite simple to achieve by performing a two-level graph partitioning.

6

First we proceed as before and use the domain partitioning algorithm described earlier to
get the actual node to processor mapping. Then each subdomain is further subdivided
independently into a small number of sub-subdomains, normally just four. We then
color the corresponding global subdomain partition with the assumption that all sub-
subdomains in the same subdomain are connected. This assumption guarantees that
all sub-subdomain colors in the same subdomain are different, and will decrease the
likelihood that a processor is ever idle during the algorithm. Note that we do not know
how the additional partitioning will affect the total number of colors. There are several
other alternatives which we do not consider here.

Finally, we remark that, in the algorithms discussed above, all subproblems are
assumed to be solved exactly; usually with Gaussian elimination. However, our numer-
ical experiments show that this is not really necessary. In the Numerical Experiments
section of this paper, we shall present some examples in which the subproblems are
solved with the incomplete LU factorization ILU(k).

3.3. The Symmetric Case. In this paper, we do not assume that A is symmetric
or positive definite, therefore the Conjugate Gradient (CG) Algorithm was not men-
tioned as a possible iterative method for solving the preconditioned systems. In fact, if
the matrix A is symmetric and positive definite, then the additive Schwarz precondi-
tioned system is also symmetric and positive definite with respect to the energy inner
product defined as (A-,-), hence the standard CG can be used. A better known alter-
native is to use the M-inner product for the preconditioned system M~'Au = M~'f
which is again self-adjoint with respect to this inner product.

In the case of multiplicative Schwarz preconditioning, a symmetrization technique
has to be used in order to obtain an A-self-adjoint preconditioned system, we refer to
[4] for further discussions. The symmetrization corresponds to doing a forward and
backward sweep, as is usually done with SSOR, i.e., the preconditioning operation
w = M~'v is now defined through the sequence of operations,

A

vy = A7l
v; = vj_1+ A;l(v — Avj_q), for j=2,...,J.
v; = vj+1+A;1(v—Avj+1) , for y3=J-1,...,1

w = M

4. Global Coarse Solvers. All the algorithms discussed in the previous section
are one-level algorithms, in that they are simply direct extensions of the block Jacobi
(additive) and the block Gauss-Seidel (multiplicative) preconditioners. As is known, the
convergence rates of these algorithms deteriorate as the number of subdomains increases.
This problem is successfully handled for the cases of variational Schwarz algorithms by
inserting a solve with an extra coarse mesh space to the preconditioner. This allows to
incorporate the needed communication between the almost decoupled local subspaces
and prevents deterioration in convergence rates, see [5] for a theoretically analysis.
However, for the case of general sparse matrices, defining the analogue of a ‘coarse

7

problem’ and whether a similar cure to the deterioration of convergence rates can be
achieved, are still almost entirely open issues.

Here we discuss a semi-automatic method that may speed up the convergence in
some practical cases. In this method, we require the user to supply (i) a set of cross
points, C ={¢;,i =1,---,m} C W;and (ii) a cross-to-fine mapping matrix £ = E,,xp.
Supposing that (i)-(ii) are given, we define an m x m coarse matrix as

My = FAET,

which can be obtained by two sparse matrix-matrix products. Assuming that M, is
nonsingular, we therefore can define the coarse preconditioner as

At = ET(My)™'E
and the additive and multiplicative Schwarz algorithms can be modified as
(AF'+ AT -+ AR Az = b
and

[[— (1= AF'A)(I — AT'A) - (1 = A7 A)| 2 = b

respectively. Of course, b must also be modified.

5. Tools for Graph Decomposition Methods . In this section, we discuss sev-
eral useful algorithms for the graph decomposition algorithm described in the previous
section. Let (a, ja, ia) be the usual Compressed Sparse Row format(CSR), see [12],
of the sparse matrix A ' The graph GG = (W, E) of A is completely determined by the
two one dimensional arrays ia and ja. Indeed the adjacency list for node ¢ is simply

the set of nodes ja(ky),ja(k) + 1,...,5a(ky) with ky = da(e), ks = ta(i + 1) — 1.

5.1. Graph Partitioning. The graph partitioning algorithm described in [14]
consists of two phases. The purpose of the first phase is to provide a subset Sy of W
consisting of points that are at nearly equal distance to each other. Note that here
distance is understood in a graph theory sense, i.e., the distance between two nodes is
the smallest number of edges needed to reach one node from the other. The way in
which this “coarsening” phase works is by a recursive algorithm which defines a graph
with far fewer nodes from the previous one until a graph with a satistactory number
of nodes is found. An essential step in the algorithm is to find an independent set of a
graph. Given a graph GG = (W, E) an independent set S is a subset of the vertex set W
such that

ife €S then (v,y) € E or (y,2) € F—y¢S.

! The array a contains the nonzero elements A4;; of A row by row; the integer array ja contains the
column indices of the elements A;; in the array a; and the integer array ia contains the pointers to
the beginning of each row in ja

8

In other words, elements of S are not allowed to be coupled with other elements of S
by incoming or outgoing edges. Finding such sets is relatively easy. An independent set
is maximal if it cannot be augmented by elements in its complement to form a larger
independent set. In what follows an independent set is always meant in the sense of a
maximal independent set. Algorithms for finding such sets are described in [13]. The
‘coarsening’ algorithm can be described as follows.
ALGORITHM 3 (COARSENING ALGORITHM:).
Start: Select a threshold number nodes n,,.
Set W =W, E =E.
Coarsening Loop:
While |W| > n,, do
Find S C W, an independent set in W,E
On the set S construct an edge set F' by the rule:
(i,j) € Fiffi €S,j €S, 3keW, (i,k) € E and (k,j) € E
Define W= S, E=F.
EndWhile

Let us call Sy the final set W obtained from the algorithm. Once the set Sy of
initial nodes has been found, we will perform a level-set expansion from each node in
So. This is achieved by the following algorithm.

ALGORITHM 4. Automatic Graph Partitioning Algorithm

Start:
Find an initial set Sy of ndom ‘coarse mesh’ vertices, v1,...,Vndom
Fori=1,2,...,ndom Do: label(v;) := 1.
Define levset := {v1,...,Vd4om } and nodes = ndom

Loop: While (nodes < n) Do
Next_levset = ¢
For each v; in levset Do
for each neighbor vy of v; s.t. label(vy) =0 Do
Next levset := Neat_levset | J{vg}
label(vy) := label(v;)
nodes = nodes + 1
EndFor
EndFor

levset ;= Next_levset

EndWhile

The above two algorithms provide a basic way of partioning an arbitrary graph into
subgraphs. There are several additions and improvements which we now briefly discuss.

Getting overlapping subgraphs. In Domain Decomposition, it is very common and
desirable to obtain subdomains that have a small overlapping region. In the graph
decomposition context discussed here we can achieve this quite easily by adding more

9

level-sets in the level-set expansion of the the graph decomposition algorithm.

Obtaining a desired number of subdomains. As was already mentioned the number
of subgraphs obtained by the Coarsening algorithm, is rarely equal to the desired num-
ber of subgraphs entered. This is due to the fact that from step to the other the number
of coarse mesh points can be divided by a factor of 3 or 4 for typical graphs (roughly
speaking, we are taking every other points in each direction). The result is that the
number ng center nodes obtained may sometimes 3 or 4 times as large as the desired
number n,,. The simplest cure is simply to take the first n,, points obtained in the
set Sp and ignore the others. The disadvantage of this strategy is that it will typically
yield subdomains that are unbalanced, since the size of the subdomains is effected by
the distance between the different initial nodes.

Obtaining well-balanced subgraphs. The sizes of the different subgraphs may vary
by a factor of 2 to 3 with the simple implementation of Algorithm 4. In reality, it is
easy to add a load-balancing criterion to the algorithm. After step 11 in Algorithm 4,
we can update a counter to record the number of nodes that have been acquired by
each subgraph. Then, we can set a priority rule by have the subgraph with fewer nodes
have priority over the others. A simpler alternative is not to allow a subgraph to get
more nodes if its size exceeds a given target size.

Parallel implementations. We mentioned earlier that Algorithm 4 is actually a par-
allel algorithm, since the level expansions can be performed from each node indepen-
dently. The parallel version is best implementation with a host or master node which
serves the role of arbitrator between the processors when there is contention as to which
processor will acquire a vertex. On the other hand the graph-coarsening algorithm is not
as trivially parallelizable. There is ample underlying parallelism however since nodes
that are not adjacent can be treated at the same time.

5.2. Graph Coloring and independent set orderings. The general idea of
graph-coloring has been successfully exploited by numerical analysts in many different
ways. Whenever we have a graph ¢ = (W, E), we can color its nodes in such a way
that no two adjacent vertices have the same color. Let w;,72 = 1,...,n be the elements
of W. We can formulate a trivial heuristic for graph coloring as follows.

ALGORITHM 5. Greedy multicoloring algorithm .

1. Start. Fori=1,...,n Do: Color(w;) = 0.
2. Coloring Loop. For:=1,2,...,n Do:

Color(w;) = min{k > 0 | k # Color(w,),¥ w; € Adj(w;))}.

Here Adj(7) represents the set of nodes that are adjacent to w;. The order in
which the nodes w; are listed, i.e., the order of traversal in the algorithm, may have an
important effect on the number of colors found. The color assigned to node ¢ in step 2
is simply the smallest allowable color number which can be assigned to node 2, where
allowable means different from the colors of the nearest neighbors and positive. The
procedure is illustrated in Figure 2.

10

Fic. 2. The greedy multicoloring algorithm. The node being colored is indicated by an arrow. It
will be assigned color number 3, the smallest positive integers different from 1, 2, 4, 5.

This algorithm can be used to color the subdomains in a partitioning. The vertices
of the corresponding graph in this case represent the domains and the adjacency list
for each vertex (i.e., subdomain) is the list of neighboring subdomains, i.e., subdomains
that share common interface points.

6. Numerical Experiments. In this section, we present some preliminary nu-
merical examples for the algorithms developed in the previous sections. There are quite
a few parameters that can affect the overall performance of the algorithms, such as the
initial number of subgraphs, initial ordering of the sparse matrices, number of colors,
number of overlaps, as well as the methods used to solve the subdomain problems.
In the section, we only discuss those parameters that are of interest to us currently.
For a fixed preconditioner, there are also many accelerators which can be used such as
GMRES [15], BICGSTAB [16], TFQMR [7], etc.. However, we shall restrict ourselves
to the use of the restarted GMRES algorithm. We consider the following two model
problems.

Problem 0. We consider the Poisson equation
—Nu=f

with Dirichlet boundary condition on the unit square in R?. The equation is discretized
with the usual 5-point finite difference scheme on a uniform 128 x 128 grid.

Problem 1. We consider the convection-diffusion equation

Jde*¥u Je Wy

_Au—l—’y(B + ay)-I—ozu:f7

11

with Dirichlet boundary condition on the unit cube in R* and v = 10, a = —10.
The equation is discretized with the usual 7 point centered difference scheme on an
15 x 15 x 15 uniform mesh.

For all the above matrices, we construct the right-hand side artificially of the form
b = Ae such that the solution e is a random vector. The initial guess is always zero. All
the testing problems are discretized on uniform meshes. However, this is not exploited
except in one case where a coarse solver is defined with the mesh information in mind.
The GMRES method, restarted at the 20" iteration, is used for all of the preconditioned
linear systems. The stopping criterion is the reduction of the initial (preconditioned)
residual by five orders of magnitude in the L? norm, namely

(rkv rk)l/z S 10_5(T0, r0)1/27

where 1, = M~'(b— Axy), for k > 0, and M ™' is one of the preconditioners discussed
previously. All experiments were done on a Sparcstation 2 in double precision. The
number of overlapping level-sets is denoted by ovlp. my is the initial seed for the number
of subgraphs.

The testing codes used in the experiments are developed with the help of two pieces
of software, namely the SPARSKIT of Saad [12] and the package PETSc of W. Gropp
and B. Smith [9].

6.1. One-level algorithms. The first suit of tests are for the additive Schwarz
algorithms, see Tables 1 and 2. In these two tables, all the subdomain problems are
solved exactly with Gaussian elimination. In Table 1, the column ovlp = 0 corresponds
to the usual block diagonal preconditioning, or block Jacobian method. We note that
the iteration counts have a sudden jump from the column ovlp = 0 to the column
ovlp = 1 due to the introducing of the first level of overlap. The decreases of the
iteration counts after the first level of overlap are not as noticeable as the first one.

The second set of tests are for the multiplicative Schwarz algorithms, see Tables 3
and 4, also with exact subdomain problem solves. We observe that the number of colors,
which equals the number of sequential steps in the multiplicative Schwarz algorithms,
is almost independent of the number of subdomains. However, due to the increase of
data dependency in three dimensional problems when compared with two dimensional
problems, the number of colors is indeed higher in the 3-D case, see Table 4, than in
the 2-D case, see Table 3.

As mentioned previously, in practice, the subdomain problems usually need not to
be solved exactly as shown in Tables 1-4. Some inexact solution techniques, such as
incomplete LU(k), can be used instead. This can sometime save some CPU time both at
the pre-iteration step, such as the factorization of the subdomain matrices, and during
the iterations. In Fig. 3, we compare the iteration histories when we use the exact LU
and ILU(k), with k£ = 0,1,2 and 3. Clearly, the exact LU offers the minimal number of
iterations to reach the desired accuracy. However, the story changes when comparing
the curves of CPU time versus iteration count. To reach the same accuracy, ILU(2)
takes the least amount of CPU time in the iteration process. A similar conclusion has

12

TABLE 1
Tteration counts for the additive Schwarz preconditioned GMRES(20) for Problem 0 with n =
128 x 128 and no coarse solver. The subdomain problems are solved by Gaussian elimination.

mo | # of subgraphs | ovlp=0 | ovip=1 | ovip=2 | ovip=3

2 2 19 15 13 12

4 5 21 17 16 14

8 13 28 24 20 19

16 41 47 32 25 21

32 41 47 32 25 21
TABLE 2

Tteration counts for the additive Schwarz preconditioned GMRES(20) for Problem 1 with n =
15 x 15 x 15 = 3375, nnz = 22275 and no coarse solver. The subdomain problems are solved by

Gausstan elimination.

mo | # of subgraphs | ovlp =0 | ovlp=1 | ovip =2
2 2 9 8 7
4 9 21 18 18
8 9 21 18 18
16 40 29 28 26

also been reached in [13], where global ILU(k) preconditioners, among others, were
discussed. We note that the most popularly used ILU(0) is not a good choice for this
example.

6.2. Two-level algorithms. When the matrix A is obtained from the discretiza-
tion, with a mesh parameter h, of a continuous differential equation, it has been shown,
in [2, 8], that a two-level method which utilizes a coarse mesh performs considerly better
than the corresponding one-level method. The coarse mesh matrix is usually obtained
by using the same discretization scheme but with a much larger mesh parameter H. For
general sparse matrices, we found that to obtain a good coarse matrix without knowing
the underlying mesh structure is rather difficult.

Let us now assume that we are provided with some information about the matrix A
that is sufficient to define a coarse matrix and its corresponding interpolation operator
E. This coarse matrix is usually generated with the initial grid that is typically input
to some mesh generation tool. To illustrate the idea, we present an example here in
Table 5. We divide the unit square into an 4 x 4 triangular mesh and define the matrix
FEi6x, row by row such that each row corresponds to the nodal values of the usual finite
element hat function centered at that coarse grid point. The coarse matrix is thus
obtained by two sparse BLAS routine calls, i.e., the sparse matrix-matrix products to
compute EAET. In Table 5, we show what a difference a coarse solver can make for

13

TABLE 3
Tteration counts for the multiplicative Schwarz preconditioned GMRES(20) for Problem 0
with n = 128 x 128 and no coarse solver. The subdomain problems are solved by Gausstan elimination.

mo | # of subgraphs | # of colors | ovlp=1 | ovlp =2 | ovlp =3

2 2 2 8 7 7

4 5 3 8 7 6

8 13 4 10 9 8

16 41 4 12 10 9
TABLE 4

Tteration counts for the multiplicative Schwarz preconditioned GMRES(20) for Problem 1 with
n =15 x 15 x 15 and no coarse solver. The subdomain problems are solved by Gaussian elimination.

mo | # of subgraphs | # of colors | ovlp=1 | ovlp =2 | ovlp =3
2 2 2 4 3 3
4 9 7 6 5 5
8 9 7 6 5 5
16 40 9 6 5 5
1
0.9 X LU .
08t 0: - ILU®3) |
07k + - 1LU(2) i
06} * - ILU(1) |
% osl -~ ILU(0) |
04]
03F .
02}]
01r .
% 5 10 15 20 25 30

iteration count

Fia. 3. Residual curves for Problem 1, with the additive Schwarz preconditioner. The subdomain
problems are solved by LU and ILU(k). The number of subdomains is 9 and overlap is 1.

14

= -
6 [-
5 [-
z al X --- LU |
O .
o:---1ILU(3)
al +: - ILU(2) i
*: - ILU(D)
ol -1 - 1ILU(0) i
1+ -
0 1 1 1 1 1
0 10 20 30 40 50 60

iteration count

Fi1Gc. 4. The curves for the CPU time(sec) versus iteration. The test problem and parameters are
the same as in Fig. 3.

the additive Schwarz methods when applied to the model problem. We can save more
than half the number of iterations, with not too large a coarse grid solver. We remark
that the subgraph problems are obtained as previously without the knowledge of the
grid structure.

There are other ways to generate the matrix F, such as by a piecewise constant
interpolation, or a piecewise linear-in-level set interpolation. However, our numerical
experiments do not show any advantages of using these techniques.

15

TABLE b
Tteration counts for the additive Schwarz, with a reqular coarse grid solver, preconditioned GM-
RES(20) for Problem 0 with n = 127 x 127. All subproblems are solved exactly with Gaussian
elimination.

coarse mesh | coarse mesh | coarse mesh
0x0 4 x4 8 X8
mo =4 ovlp=0 30 21 16
of subgraphs | ovlp=1 27 18 14
=10 ovlp=2 24 16 13
mo = 50 ovlp=0 59 33 20
of subgraphs | ovlp=1 57 28 17
=136 ovlp=2 33 24 15
REFERENCES

[1] L. Adams and J. Ortega, A multi-color SOR method for parallel computers, Proceedings of Int.
Conf. Par. Proc., 1982. pp. 53-56.

[2] X.- C.Cai, W.D. Gropp and D. E. Keyes, A comparison of some domain decomposition algorithms
for nonsymmetric elliptic problems, J. Numer. Lin. Alg. Appl. 1993.

[3] X.-C. Caiand O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems,
STAM J. Sci. Stat. Comp. 13 (1992), pp. 243-258.

[4] X.-C. Caiand O. B. Widlund, Multiplicative Schwarz algorithms for nonsymmetric and indefinite
elliptic problems, STAM J. Numer. Anal. 30 (1993), pp. 936-952.

[5] M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms for
elliptic problems, in Third International Symposium on Domain Decomposition Methods for
Partial Differential Equations, T. F. Chan, R. Glowinski, J. Périaux, and O. B. Widlund,
eds., STAM, Philadelphia (1990).

[6] H.C. Elman and E. Agron, Ordering technigues for the preconditioning conjugate gradient method
on parallel computers, UMTACS-TR-88-53, UMIACS, Univ. of Maryland, 1988.

[7] R. W. Freund G. H. and N. M. Nachtigal, Iterative solution of linear systems, Acta Numerica
1991, pp. 57-100.

[8] W. Gropp and B. Smith, Ezperiences with domain decomposition in three dimensions: Overlap-
ping Schwarz methods in Sixth International Symposium on Domain Decomposition Methods
for Partial Differential Equations, A. Quarteroni, et al. eds., AMS, (1993). To appear.

[9] W. Gropp and B. Smith, Simplified linear equation solvers: User’s manual, Mathematics and
Computer Science Division, Argonne National Laboratory, 1993.

[10] J. W. H. Liu, A graph partitioning algorithm by node separators, ACM Transactions on Mathe-
matical Software, 15, (1989), pp. 198-219.

[11] A. Pothen, H. D. Simon and K.-P. Liou, Partilioning sparse malrices with eigenvectors of graphs,
STAM J. Matrix Anal. Appl. 11 (1990), pp. 430-452.

[12] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations, TR 90-20, Research
Institute for Advanced Computer Science, NASA Ames Research Center, Moffet Field, CA,
1990.

[13] Y. Saad, Highly parallel preconditioners for general sparse matrices, Preprint 92-087, Army High
Performance Computing Research Center, University of Minnesota, 1992.

[14] Y. Saad, Krylov subspace methods in distributed compuling environments, Preprint 92-126, Army
High Performance Computing Research Center, University of Minnesota, 1992.

[15] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, STAM J. Sci. Stat. Comp. 7 (1986), pp. 865-869.

16

[16] H. A. Van der Vorst, Bi-CGSTAB: A more smoothly converging variant of CG-S for the solution
of nonsymmetric linear systems, STAM J. Sci. Stat. Comp. 13 (1992), pp. 631-644.

17

