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Abstract� Domain decomposition methods for Finite Element problems using a partition based on
the underlying �nite element mesh have been extensively studied� In this paper� we discuss algebraic
extensions of the class of overlapping domain decomposition algorithms for general sparse matrices�
The subproblems are created with an overlapping partition of the graph corresponding to the sparsity
structure of the matrix� These algebraic domain decomposition methods are especially useful for
unstructured mesh problems� We also discuss some di�culties encountered in the algebraic extension�
particularly the issues related to the coarse solver�
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�� Introduction� The aim of this paper is to develop parallel preconditioned it�
erative methods for solving general large sparse linear systems that arise from the dis�
cretization of partial di�erential equations� more particularly on unstructured meshes�
We are interested in the class of overlapping Schwarz domain decomposition precon�

ditioners that were previously introduced in the context of variational solution of par�
tial di�erential equations� see ��� and references therein� According to the divide�and�
conquer philosophy underlying the domain decomposition approach� the domain of def�
inition of the partial di�erential equation is partitioned into a set of subdomains whose

union is the original domain and the partial di�erential equations are then discretized
on each of the subdomains� The solution of the original PDE is obtained typically by a
Krylov space type iterative method� such as the generalized minimal residual algorithm
�GMRES	 �
��� which is preconditioned by an operator which typically incorporates the

solutions of the subproblems�
Our goal in this paper is to extend the framework of the overlapping domain de�

composition approach to general sparse linear systems� The fundamental principle

underlying this extension is to replace the domain of de�nition of the problem by the
adjacency graph of the sparse matrix� i�e�� the graph that represents its non�zero pattern�
We note that by switching from a domain to a graph the concept of Euclidean distance�
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which plays an important role in the optimality analysis of these domain decomposition

methods� is lost� We show in this paper� mostly by means of numerical experiments�
that the e�ciency of the overlapping methods can be preserved to some extent with
certain well�balanced overlapping graph decomposition� Other preconditioned iterative
methods can also be used to solve this class of sparse systems and the interested reader

should refer to �
� �� 

� for further references�
In the practical implementation of the algebraic Schwarz algorithms� a crucial step

resides in the non�numerical preprocessing of the problem� e�g�� graph partitioning�
graph coloring� etc�� As is well�known in graph theory many of the problems that arise

in this context� such as the perfect graph coloring problem� are NP�hard� However�
there are often very inexpensive heuristic algorithms that deliver more than adequate
results� In this paper we will restrict our attention to such heuristics�

The paper is organized as follows� In Section �� we will brie�y review that classical
�variational	 Schwarz algorithms� which motivate the current paper� We then intro�
duce� in Section 
� an overlapping graph partitioning scheme based on which we de�ne
the algebraic Schwarz algorithms� Both additive and multiplicative versions will be

discussed� In Section �� we discuss a rather di�cult issue regarding the use of coarse
solvers to speed up convergence� Section � is devoted to the discussion and description
of some useful tools for graph decompositions� graph coloring� etc� Finally� in Section
�� we present some preliminary numerical experiments�

�� Review of Variational Schwarz Algorithms� Before presenting the alge�
braic formulation of the Schwarz algorithms� we give a brief review of the classic Schwarz

algorithms� including the additive and multiplicative versions� Details of the classic ver�
sions can be found in �
� �� ��� To illustrate the ideas of Schwarz type algorithms� we
consider a homogeneous Dirichlet boundary value problem�

�
Lu � f in ��

u � � on ���
�
	

where � is a two� or three�dimensional domain with boundary ��� Using a Green�s
formula� we obtain the weak form of the continuous and discrete problems� Find u � V �
such that

a�u� v	 � f�v	� � v � V��	

and �nd uh � Vh� such that

a�uh� vh	 � f�vh	� � vh � Vh�
	

respectively� Here V h is a �nite dimensional subspace of the Sobolev space V � H�
� ��	

and a��� �	 is the usual bilinear form associated with the elliptic operator L� Following
the Dryja�Widlund construction of the overlapping decomposition of V h �cf� ���	� the
triangulation of � is introduced as follows� The region is �rst divided into nonoverlap�

ping substructures �i� i � 
� � � � � N� Then all the substructures �i� which have diameter

�



of order H� are divided into elements of size h� The common assumption� in �nite ele�

ment theory� that all elements are shape regular is adopted� To obtain an overlapping
decomposition of the domain� we extend each subregion �i to a larger region �

�

i� i�e�
�i � �

�

i� We assume that the overlap is uniform and Vi � V h is the usual �nite element
space over �

�

i� It clear that

� �
�
i

�
�

i

and

V h � V� � � � � � VN �

Equation �
	 yields a large� sparse� linear system of equations�

Au � f��	

which is usually not well�conditioned� Therefore� a good preconditioner plays an essen�
tial role in the success of any iterative methods used to solve it� For Schwarz methods�
cf� Dryja and Widlund ���� the preconditioner is constructed by solving a sequence of

subdomain problems of the form� Find Tie � Vi� such that

a�Tie� v	 � b�e� v	� �v � Vi�

Tie is a projection of the error onto the subspace Vi� There are quite a few di�erent ways
to construct preconditioners with the operators Ti� see for example���� For simplicity�
we discuss only the additive and the multiplicative Schwarz algorithms� The additive

Schwarz preconditioned system can be written as

M��Au � �T� � � � �� TN	u � g���	

We note that the action of Ti on a vector u can be carried out simultaneously in parallel�
The preconditioned system for the multiplicative Schwarz can be written as

M��Au � �I � �I � TN	 � � � �I � T�		u � g���	

We remark that the operator Ti can be expressed in matrix form as Ti � RT
i A

��
i RiA�

where Ri is the restriction matrix and A��
i is the subdomain problem solve� In practice�

for the additive algorithm� we usually let the number N of subdomains be equal to
the number of available processors� and the size of subproblems� including the size of

overlap� be determined by the available memory on each processor� For the multiplica�
tive algorithm� in order to improve parallelism� the subdomains are usually colored and
before calling the multiplicative Schwarz algorithms the subdomain i� therefore Ti� is
rede�ned as the union of the original disconnected subdomains that share the same

color i�
Both algorithms discussed above are one�level algorithms and the convergence rates

deteriorate� linearly in the number of Tis� as the number of subdomains increases� A

coarse solver is usually included to prevent the loss of optimal convergence� We refer
to ��� 
� �� �� for further discussions of this issue�
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�� Algebraic Schwarz Algorithms� We consider a linear system of the form�

Au � f��	

where A is a sparse matrix� having a symmetric pattern� To describe a model algebraic

Schwarz algorithm� let us de�ne the graph G � �W�E	� where the set of vertices W �
f
� � � � � ng� represents the n unknowns and the edge set E � f�i� j	 j ai�j �� �g represents
the pairs of vertices that are coupled by a nonzero element in A� Here n is the size
of the matrix� Since we assume that the non�zero pattern is symmetric the adjacency

graph G is indirected� There are several algorithms described in the literature for
partitioning a graph into subgraphs �
�� 

� 
��� The approach described in �
�� is a
form of nested dissection algorithm� and the author proposes a number of strategies
to �nd good separators� In �

� a spectral analysis of Discrete Laplacian is exploited�

In section � we give a brief description of a technique presented in �
��� In summary�
the algorithm consists of two phases� The �rst phase �nds a set of n� initial vertices
that are reasonably well spread apart in the graph� Ideally� n� should be equal to the

number of processors� but it is typically larger� and this issue is discussed in Section
�� We will refer to these nodes as centers� Once these centers are found we proceed
with a level�set expansion from each of them to build the subdomains� Each subdomain
initially consists of one node only� namely the center� At each step of the expansion

from a center� we add each unmarked node of the next level set� We recall that a level
set is de�ned recursively as the set all unmarked neighbors of all the nodes of a previous
level set� As soon as a level set is traversed its nodes are added to a subdomain and
they are marked� When all nodes are marked� a nonoverlapping partition of G into n�
subgraphs is obtained� To generate an overlapping partition of G� we further expand
each subgraph by a certain number� denoted as ovlp� of level sets as if all nodes are
unmarked� A detailed description of the graph partition algorithm will be given in
Section ��

For the remaining discussion� we will assume that the graph partitioning has been
applied and has resulting in a number p of subsets Wi whose union is W �

W �
�
i

Wi�

Here p is generally smaller than n� as some of the subgraphs may be combined� The

result of the partitioning algorithm is illustrated with a simple example in Figure 
�

���� Additive Schwarz� We will denote by Li the vector space spanned by the

set Wi in Rn and by mi its dimension� For each subspace Li we de�ne the orthogonal
projector onto Li� In matrix terms� this is de�ned by the sub�identity matrix Ii of size
n � n whose diagonal elements are set to one if the corresponding node belongs to Wi

and to zero otherwise� With this we de�ne the matrix�

Ai � IiAIi �

which is an extension to the whole subspace� of the restriction of A to Li� This is
sometimes termed the section of A on Li� Its action on a vector is to project it on
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Fig� �� The graph partitioning algorithm in action for a 
� � 
� grid on the unit square� The
circled nodes are the initial nodes of S�� output of the coarsen algorithm� The ten subgraphs are bounded
by the dotted lines� The numbers� ���� in the circles indicate the color of the subdomains found by the
Coloring Algorithm�

Li� then apply A to the result and �nally project the result back onto Li� Note that
although Ai is not invertible� we can invert its restriction to the subspace spanned by
Wi� and de�ne

A��
i � Ii

�
�Ai	jLi

���
Ii

With this de�nition� the additive Schwarz algorithm can now be simply described as
follows

Algorithm � �Additive Schwarz�� Solve the equation

M��Au � M��f

by a Krylov subspace method� where the preconditioning M is de�ned by

M�� � A��
� � � � ��A��

N �

We note that the particular case where there is no overlapping� i�e�� when the Wi�s
form an actual partition of W � then the Additive Schwarz algorithm is nothing but a

block Jacobi preconditioned Krylov subspace iteration�
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���� Multiplicative Schwarz� We next de�ne the multiplicative Schwarz algo�

rithm� It can be seen easily that if the multiplicative Schwarz algorithm is used as
in the form of ��	� then it is a purely sequential algorithm� however� if we color and
regroup the subgraphs such that each is a union of several disconnected subgraphs then
a great deal of parallelism can be introduced �see discussion in ���	� i�e� the subproblems

de�ned on the disconnected subgraphs can be solved independently in parallel� Simple
greedy heuristic subgraph coloring algorithms have been discussed in the literature� see
for example� �

�� For the completeness of this paper� we will give a description of one
such coloring algorithm in Section ��

Let us de�ne the matrix �Ai as the sum of all the matrices Ai that share the same
color� Here the color of the matrix is the same as that of its subgraph� �A��

i can also be
de�ned accordingly� The multiplicative Schwarz algorithm can now be de�ned as

Algorithm � �Multiplicative Schwarz�� Solve the equation

M��Au � M��f

by a Krylov subspace method� where the preconditioning operation w �� M��v is de�ned
by the sequence of operations�

v� � �A��
� v

vj � vj�� � �A��
j �v �Avj��	 � for j � �� � � � � J�

w � vJ �

We note that the independent subproblems within each of the above sequential

steps can be solved in parallel and that the preconditioned matrix has the form�

M��A � I � �I � �A��
� A	 � � � �I � �A��

J A	�

With a straightforward implementation� the Multiplicative Schwarz algorithm will
require a number of sequential steps equal to the number of colors� since only one color

set can be active at a time� This may limit the e�ciency of the algorithm� In such a case
it would be important for the coloring algorithm to use as small a number of colors as
possible� in order to minimize the number of sequential steps� In addition� we note that
the convergence rate of the multiplicative Schwarz depends inversely on the number of

colors� cf ���� As a result� minimizing the number of colors will not only increase the
parallelism but it will also improve the intrinsic convergence rate� We found that the
greedy coloring algorithm just mentioned does give satisfactory results in practice� A
overlapping subdomain example with ten subdomains� can be found in Fig� 
� where

the colors are indicated by the circled numbers�
However� regarding the reduction in e�ciency we note that there are many possible

remedies� The simplest of these remedies is to have more subdomains than there are

processors and to assign at least one subdomain from each color to each processor� In
practice� this is quite simple to achieve by performing a two�level graph partitioning�

�



First we proceed as before and use the domain partitioning algorithm described earlier to

get the actual node to processor mapping� Then each subdomain is further subdivided
independently into a small number of sub�subdomains� normally just four� We then
color the corresponding global subdomain partition with the assumption that all sub�
subdomains in the same subdomain are connected� This assumption guarantees that

all sub�subdomain colors in the same subdomain are di�erent� and will decrease the
likelihood that a processor is ever idle during the algorithm� Note that we do not know
how the additional partitioning will a�ect the total number of colors� There are several
other alternatives which we do not consider here�

Finally� we remark that� in the algorithms discussed above� all subproblems are
assumed to be solved exactly� usually with Gaussian elimination� However� our numer�
ical experiments show that this is not really necessary� In the Numerical Experiments

section of this paper� we shall present some examples in which the subproblems are
solved with the incomplete LU factorization ILU�k	�

���� The Symmetric Case� In this paper� we do not assume that A is symmetric

or positive de�nite� therefore the Conjugate Gradient �CG	 Algorithm was not men�
tioned as a possible iterative method for solving the preconditioned systems� In fact� if
the matrix A is symmetric and positive de�nite� then the additive Schwarz precondi�
tioned system is also symmetric and positive de�nite with respect to the energy inner

product de�ned as �A�� �	� hence the standard CG can be used� A better known alter�
native is to use the M �inner product for the preconditioned system M��Au � M��f

which is again self�adjoint with respect to this inner product�

In the case of multiplicative Schwarz preconditioning� a symmetrization technique
has to be used in order to obtain an A�self�adjoint preconditioned system� we refer to
��� for further discussions� The symmetrization corresponds to doing a forward and
backward sweep� as is usually done with SSOR� i�e�� the preconditioning operation

w � M��v is now de�ned through the sequence of operations�

v� � �A��
� v

vj � vj�� � �A��
j �v �Avj��	 � for j � �� � � � � J�

vj � vj�� � �A��
j �v �Avj��	 � for j � J � 
� � � � � 


w � v�

�� Global Coarse Solvers� All the algorithms discussed in the previous section
are one�level algorithms� in that they are simply direct extensions of the block Jacobi
�additive	 and the block Gauss�Seidel �multiplicative	 preconditioners� As is known� the

convergence rates of these algorithms deteriorate as the number of subdomains increases�
This problem is successfully handled for the cases of variational Schwarz algorithms by
inserting a solve with an extra coarse mesh space to the preconditioner� This allows to
incorporate the needed communication between the almost decoupled local subspaces

and prevents deterioration in convergence rates� see ��� for a theoretically analysis�
However� for the case of general sparse matrices� de�ning the analogue of a �coarse

	



problem� and whether a similar cure to the deterioration of convergence rates can be

achieved� are still almost entirely open issues�
Here we discuss a semi�automatic method that may speed up the convergence in

some practical cases� In this method� we require the user to supply �i	 a set of cross
points� C � fci� i � 
� � � � �mg � W � and �ii	 a cross�to��ne mapping matrix E � Em�n�

Supposing that �i	��ii	 are given� we de�ne an m�m coarse matrix as

M� � EAET �

which can be obtained by two sparse matrix�matrix products� Assuming that M� is
nonsingular� we therefore can de�ne the coarse preconditioner as

A��
� � ET �M�	

��E

and the additive and multiplicative Schwarz algorithms can be modi�ed as

�A��
� �A��

� � � � ��A��
N 	Ax � �b

and h
I � �I �A��

� A	�I � �A��
� A	 � � � �I � �A��

J A	
i
x � �b

respectively� Of course� �b must also be modi�ed�

�� Tools for Graph DecompositionMethods � In this section� we discuss sev�
eral useful algorithms for the graph decomposition algorithm described in the previous
section� Let �a� ja� ia� be the usual Compressed Sparse Row format�CSR	� see �
���
of the sparse matrix A � The graph G � �W�E	 of A is completely determined by the

two one dimensional arrays ia and ja� Indeed the adjacency list for node i is simply
the set of nodes ja�k�	� ja�k�	 � 
� � � � � ja�k�	 with k� � ia�i	� k� � ia�i� 
	� 
�

���� Graph Partitioning� The graph partitioning algorithm described in �
��

consists of two phases� The purpose of the �rst phase is to provide a subset S� of W
consisting of points that are at nearly equal distance to each other� Note that here
distance is understood in a graph theory sense� i�e�� the distance between two nodes is
the smallest number of edges needed to reach one node from the other� The way in

which this �coarsening� phase works is by a recursive algorithm which de�nes a graph
with far fewer nodes from the previous one until a graph with a satisfactory number
of nodes is found� An essential step in the algorithm is to �nd an independent set of a
graph� Given a graph G � �W�E	 an independent set S is a subset of the vertex set W

such that

if x � S then �x� y	 � E or �y� x	 � E � y �� S�

� The array a contains the nonzero elements Aij of A row by row� the integer array ja contains the
column indices of the elements Aij in the array a� and the integer array ia contains the pointers to
the beginning of each row in ja






In other words� elements of S are not allowed to be coupled with other elements of S

by incoming or outgoing edges� Finding such sets is relatively easy� An independent set
is maximal if it cannot be augmented by elements in its complement to form a larger
independent set� In what follows an independent set is always meant in the sense of a
maximal independent set� Algorithms for �nding such sets are described in �

�� The

�coarsening� algorithm can be described as follows�
Algorithm � �Coarsening algorithm���
Start� Select a threshold number nodes nw�

Set �W �W� �E � E�
Coarsening Loop�

While j �W j 	 nw do

Find S � �W � an independent set in �W� �E�
On the set S construct an edge set F by the rule�

�i� j	 � F i� i � S� j � S� 
 k � �W� �i� k	 � �E and �k� j	 � �E

De�ne �W �� S� �E �� F �
EndWhile

Let us call S� the �nal set �W obtained from the algorithm� Once the set S� of
initial nodes has been found� we will perform a level�set expansion from each node in
S�� This is achieved by the following algorithm�

Algorithm �� Automatic Graph Partitioning Algorithm

Start�

Find an initial set S� of ndom �coarse mesh� vertices� v�� � � � � vndom
For i � 
� �� � � � � ndom Do� label�vi	 �� i�
De�ne levset �� fv�� � � � � vndomg and nodes � ndom

Loop� While �nodes � n	 Do
Next levset � �

For each vj in levset Do

for each neighbor vk of vj s�t� label�vk	 � � Do
Next levset �� Next levset

S
fvkg

label�vk	 �� label�vj	
nodes � nodes � 


EndFor
EndFor
levset �� Next levset

EndWhile

The above two algorithms provide a basic way of partioning an arbitrary graph into
subgraphs� There are several additions and improvements which we now brie�y discuss�

Getting overlapping subgraphs� In Domain Decomposition� it is very common and
desirable to obtain subdomains that have a small overlapping region� In the graph
decomposition context discussed here we can achieve this quite easily by adding more

�



level�sets in the level�set expansion of the the graph decomposition algorithm�

Obtaining a desired number of subdomains� As was already mentioned the number
of subgraphs obtained by the Coarsening algorithm� is rarely equal to the desired num�
ber of subgraphs entered� This is due to the fact that from step to the other the number
of coarse mesh points can be divided by a factor of 
 or � for typical graphs �roughly

speaking� we are taking every other points in each direction	� The result is that the
number n� center nodes obtained may sometimes 
 or � times as large as the desired
number nw� The simplest cure is simply to take the �rst nw points obtained in the
set S� and ignore the others� The disadvantage of this strategy is that it will typically

yield subdomains that are unbalanced� since the size of the subdomains is e�ected by
the distance between the di�erent initial nodes�

Obtaining well�balanced subgraphs� The sizes of the di�erent subgraphs may vary
by a factor of � to 
 with the simple implementation of Algorithm �� In reality� it is

easy to add a load�balancing criterion to the algorithm� After step 

 in Algorithm ��
we can update a counter to record the number of nodes that have been acquired by
each subgraph� Then� we can set a priority rule by have the subgraph with fewer nodes
have priority over the others� A simpler alternative is not to allow a subgraph to get

more nodes if its size exceeds a given target size�

Parallel implementations� We mentioned earlier that Algorithm � is actually a par�
allel algorithm� since the level expansions can be performed from each node indepen�
dently� The parallel version is best implementation with a host or master node which

serves the role of arbitrator between the processors when there is contention as to which
processor will acquire a vertex� On the other hand the graph�coarsening algorithm is not
as trivially parallelizable� There is ample underlying parallelism however since nodes

that are not adjacent can be treated at the same time�

���� Graph Coloring and independent set orderings� The general idea of
graph�coloring has been successfully exploited by numerical analysts in many di�erent
ways� Whenever we have a graph G � �W�E	� we can color its nodes in such a way

that no two adjacent vertices have the same color� Let wi� i � 
� � � � � n be the elements
of W � We can formulate a trivial heuristic for graph coloring as follows�

Algorithm �� Greedy multicoloring algorithm �

� Start� For i � 
� � � � � n Do� Color�wi	 � ��

�� Coloring Loop� For i � 
� �� � � � � n Do�

Color�wi	 � minfk � � j k �� Color�wj	�� wj � Adj�wi		g�

Here Adj�i	 represents the set of nodes that are adjacent to wi� The order in

which the nodes wi are listed� i�e�� the order of traversal in the algorithm� may have an
important e�ect on the number of colors found� The color assigned to node i in step �
is simply the smallest allowable color number which can be assigned to node i� where

allowable means di�erent from the colors of the nearest neighbors and positive� The
procedure is illustrated in Figure ��
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Fig� �� The greedy multicoloring algorithm� The node being colored is indicated by an arrow� It
will be assigned color number �� the smallest positive integers di�erent from �� �� �� ��

This algorithm can be used to color the subdomains in a partitioning� The vertices
of the corresponding graph in this case represent the domains and the adjacency list

for each vertex �i�e�� subdomain	 is the list of neighboring subdomains� i�e�� subdomains
that share common interface points�

�� Numerical Experiments� In this section� we present some preliminary nu�

merical examples for the algorithms developed in the previous sections� There are quite
a few parameters that can a�ect the overall performance of the algorithms� such as the
initial number of subgraphs� initial ordering of the sparse matrices� number of colors�

number of overlaps� as well as the methods used to solve the subdomain problems�
In the section� we only discuss those parameters that are of interest to us currently�
For a �xed preconditioner� there are also many accelerators which can be used such as
GMRES �
��� BiCGSTAB �
��� TFQMR ���� etc�� However� we shall restrict ourselves

to the use of the restarted GMRES algorithm� We consider the following two model
problems�

Problem �� We consider the Poisson equation

�� u � f

with Dirichlet boundary condition on the unit square in R�� The equation is discretized

with the usual ��point �nite di�erence scheme on a uniform 
�� � 
�� grid�

Problem �� We consider the convection�di�usion equation

�� u� �

�
�exyu

�x
�
�e�xyu

�y

�
� �u � f�







with Dirichlet boundary condition on the unit cube in R� and � � 
�� � � �
��

The equation is discretized with the usual � point centered di�erence scheme on an

� � 
� � 
� uniform mesh�

For all the above matrices� we construct the right�hand side arti�cially of the form
b � Ae such that the solution e is a random vector� The initial guess is always zero� All

the testing problems are discretized on uniform meshes� However� this is not exploited
except in one case where a coarse solver is de�ned with the mesh information in mind�
The GMRES method� restarted at the ��th iteration� is used for all of the preconditioned
linear systems� The stopping criterion is the reduction of the initial �preconditioned	

residual by �ve orders of magnitude in the L� norm� namely

�rk� rk	
��� � 
����r�� r�	

����

where rk � M���b� Axk	� for k 	 �� and M�� is one of the preconditioners discussed
previously� All experiments were done on a Sparcstation � in double precision� The
number of overlapping level�sets is denoted by ovlp� m� is the initial seed for the number
of subgraphs�

The testing codes used in the experiments are developed with the help of two pieces
of software� namely the SPARSKIT of Saad �
�� and the package PETSc of W� Gropp
and B� Smith ����

���� One	level algorithms� The �rst suit of tests are for the additive Schwarz
algorithms� see Tables 
 and �� In these two tables� all the subdomain problems are
solved exactly with Gaussian elimination� In Table 
� the column ovlp � � corresponds

to the usual block diagonal preconditioning� or block Jacobian method� We note that
the iteration counts have a sudden jump from the column ovlp � � to the column
ovlp � 
 due to the introducing of the �rst level of overlap� The decreases of the

iteration counts after the �rst level of overlap are not as noticeable as the �rst one�
The second set of tests are for the multiplicative Schwarz algorithms� see Tables 


and �� also with exact subdomain problem solves� We observe that the number of colors�
which equals the number of sequential steps in the multiplicative Schwarz algorithms�

is almost independent of the number of subdomains� However� due to the increase of
data dependency in three dimensional problems when compared with two dimensional
problems� the number of colors is indeed higher in the 
�D case� see Table �� than in
the ��D case� see Table 
�

As mentioned previously� in practice� the subdomain problems usually need not to
be solved exactly as shown in Tables 
��� Some inexact solution techniques� such as
incomplete LU�k	� can be used instead� This can sometime save some CPU time both at
the pre�iteration step� such as the factorization of the subdomain matrices� and during

the iterations� In Fig� 
� we compare the iteration histories when we use the exact LU
and ILU�k	� with k � �� 
� � and 
� Clearly� the exact LU o�ers the minimal number of
iterations to reach the desired accuracy� However� the story changes when comparing

the curves of CPU time versus iteration count� To reach the same accuracy� ILU��	
takes the least amount of CPU time in the iteration process� A similar conclusion has
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Table �

Iteration counts for the additive Schwarz preconditioned GMRES	�
� for Problem � with n �

�
� 
�
 and no coarse solver� The subdomain problems are solved by Gaussian elimination�

m� � of subgraphs ovlp � � ovlp � 
 ovlp � � ovlp � 
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Table �

Iteration counts for the additive Schwarz preconditioned GMRES	�
� for Problem � with n �

� � 
� � 
� � ��	�� nnz � ���	� and no coarse solver� The subdomain problems are solved by
Gaussian elimination�

m� � of subgraphs ovlp � � ovlp � 
 ovlp � �

� � � � �

� � �
 
� 
�

� � �
 
� 
�


� �� �� �� ��

also been reached in �

�� where global ILU�k	 preconditioners� among others� were

discussed� We note that the most popularly used ILU��	 is not a good choice for this
example�

���� Two	level algorithms� When the matrix A is obtained from the discretiza�
tion� with a mesh parameter h� of a continuous di�erential equation� it has been shown�
in ��� ��� that a two�level method which utilizes a coarse mesh performs considerly better
than the corresponding one�level method� The coarse mesh matrix is usually obtained

by using the same discretization scheme but with a much larger mesh parameterH� For
general sparse matrices� we found that to obtain a good coarse matrix without knowing
the underlying mesh structure is rather di�cult�

Let us now assume that we are provided with some information about the matrixA

that is su�cient to de�ne a coarse matrix and its corresponding interpolation operator
E� This coarse matrix is usually generated with the initial grid that is typically input
to some mesh generation tool� To illustrate the idea� we present an example here in
Table �� We divide the unit square into an �� � triangular mesh and de�ne the matrix

E���n row by row such that each row corresponds to the nodal values of the usual �nite
element hat function centered at that coarse grid point� The coarse matrix is thus
obtained by two sparse BLAS routine calls� i�e�� the sparse matrix�matrix products to

compute EAET � In Table �� we show what a di�erence a coarse solver can make for
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Table �

Iteration counts for the multiplicative Schwarz preconditioned GMRES	�
� for Problem �

with n � 
�
�
�
 and no coarse solver� The subdomain problems are solved by Gaussian elimination�

m� � of subgraphs � of colors ovlp � 
 ovlp � � ovlp � 
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Table �

Iteration counts for themultiplicative Schwarz preconditioned GMRES	�
� for Problem � with
n � 
�� 
�� 
� and no coarse solver� The subdomain problems are solved by Gaussian elimination�

m� � of subgraphs � of colors ovlp � 
 ovlp � � ovlp � 
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Fig� �� Residual curves for Problem �� with the additive Schwarz preconditioner� The subdomain
problems are solved by LU and ILU	k�� The number of subdomains is � and overlap is 
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Fig� �� The curves for the CPU time	sec� versus iteration� The test problem and parameters are
the same as in Fig� ��

the additive Schwarz methods when applied to the model problem� We can save more
than half the number of iterations� with not too large a coarse grid solver� We remark
that the subgraph problems are obtained as previously without the knowledge of the
grid structure�

There are other ways to generate the matrix E� such as by a piecewise constant
interpolation� or a piecewise linear�in�level set interpolation� However� our numerical
experiments do not show any advantages of using these techniques�
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Table �

Iteration counts for the additive Schwarz� with a regular coarse grid solver� preconditioned GM�
RES	�
� for Problem � with n � 
�	 � 
�	� All subproblems are solved exactly with Gaussian
elimination�

coarse mesh coarse mesh coarse mesh
�� � �� � �� �

m� � � ovlp�� 
� �
 
�
� of subgraphs ovlp�
 �� 
� 
�

� 
� ovlp�� �� 
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m� � �� ovlp�� �� 

 ��

� of subgraphs ovlp�
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