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Abstract� We consider the solution of linear systems of algebraic equations that arise from elliptic �nite
element problems� We study a two�level overlapping domain decomposition method that can be viewed as
a combination of the additive and multiplicative Schwarz methods� This method combines the advantages
of the two methods� It converges faster than the additive Schwarz algorithm and is more parallelizable
than the multiplicative Schwarz algorithm� and works for general� not necessarily selfadjoint� linear� second
order� elliptic equations� We use the GMRES method to solve the resulting preconditioned linear system of
equations and we show that the algorithm is optimal in the sense that the rate of convergence is independent
of the mesh size and the number of subregions in both R� and R�� A numerical comparison with the additive
and multiplicative Schwarz preconditioned GMRES is reported�
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�� Introduction� Domain decomposition technique is a class of preconditioned iter�
ative methods for solving partial di	erential equations and has been proved to be very
e	ective for parallel computing� In this paper� we study a new class of methods based on
the Dryja�Widlund decomposition 
��� in which the usual �nite element space is optimally
decomposed into the sum of a �nite number of uniformly overlapped two�level subspaces�
Based on this decomposition two methods� the additive Schwarz 
ASM� 
�� �� �� and the
multiplicative Schwarz methods 
MSM� 
�� ��� have been studied� A recent paper 
�� shows
that MSM� despite of its less parallelism� is substantially faster than ASM in terms of their
algebraic convergence rates� In this paper� we develop a new method that can be viewed as
a combination of ASM and MSM and it converges faster than the additive Schwarz method
and is more parallelizable than the multiplicative Schwarz method� If the number of pro�
cessors is about the same as the number of subdomains that have the same color� which
will be described in detail later� then the parallelism of the new method is as well as that of
ASM� We show that the new method� accelerated by certain Krylov space based iterative
method� such as GMRES� has an optimal convergence rate independent of the mesh size
and the number of subproblems for general elliptic problems� not necessarily symmetric�
in both two and three dimensional spaces� The main di	erence between the new method
and MSM is the treatment of the coarse grid operator� There are other recently developed
iterative methods that make special use of the coarse grid operator� see e�g� 
�� ��� ����

The paper is organized as follows� In x �� we brie�y introduce the elliptic �nite element
problem and the Dryja�Widlund decomposition� Then� we discuss the idea of transformed
systems with certain well�known examples in x �� The new method is introduced in x ��
in which the convergence rate of the new method is also analyzed� In x �� we provide
a numerical comparison of the new method with the additive and multiplicative Schwarz
methods� We conclude the paper with a few remarks in x ��
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�� Model problem and Dryja�Widlund decomposition� Let � be a bounded
polygonal region in Rd 
d � � or �� with boundary ��� We consider the weak form of the
homogeneous Dirichlet boundary value problem� Find u � H�

�
�� such that

b
u� v� � 
f� v�� �v � H�
� 
���
��

where the bilinear form b
u� v� � a
u� v� � s
u� v� and

a
u� v� �
dX

i�j��

Z
�

aij
�u

�xi

�v

�xj
dx and s
u� v� �

dX
i��

Z
�

bi
�u

�xi
vdx �

Z
�

cuvdx�

We assume that all coe�cients are su�ciently smooth� the matrix faij
x�g is symmetric
and uniformly positive de�nite� and f � H��
��� We also assume that the equation has a
unique solution and that b
�� �� satis�es� for some positive constants c and C�

� c kuk�a � b
u� u�� �u � H�
�
��

� j b
u� v� j� C kukakvka� �u� v � H�
�
���

Here k � ka � a
�� ����� is the energy norm of H�
�
��� We solve equation 
�� by the Galerkin

conformal �nite element method� For simplicity� we use piecewise linear triangular elements
in R� and the corresponding tetrahedral elements in R�� Following Dryja and Widlund 
���
we describe a two�level triangulation of � and the corresponding �nite element spaces� We
de�ne f�i� i � �� � � � � Ng to be a shape regular �nite element triangulation of �� where
the diameter of �i is of order O
H�� We call �i a substructure and f�ig the coarse grid
or H�level triangulation of �� In our second step� we further divide each �i into smaller
simplices of diameter O
h�� and the union of these forms a shape regular �nite element
triangulation of �� We call it the �ne mesh or h�level triangulation of �� We denote by
V H and V h the continuous� piecewise linear �nite element function spaces over the H�level
and h�level triangulations of �� respectively� The Galerkin approximation of equation 
��
is formulated as follows� Find u�h � V h� such that

b
u�h� vh� � 
f� vh�� �vh � V h�
��

We next describe the Dryja�Widlund decomposition of V h� To decompose � into over�
lapping subregions� we extend each �i to a larger subregion �

�

i� i�e� �i � �
�

i � �� The
overlap is of size O
H�� or more precisely dist
��

�

i ��� ��i ��� � �H� �i� for a constant
� � �� We assume that ��

�

i aligns with the h�level elements and denote �
�

� � �� For
each �

�

i� i � �� we de�ne V h
i � fvh � V hj vh
x� � �� x���

�

ig � V h� We also use the subspace
V h
� � V H � It is easy to see that V h can be represented as the sum of the N � � subspaces�

V h � V h
� � V h

� � � � �� V h
N �

We now regroup the subregions in terms of the following coloring strategy� Associated
with the decomposition f�

�

ig� we de�ne an undirected graph in which nodes represent the
extended subregions and the edges intersections of the extended subregions� This graph can
be colored� using colors �� � � � � J � such that no connected nodes have the same color� We
note that �

�

� needs its own color� It is obvious that the coloring is not unique�

�� Transformed linear system� Let bi
�� �� be a bilinear form� de�ned on the sub�
space V h

i � which we will refer as the subspace preconditioner for b
�� ��� In this paper� we
only consider two cases


I� bi
�� �� � b
�� ��� for i � �� �� � � �N �







II� b�
�� �� � b
�� �� and bi
�� �� � a
�� �� for i � �� � � � � N �
We introduce the operator Ti � V

h �	 V h
i by

bi
Tiuh� vh� � b
uh� vh�� �uh � V h and �vh � V h
i �

We note that among all these operators� T� is the only global operator and all the others
are local� We recall that u�h � V h denote the exact solution of the Galerkin equation 
���
It is easy to see that the vector Tiu

�

h � V h
i can be computed� without knowing u�h� by using

the de�nition of Ti and the equation 
��� As an immediate consequence� if we de�ne

T � poly
T�� T�� � � � � TN�

as a polynomial of these Ti
�

s such that poly
�� � � � � �� � �� then Tu�h � V h can also be
computed without knowing u�h itself� By denoting g � Tu�h� we refer

Tu�h � g
��

as the transformed system of 
��� It is not di�cult to prove that
Theorem ���� If T is invertible� then the equation ��� has the same solution as the

Galerkin equation ����
We now group these maps Ti in terms of the color that the subregion was assigned�

For j � �� �� � � � � J � we denote Qj as the sum of all Ti
�

s that correspond to the subregions
with the jth color� In fact Q� � T�� We remark that N 
the number of subregions� may be
large� J 
the number of colors� can still be small� We next look at two special examples�
The �rst one� which is the simplest case and the degree of poly
� � �� is one� is the additive
Schwarz method� in which the operator has the form

Tasm � Q� � Q� � � � �� QJ �

The second example is the so�called multiplicative Schwarz operator

Tmsm � I � EJ���

where I is the identity map and EJ�� � 
I � Q��
I � Q�� � � �
I �QJ �� The degree of this
polynomial depends on the number of colors� and the exact form of the polynomial depends
on how the subregions are colored�

It is important to note that even if the original equation 
�� is not well�conditioned� the
transformed systems can be uniformly well�conditioned and more importantly the trans�
formed system can be so arranged that a highly parallelizable algorithm can be developed
for solving it� To build such a well�conditioned and easily parallelizable transformed system
is the main purpose of this paper�

�� A new transformed system and its spectral bounds� The parallelism of MSM
results mainly from the fact that� for j 
� �� Qj is a sum of some local independent sub�
problems� that can be handled in parallel� However� the global operator Q�vh � T�vh is
very special and it can not be handled in parallel with other local subproblems� It is not
the case for ASM in which all subproblems� including T�� can be solved in parallel�

Motivated by the above observation� we now de�ne an operator in which the global
operator T� is made to be additive to the rest of local operators�

Tnew � �T� � I � EJ �
��

�



where EJ � 
I � Q�� � � �
I � QJ� and � � � � R is a balancing parameter� If we de�ne
fnew � Tnewu

�

h� then our new algorithm can be described as
ALGORITHM	 Find the solution of equation ��� by solving the transformed system

Tnewu
�

h � fnew
��

with an iterative method�
We show in the next theorem that the operator Tnew is� under certain assumptions�

uniformly well�conditioned� In other words� its spectral bounds are independent of the
mesh parameter as well as the number of subproblems� The symmetric part of Tnew is
uniformly positive de�nite� which guarantees the convergence of a class of Krylov space
based iterative methods� such as the GMRES method 
�� ���

Theorem ���� There exist constants H� � � and � � �� independent of h and H� such
that if H � H� then�

kTnewka � C

and

a
Tnewuh� uh� �
c


J � ���
kuhk

�
a� �uh � V h�

where C � C
H�� and c � c
H�� are positive constants independent of H and h�
In order to prove the main theorem� we need to quote some known results for the

well�conditionness of Tmsm�
Theorem ��� �Cai and Widlund ���	� There exist constantsH� � �� �i � �� i � �� ��

such that if H � H�� then

kEJka �

s
��

��H�

J�
and kEJ��ka �

s
��

��

J � ���

�

where �i � �i
H�� are independent of H and h�
Lemma ��� �Cai and Widlund �
�	� There exists a constants H� � �� such that if

H � H�� then for any uh � V h

kT�uhka � Ckuhka� kT�uh � uhkL� � CHkuhka

and

a
T�uh� uh� � kT�uhk
�
a � cHkuhk

�
a�

where c � c
H�� and C � C
H�� are positive constants independent of H and h�
Proof� 
of Theorem ����� It is easy to see that the following identity holds�

Tnew � �T� � T�EJ � I �EJ���
��

The upper bound part of this theorem can be trivially proved by using Theorem ���
and Lemma ����

For the lower bound part� we only prove the case where bi
�� �� � b
�� �� for i � �� � � � � N �
The proof for the other case can be obtained in a similar way� Directly from the identity

��� we have that

a
Tnewuh� uh� � �a
T�uu� uh� � a
uh� uh�� a
EJ��uh� uh�� a
T�EJuh� uh��
��

�



We now estimate the right�hand�side of the above equality term�by�term� Following Theo�
rem ���� we obtain

a
EJ��uh� uh� � 
�� �c�kuhk
�
a�
��

where the constant �c � ��
p
�� ���
J � ��� � �� It is easy to verify that

a
T�EJuh� uh� � b
T�uh� T�EJuh�� s
uh� T�EJuh�

� a
T�uh� T�EJuh� � s
T�uh � uh� T�EJuh�

��

By using the fact that js
u� v�j � CkukL�kvka� �u� v � H�
�
��� Lemma ��� and Theorem

���� we have

js
T�uh � uh� T�EJuh�j � CHkuhk
�
a

and hence

a
T�EJuh� uh� � kT�uhkakT�EJuhka � CHkuhk
�
a

� C�kuhkakT�uhka � CHkuhk�a

�
C�	

�
kuhk

�
a �

C�
�	

kT�uhk
�
a � CHkuhk

�
a�


���

where 	 is an arbitrary positive constant� By taking 	 � �c�C�� we have

a
T�EJuh� uh� �
�c

�
kuhk

�
a �

C�
�

��c
kT�uhk

�
a � CHkuhk

�
a�
���

Taking all the above estimates 
��� 
��� 
��� and the last inequality of Lemma ��� into
account� we have

a
Tnewuh� uh� � �ckuhk�a � �kT�uhk�a � CH�kuhk�a

�
�c

�
kuhk

�
a �

C�
�

��c
kT�uhk

�
a � CHkuhk

�
a�


���

Therefore� if we choose � � C�
��
��c�� then

a
Tnewuh� uh� �
�c

�
kuhk

�
a � CHkuhk

�
a�
���

Thus� if H is small enough� we have

a
Tnewuh� uh� �
�c

�
kuhk

�
a �

��
�
J � ���

kuhk
�
a�
���

which completes the proof of the main theorem�
A remark is in order here about the choice of �� � does not depend on the size of the

linear system� nor the number of subproblems� Our numerical experiments� cf� the next
section� show that the algorithm is not very sensitive to �� In fact � � � has always given
us better convergence than ASM�

	



Table �

The parallel complexity of the algorithms with p processors

Method � of iterations p� � of subproblems p � 
max � of subdomains
with the same color � ��

MSM O
�� Jti � tc Jti � tc
ASM O
�� maxfti� tcg maxfJti� tcg

NEW O
�� maxfJti� tcg maxfJti� tcg

Table �

Iteration counts for solving the Poisson equation�� � �� with di�erent h � H and overlap sizes� Here
� � ����

h�� � �� �� ��� �� �� ��� �� ���

overlapping size H � ��� H � ��� H � ����
ovlp�h � � �� � � � � �

ovlp��h � � � � � � � �

ovlp��h � � � � � �


� Numerical experiments and comparison with ASM and MSM� In this sec�
tion� we �rst brie�y discuss the parallel complexity of the new algorithm as compared with
ASM and MSM and then present some numerical results�

Let us make some basic assumptions before providing a parallel complexity analysis
with p parallel processors� In this paper� we only focus on these computer architecture in�
dependent factors� We assume that the communication� synchronization and load balancing
costs can be ignored� and also that each subproblem is solved by using only one processor�

Furthermore� we assume that all interior problems� de�ned on any extended substruc�
tures� are of relatively the same size and need ti unit time 
or number of arithmetic opera�
tions� to solve� Of course� ti depends not only on how many unknowns each subregion has
but also the method used to solve the interior problem� Similarly� tc is for the coarse mesh
problem� Table � shows the parallel complexity of performing the preconditioner�vector
multiply by using multiplicative� additive and the new Schwarz type methods�

We next present some numerical results for solving this equation where

��u� 
ux � 
uy � f� in �
���

with u � � on �� and � � 
�� ���
�� ��� In all cases� the exact solution u � exy sin
�x� sin
�y��
and f can thus be set accordingly�

The unit square is subdivided into two�level uniform meshes� with h and H representing
the �ne and coarse mesh sizes� The elliptic operator is then discretized by the usual �ve�
point central or upwinding di	erence methods over both meshes� The full GMRES method�
without restarting� with zero initial guess is used for all of the transformed linear systems�
in the usual Euclidean norm� and the stopping criterion is the reduction of the initial
preconditioned residual by �ve orders of magnitude in the L� norm�

We �rst test a special case 
 � �� Although this is a symmetric problem� we still use
GMRES as the outer iterative method� The iteration counts are given in Table ��

Our second test problem is a nonsymmetric� constant coe�cient problem� We specify
the constant 
 � � in Table �� The elliptic operator is discretized by two schemes� namely�






Table �

Iteration counts for solving the nonsymmetric model equation with various values of � and two discretiza�
tions� The parameter h � ���
�� Here � � ����

H � ��� H � ���
Central�di�erence Method

� � � 	 �� 	� ��� �	� � 	 �� 	� ��� �	�

ovlp�h �� �� �� �� �� �� � 
 �� �� �� �	

ovlp��h 
 �� �� �� �� �� � 
 
 �	 �� ��

ovlp��h � 
 
 �� �� �� � � 
 �� �� ��

Upwind�di�erence Method

� � �� 	� ��� 	�� ���� ����� �� 	� ��� 	�� ���� �����

ovlp�h �� �� �� �� �� �� �� �� �	 �� �� ��

ovlp��h �� �� �� �� �� �� �� �� �� �	 �	 �	

ovlp��h 
 �� �� �� �� �� 
 �� �� �� �� ��

Table �

Iteration counts for di�erent balancing parameter ��s Here � � ��� h � ���
�� H � ���� ovlp � 
h and
central�di�erencing is used�

� ��� ���	 ��	 ���	 ��� ���	 ��	 ���	 ��� ��	

Iteration �� �� �� 
 
 
 �� �� �� ��

the central�di	erence method� for relatively small 
 and the upwind�di	erence method� for
relatively large 
�

The optimal choice of � is not unique and � � ��� seems among the optimal choices
for the example that we tested� An example can be found in Table ��

We �nally compare the new algorithm with ASM and MSM by listing the convergence
history in Table �� It is clear that the convergence rate of the new algorithm is faster than
that of ASM but slower than MSM� Some results for the same test problems by using other
domain decomposition methods can be found in 
���

�� Concluding remarks� In this paper� we introduced a new member in the class of
Schwarz type overlapping domain decomposition methods� This class of methods has been
shown to be fast� even in the case involving boundary layers� see e�g� the recent paper of
Tang 
���� The new method shares the robustness of other Schwarz methods with added
parallelism�
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