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SUMMARY

In this paper, we present a parallel Newton–Krylov–Schwarz (NKS)-based non-linearly implicit algo-
rithm for the numerical solution of the unsteady non-linear multimaterial radiation di�usion problem
in two-dimensional space. A robust solver technology is required for handling the high non-linearity
and large jumps in material coe�cients typically associated with simulations of radiation di�usion phe-
nomena. We show numerically that NKS converges well even with rather large in�ow �ux boundary
conditions. We observe that the approach is non-linearly scalable, but not linearly scalable in terms of
iteration numbers. However, CPU time is more important than the iteration numbers, and our numerical
experiments show that the algorithm is CPU-time-scalable even without a coarse space given that the
mesh is �ne enough. This makes the algorithm potentially more attractive than multilevel methods,
especially on unstructured grids, where course grids are often not easy to construct. Copyright ? 2004
John Wiley & Sons, Ltd.

KEY WORDS: implicit method; Newton–Krylov–Schwarz; additive Schwarz; non-linear radiation
di�usion equation; parallel processing

1. INTRODUCTION

Radiation transport plays an important role in many physical phenomena. Radiation di�usion,
being a special case of the radiation transport, is obtained by assuming that the medium is
isotropic and optically thick. Utilizing the black-body radiation model and integrating over
all radiation frequencies with an assumption of radiation-media equilibrium, an equilibrium
radiation di�usion description is found [1]. Radiation di�usion is a highly non-linear phe-
nomenon. In addition to the non-linear behaviour resulting from the governing equations, the
�ux-limited form of the di�usion coe�cient introduces an extra degree of non-linearity to the
system [2, 3]. Several successful attempts have been made to numerically solve the radiation
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di�usion equations [1, 4–9]. A typical implementation takes advantage of the multigrid ap-
proach combined with some variant of Newton’s method. The time derivative is often dealt
with by using either an implicit backward Euler or a Crank–Nicolson scheme. In this pa-
per, we study a one-level Newton–Krylov–Schwarz (NKS) [10] method and speculate that
the single mesh method has certain advantages over methods that require multiple meshes in
order to achieve the optimal convergence and scalability when the number of processors is
large. As is known, optimal choices of the courser meshes may not be easy to obtain for an
unstructured mesh. In addition, multiple meshes may not be easy to implement on parallel
computers.
Integration of the radiation di�usion equations is a computationally intensive task. Paral-

lel processing has to be applied in order to attain the computational practicality in realistic
settings. In this work, we use an overlapping additive Schwarz domain decomposition [18]
to divide the computational domain and partition the work-load among multiple processors.
Our approach is based on a backward Euler time discretization combined with an inexact
Newton method for solving the non-linear algebraic systems. The Jacobian linear systems are
solved with an additive Schwarz preconditioned restarted GMRES. We study the scalability
of our implementation and its parallel performance. In the parallel implementation we use the
Portable Extensible Toolkit for Scienti�c computation (PETSc) package available as an open
source software from the Argonne National Laboratory [11].
The rest of the paper is organized as follows. In Section 2, we discuss a model radia-

tion di�usion equation and its discretization. In Section 3, we introduce a parallel one-level
Newton–Krylov–Schwarz method. Section 4 is devoted to numerical experiments and parallel
performance of the NKS method. Finally, in Section 5, we conclude the paper with several
remarks.

2. A MODEL PROBLEM

In a wide variety of applications, radiation di�usion is essential to our understanding of
the underlying physics, for example, in the modelling of the interior of the Sun and in the
modelling of the processes taking place during a nuclear blast. Radiation di�usion can be
posed in several forms. One of the possible approaches [1] is to start with the equations of
non-equilibrium radiation di�usion:

@E
@t
=∇ ·

( c
3�

∇E
)
+ c�(aT 4 − E)

@C�T
@t

= c�(E − aT 4)
(1)

where � is the opacity, a is the Stefan–Boltzmann constant, c is the speed of light, E is the
radiation energy, T is the material temperature and C� is the heat capacity of the medium.
The �rst equation in (1) is the energy equation, and the second one provides an expression
for the material temperature. For the sake of simplicity, we assume that C�= a=1 and c=3.
Furthermore, assuming that the material temperature is in equilibrium with the radiation energy

E= aT 4
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and that the opacity has the form

�=T−3

we can simplify the system of equations (1) to a scalar equation

@(�+ (1− �)E−3=4)E
@t

=∇ · (D(E)∇E) (2)

where

D(E)=Z�E3=4

Equation (2) signi�es that there are two important limits: (a) the energy of the system is
dominated by the material energy; and (b) the energy of the system is dominated by the
radiation energy. In our study we set �=1 considering only the case when the energy of
the system is dominated by the radiation energy. We experiment with a multimaterial model,
where the opacity depends on the atomic number Z of the medium. Therefore, the di�usion
coe�cient D(E) is also a function of the atomic number. In our experiments we set �= − 3.
The spatial distribution of Z will be introduced later in the paper.
In the above formulation the di�usion coe�cient may lose its physical meaning because

there is nothing in the functional form of the coe�cient to prevent transport phenomena
occurring faster than the maximum speed in the media (the speed of light). Following [1],
we use a �ux-limited di�usion in the following form:

DL(E)=
1

1=D(E) + |∇E|=E
Now, replacing D(E) in (2) by DL(E), we obtain

@E
@t
=∇ ·

(
1

Z−�E−3=4 + |∇E|=E · ∇E
)

(3)

Solving (3) is the main focus of the paper. Let E=E(x; y; t) with (x; y)∈� and t ∈ [0; T ].
We only consider a simple two-dimensional case, where �= [0; 1]× [0; 1]. The initial and
boundary conditions are given as follows. On the top and the bottom boundaries of the
domain, we assume

@E
@n
=0 when y=0 or y=1 (4)

and on the left and the right boundaries of the domain, we assume

1
4
E +

1
2
DL(E)

@E
@x
=E�ux when x=0 or x=1 (5)

We also assume the initial condition

E(x; y; 0) = 1 for any (x; y)∈�
In the rest of this section, we brie�y describe the time and space discretization schemes.

Based on the results of Reference [1], explicit schemes are not practical because of the
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restrictive nature of the stability-based time-step control. Therefore, we use an implicit back-
ward Euler scheme for the time integration with a �xed time step size �t,

En+1 − En
�t

=∇ · (DL(En+1)∇En+1); n=0; 1; : : : (6)

Here E0 =E(·; ·; 0). We discretize the spatial part of the radiation di�usion equation using
a standard �ve-point �nite di�erence method on a uniform grid of size h in both x and y
directions. More precisely, at a given interior mesh point (i; j), we take

(∇(DL(E)∇E))i; j ≈ 1
h

(
Di+1=2; jL

Ei+1; j − Ei; j
h

−Di−1=2; jL
Ei; j − Ei−1; j

h
−
)

+
1
h

(
Di; j+1=2L

Ei; j+1 − Ei; j
h

−Di; j−1=2L
Ei; j − Ei; j−1

h

)
(7)

Here the ‘half-point’ Di+1=2; jL is de�ned as follows:

Di+1=2; jL =
1

1=Di+1=2; j + (|Ei+1; j − Ei; j|=h)=((Ei+1; j + Ei; j)=2) (8)

where

Di+1=2; j=
2D(Ei+1; j)D(Ei; j)
D(Ei+1; j) +D(Ei; j)

is taken as the harmonic mean value. The schemes at other half-points are similar. Let Mx

and My be the numbers of mesh points in x and y directions. The boundary conditions are
discretized using

1
4
E0; j +

1
2
DL(E0; j)

E1; j − E0; j
h

=−Ein�ux
1
4
EMx−1; j +

1
2
DL(EMx−1; j)

EMx−2; j − EMx−1; j
h

= Eout�ux

Ei;0 − Ei;1 = 0
Ei;My−1 − Ei;My−2 = 0

for the left, right, bottom and top boundaries, respectively. The corner points are ignored in
the computation. DL(E0; j) and DL(EMx−1; j) are given by

DL(E0; j)=
1

1=D0; j + |E1; j − E0; j|=h=E0; j
and

DL(EMx−1; j)=
1

1=DMx−1; j + |EMx−2; j − EMx−1; j|=h=EMx−1; j
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respectively. Combining time and space discretizations, and using a natural ordering of the
mesh points, we obtain a non-linear system of equations that needs to be solved at every time
step:

(En+1 −�t∇ ·DL(En+1)∇En+1 − En)i; j=0 (9)

In the remaining part of the paper, we will denote such a non-linear system of equations as

F(E)=0 (10)

Note that the absolute value function that appears in (8) and the discontinuous atomic coef-
�cient Z , to be speci�ed explicitly later in the paper, make the non-linear algebraic system
non-di�erentiable and di�cult to solve using a Newton-type method in which some kind of
derivative information is necessary. In this paper, we construct the Jacobian matrix of F using
a multi-coloured �nite di�erence method introduced in Reference [12].

3. ONE-LEVEL NEWTON–KRYLOV–SCHWARZ METHOD

The family of Newton–Krylov–Schwarz (NKS) methods is a general-purpose parallel algo-
rithm for solving systems of non-linear algebraic equations. NKS, as its name suggests, has
three main components: (1) an inexact Newton method for the non-linear systems; (2) a
Krylov subspace linear solver for the Jacobian equations (restarted GMRES [13]); and (3) a
Schwarz-type preconditioner. We carry out the Newton iterations as following:

Ek+1 =Ek − �kJ (Ek)−1F(Ek); k=0; 1; : : : (11)

where E0 is an initial approximation to the solution and J (Ek)=F ′(Ek) is the Jacobian at
Ek , and �k is the steplength determined by a linesearch procedure [14, 15]. The inexactness
of Newton’s method is re�ected in the fact that we do not solve the Jacobian system exactly.
The accuracy of the Jacobian solver is determined by some �k ∈ [0; 1) and the condition

‖F(Ek) + J (Ek)sk‖6�k‖F(Ek)‖ (12)

The overall algorithm can be described as follows:

1. Inexactly solve the linear system J (Ek)sk = − F(Ek) for sk using a preconditioned GM-
RES(30).

2. Perform a full Newton step with �0 = 1 in the direction sk .
3. If the full Newton step is unacceptable, we backtrack �0 using the cubic backtracking
procedure until a new � is obtained that makes the E+ =Ek + �ksk an acceptable step.

4. Set Ek+1 =E+ and return to step 1 unless a stopping condition has been met.

In step 1 above we use a left-preconditioned GMRES to solve the linear system; i.e. the
vector sk is obtained by approximately solving the linear Jacobian system

M−1
k J (Ek)sk = −M−1

k F(Ek)
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Figure 1. Decomposition of domain � with an overlap ovlp. The dashed lines indicate the partition of
the domain into non-overlapping substructures �l of size Hx ×Hy, and the innermost solid rectangle
indicates an overlapping subdomain �′

l. The incomplete �ne mesh of solid lines illustrates underlying
uniform subintervals with mesh size h.

where M−1
k is a one-level additive Schwarz preconditioner [18]. To formally de�ne M−1

k ,
we need to introduce a partition of �. We �rst partition the domain into non-overlapping
substructures �l, l=1; : : : ; N , as shown in Figure 1. In order to obtain an overlapping de-
composition of the domain, we extend each subregion �l to a larger region �′

l, i.e. �l⊂�′
l.

Only simple box decomposition is considered in this paper—all the subdomains �l and �′
l

are rectangular and made up of integral numbers of �ne mesh cells. The size of �l is Hx ×Hy
and the size of �′

l is H
′
x ×H ′

y, where the H
′s are chosen so that the overlap, ovlp, is uniform

in the number of �ne grid cells all around the perimeter, i.e.

ovlp= (H ′
x −Hx)=2= (H ′

y −Hy)=2

for interior subdomains. For boundary subdomains, we simply cut o� the part that is outside
�. Figure 1 illustrates a decomposition with an overlap of four �ne mesh cells. On each
extended subdomain �′

l, we construct a subdomain preconditioner Bl, whose elements are
Bi; jl = {Jij}, where the node indexed by (i; j) belongs to the interior of �′

l. The entry Jij is
calculated with �nite di�erences Jij=1=�(Fi(Ej + �)− Fi(Ej)), where 0¡��1 is a constant.
Homogeneous Dirichlet boundary conditions are used on the internal subdomain boundary
@�′

l ∩�, and the original boundary conditions are used on the physical boundary, if present.
The additive Schwarz preconditioner can be written as

M−1
k = I1B−1

1 (I1)
T + · · ·+ INB−1

N (IN )
T (13)

Let n be the total number of mesh points, and n′l the total number of mesh points in �
′
l, then

Il is an n× n′l extension matrix that extends each vector de�ned on �′
l to a vector de�ned

on the entire �ne mesh by padding an n′l× n′l identity matrix with zero rows. Various inexact
additive Schwarz preconditioners can be constructed by replacing the matrices Bl in (13)
with convenient and inexpensive to compute matrices, such as those obtained with incomplete
factorizations. In this paper we employ ILU factorizations.
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4. PARALLEL IMPLEMENTATION AND NUMERICAL RESULTS

4.1. Software

We use Portable Extensible Toolkit for Scienti�c computation (PETSc), developed at Argonne
National Laboratory [11], in our implementation of the NKS algorithm discussed in the pre-
vious section. In a nutshell, PETSc is a suite of data structures and functions encapsulating
necessary components for building large-scale parallel and serial scienti�c applications. The
code is written in a hostless manner and allows easy switching between di�erent numbers of
processors. Each processor is assigned one subdomain, and the information pertaining to the
interior of a subdomain is uniquely owned by that processor. The processor stores subvectors
and a block of the Jacobian matrix associated with an extended subdomain. At the beginning
of every non-linear iteration, the E-dependent local blocks of the Jacobian, as well as the pre-
conditioning matrices, are computed. The preconditioning matrices are factored, and the upper
and lower triangular parts are stored. After the solution of each subproblem is obtained, those
portions that lie within the overlapping regions are sent to neighbouring processors to com-
plete collective operations. Participating processors communicate with each other by message
passing using MPI.

4.2. Test case and problem parameters

In our numerical tests � is a unit square, uniformly partitioned into rectangular meshes up to
2048× 2048 in size. We assume the following boundary conditions, see Figure 2:

• On �2 and �4, we assume @E=@n=0, where n=(nx; ny) is the unit outward normal.
• On �1, we impose the in�ux condition

1
4
E=

1
2
DL(E)

@E
@x
=−Ein�ux

Figure 2. Physical domain with a middle inset. The inset is positioned in
( 1
3 ;
2
3

)
in both x and y direc-

tions. Inside the inset the atomic number Z =10, and Z =2 outside the inset. �1 is the in�ux boundary
and �3 is the out�ux boundary. No energy transport is allowed across �2 and �4 boundaries.
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where Ein�ux is the energy in�ux in the direction of the outward normal. In our tests,
we set Ein�ux = 2500:0 which is, according to Reference [1], in the range of large in�ux
values.

• On �3, we impose the out�ux condition
1
4
E +

1
2
DL(E)

@E
@x
=Eout�ux

where Eout�ux = 0:25 is the out�ux of energy in the direction of the outward normal.

The Ein�ux parameter plays an important role. If this parameter is small, then the equation
is easy to integrate, and the solution is smooth. As Ein�ux increases, the solution develops a
sharp front, and the integration of the system becomes increasingly di�cult. For large values
of the in�ux parameter the non-linear iterative process may break down thus preventing the
algorithm from obtaining a meaningful solution. The break-down exhibits itself by ushering
the system into a stagnation mode, when the non-linear residual either stops decreasing, or
decreases by a very small fraction. In our experiments we use Ein�ux = 2500:0 which is already
in the high value range.
Note that the material in � is inhomogeneous. � is partitioned into two sub-regions with

di�erent atomic numbers Z , as shown in Figure 2. Therefore, the value of the di�usion
coe�cient DL depends on the spatial co-ordinates x and y.
A number of parameters needs to be speci�ed for a successful run of the NKS algorithm.

Below we mention the values of each parameter that we use in numerical experiments:

• Finite-di�erencing parameter, �. We compute the Jacobian system at each Newton itera-
tion by a multicoloured �nite di�erence method with the parameter �. We have observed
that the �-parameter is important for the convergence of Newton iterations. The choice of
a numerical value for the �-parameter depends on both the �ne mesh size h and the time
step. For the mesh sizes of 128× 128, 256× 256, 512× 512, 1024× 1024 and the time
step �t=0:001 we set �=10−10. For the 2048× 2048 mesh and time step �t=0:001
� is reduced to 10−12.

• Non-linear solver. The initial guess is a uniform energy distribution Ei; j=1. We declare
the non-linear convergence if the condition ‖F(Ek)‖610−8‖F(E0)‖ is satis�ed.

• Linear solver. The convergence tolerance for the linear iterative solver at each Newton
iteration, �k , is 10−6. We restart GMRES at every 30th iteration.

• Decomposition of �. We always set the number of subdomains to be equal to the number
of processors. Depending on the mesh size, we employ 1–256 processors in our numerical
experiments.

• Overlap size, ovlp. In this paper, we assume that the same number of �ne mesh cells,
ovlp∈ [1; 20], is extended in both x and y directions.

4.3. Accuracy of the numerical solution

In general, the solution of the two-dimensional equilibrium radiation di�usion results in a
energy=temperature surface. Frequently, the analogy of a temperature wave, originating at one
side of the domain and propagating to the other side, is used to describe the solution. The
shape of this wave depends on the boundary conditions and the material properties of the
interior domain points. Figure 3 shows some sample solution contour plots on a 128× 128
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Figure 3. Contour plots of the solution on a 128× 128 mesh with �t=0:001. The plots are
positioned in left to right, top to bottom order.

mesh with time step �t=0:001. The contour plots are shown in the left–right, top–bottom
order. We can observe a formation of the temperature wave on the left-hand side of the
domain that travels to the right as the time-integration proceeds. Note that the multimaterial
geometry of the domain e�ectively slows down the temperature wave propagation. The last
contour plot presents the solution after 520 time steps. In our experiments, we investigate
solutions obtained after up to 5000 time steps with a typical time step of �t=0:001.
Time accuracy is an important concern of our numerical simulation. Figure 4 demonstrates

the high-pro�le plots of the solution when the elapsed time equals to 4.0. The ‘high-pro�le’
plot shows a solution pro�le at y=0:5. The time integration is accomplished with �t=0:01,
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Figure 4. Comparative solution accuracy plots. Solution pro�les at y=0:5 are shown at t=4:0.
Obtained with �t = 0:01 (∗), 0:001(?), and 0.0001(). The left �gure uses a 128× 128 mesh and

the right �gure uses a 256× 256 mesh.

0.001 and 0.0001 on two meshes of size 128× 128 and 256× 256. Solutions obtained with the
�t=0:001 and 0.0001 are very close to each other. Here we assume that a solution obtained
with the smallest time step is the most accurate one. Our results show that time step of 0.01
is too inaccurate for our algorithm, and we choose �t=0:001 as the working time step size
for our experiments. The solution is non-convergent in the sense that the starting point of
the temperature wave (after a certain number of time iterations) is not spatially �xed. As we
re�ne the mesh, the location of starting point changes and the shape of the wave becomes
better resolved.

4.4. Parallel performance and scalability studies

In this subsection, we look at some machine-dependent properties of the algorithm. Our main
concern is the scalability, which is the most important quality in evaluating a parallel algo-
rithm. Indeed, if the scalability is poor, then the problems of realistic sizes may not be solved
using a massively parallel approach. All CPU times reported here are obtained on an IBM
SP2.
In Table I, we �rst study the scalability of the algorithm with respect to the number

of processors. This kind of scalability shows how the domain partitioning (or the problem
partitioning) a�ects the e�ciency of the underlying solution methods. For this test, we use
a �xed 1024× 1024 mesh, and 4–256 processors. The overlapping size is �xed at ovlp=9
for all partitions. It is clear that the non-linear iterations are completely independent of the
number of subdomains, or the number of processors.
Throughout the experiments, we use box partitions. For example, in the case of 4 proces-

sors, all subdomains are squares with side lengths equal to 0.5. In the case of 8 processors,
we allocate 2 processors in the x direction, and 4 in the y direction. Resulting rectangular
subdomains have side lengths 0.5 and 0.25. It turns out the shortest side length has a great
impact on the number of GMRES iterations. For instance, the shortest side length is reduced
from 0.5 to 0.25, when we go from 4 to 8 processors, and the average number of GMRES
iterations increases from about 60 to 108. However, when the number of processors goes
from 8 to 16, the shortest side length is not changed. In this case, the average number of
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Table I. Scalability with respect to the number of processors. 1024× 1024 mesh. ILU
factorization for all subproblems. The Schwarz preconditioner overlap ovlp=9. Time step
�t=0:001, 20 time steps. The problem is solved with 256, 128, 64, 32, 16, 8 and 4 pro-
cessors. Average non-linear iterations are taken per time step. Average linear iterations are

taken per non-linear iteration.

Total linear Average linear Total nonlinear Average nonlinear
np iterations iterations iterations iterations

4 7123 59.9 139 7.1
8 12867 108.1 139 7.1
16 12812 107.7 139 7.1
32 20396 172.9 138 7.0
64 20392 172.8 138 7.0
128 31957 268.6 139 7.1
256 32201 272.9 138 7.0

GMRES iterations stays near a constant 108. This indicates that the shape of the subdomain
has an impact on the number of linear iterations, but not at all on the non-linear iterations.
Ignoring the shape factor, if we look at the cases corresponding to 4, 16, 64 and 256

processors in Table I, we observe that the number of linear GMRES iterations increases as
we increase the number of processors.
To further understand the linear scalability, we present the number of GMRES iterations

with three di�erent mesh sizes and ten di�erent overlapping sizes in Table II. For a �xed mesh
size and a �xed number of processors, the smallest number of iterations often corresponds to
the large overlap case. This observation is quite di�erent from the results obtained by solving
Poisson’s equation when small overlap is often as good as large overlap [16]. Let H be the
diameter of the subdomain, from Table II, we can tell that even if we �x the ratio

H
ovlp

and re�ne the mesh from 1/256 to 1/512 to 1/1024, the number of GMRES iterations is not
close to a constant. This is again very di�erent from the estimates obtained with the usual
additive Schwarz theory for elliptic equations [16] and for parabolic equations [14]. However,
in practice, what really matters is the CPU time. Below we look at the CPU-time scalability
of the algorithm.
Table III shows our results for the total number of non-linear iterations and the CPU-time

as a function of the number of subdomains and the overlapping size. We �x the mesh to
1024× 1024 and the time step size to �t=0:001. The total number of time steps is 20. Here
again, we observe that the total number of non-linear iterations is practically independent of
the number of processors and the overlapping size ovlp. Unlike the number of non-linear
iterations, the CPU-time depends on both the subdomain size and the overlap. The most
apparent observation with respect to the CPU-time data is that the optimal overlap size is not
small. Indeed, for cases with 128, 64, 32, 16, 8 and 4 processors the best CPU-time results
correspond to the overlap of 10. Table IV summarizes the results on how the total numbers
of non-linear iterations change across meshes of di�erent sizes. We see that the total number
of non-linear iterations is nearly independent of the �ne mesh size.
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Table II. Average numbers of GMRES iterations. Three di�erent meshes 256× 256, 512× 512
and 1024× 1024. Overlapping size, ovlp varies from 1 to 10. The problem is solved with 256,

128, 64, 32, 16, 8 and 4 processors.

ovlp np= 256 np= 128 np= 64 np=32 np=16 np=8 np=4

256× 256 mesh
1 136.9 133.3 83.1 81.7 50.3 49.9 29.1
2 116.4 114.2 74.1 73.0 47.5 47.1 25.3
3 100.5 98.6 66.1 264.8 43.1 42.9 23.2
4 89.8 89.2 60.6 59.3 39.3 38.9 21.5
5 81.7 79.5 55.7 54.1 36.3 36.4 20.5
6 75.0 73.6 50.9 50.0 34.3 33.9 19.6
7 71.0 68.0 47.9 46.9 32.1 31.6 18.9
8 63.2 60.9 45.0 44.0 30.6 30.0 18.1
9 58.3 56.7 42.6 41.6 29.2 28.6 17.9
10 56.5 56.0 40.4 39.5 27.7 27.3 17.6

512× 512 mesh
1 264.5 256.6 151.7 151.2 93.5 92.7 52.8
2 224.7 220.7 139.2 137.7 87.7 87.1 45.6
3 192.3 187.7 125.4 124.3 80.0 79.8 41.3
4 171.1 169.7 114.3 113.9 72.5 72.4 38.1
5 158.2 156.3 104.8 104.1 67.9 67.6 35.3
6 148.3 144.7 98.9 98.1 64.8 64.4 33.4
7 139.6 136.5 93.0 92.3 61.3 61.0 32.1
8 132.8 129.5 87.4 86.9 58.5 58.6 31.1
9 126.9 122.9 82.9 81.4 56.5 56.2 30.3
10 121.1 116.3 77.9 77.6 54.3 54.0 29.6

1024× 1024 mesh
1 538.1 522.2 324.5 321.6 199.6 197.0 101.1
2 458.6 461.6 294.6 294.8 181.7 183.0 84.5
3 395.5 393.0 266.0 263.8 167.9 167.1 76.0
4 357.7 352.2 241.8 242.2 151.8 149.2 69.2
5 332.5 316.5 228.8 226.7 137.8 137.4 64.7
6 311.6 307.3 214.6 212.5 127.7 126.3 62.2
7 294.3 290.6 196.6 197.5 118.8 117.6 61.5
8 280.9 279.3 185.1 184.0 114.2 113.0 60.7
9 272.9 266.6 173.5 175.7 109.5 108.1 59.9
10 261.4 257.9 165.0 164.4 105.4 104.3 58.9

In Figure 5, we present some �xed mesh scalability results using two mesh sizes. In the
left �gure, we use the usual scalability factor

t(8)=t(np) (14)

where t(8) denotes the CPU-time obtained with 8 processors and t(np) denotes the CPU-time
obtained with np processors. In the left �gure we solve the problem on a 1024× 1024 mesh
with �t = 0:001 and the overlap ovlp=10. The heights of the bars are calculated according
to formula (14). In the �gures the straight line indicates a linear dependence, or a linear
speed-up. We observe that with up to 64 processors the results exhibit a superlinear speed-up.
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Table III. Total number of non-linear iterations and CPU time in second 1024× 1024 mesh. ILU
factorization for all subproblems. The Schwarz preconditioner overlap ovlp varies from 2 to 10.
The problem is solved with 256, 128, 64, 32, 16, 8 and 4 processors. Time step size is �t=0:001.

ovlp np= 256 np= 128 np= 64 np=32 np=16 np=8 np=4

Total number of non-linear iterations
2 138 138 137 139 140 138 139
4 138 140 138 138 136 137 141
6 139 139 136 138 139 138 138
8 138 137 137 137 138 139 139
10 138 138 137 138 136 137 137

CPU time (s)
2 393 511 618 1540 3060 7325 7724
4 317 422 536 1331 2582 6192 6895
6 299 400 504 1207 2317 5478 6250
8 299 376 467 1103 2140 5047 6135
10 302 368 441 1048 2004 4736 5933

Table IV. Total number of non-linear iterations as a function of the subdomain and �ne mesh sizes.
�t=0:001, 20 time steps, ovlp=10.

Mesh np= 256 np= 128 np= 64 np=32 np=16 np=8

256× 256 123 123 123 123 123 123
512× 512 150 150 150 150 150 150
1024× 1024 138 138 137 138 136 137
2048× 2048 123 123 123 123 123 123

Figure 5. CPU time scalability. �t=0:001, 20 time steps, ovlp=10. Numbers on the x-axis are
the numbers of processors. Left �gure: 1024× 1024 mesh, bar height = t(8)=t(np). Right �gure:

2048× 2048 mesh, bar height = t(16)=t(np).
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Table V. Parallel e�ciency results with �t=
0:001, 20 time steps, ovlp=10, 1024× 1024

mesh, speed-up= t(8)=t(np).

np Speed-up Parallel e�ciency

8 1.00 100
16 2.36 118
32 4.52 113
64 10.75 134
128 12.86 80
256 15.69 49

Table VI. Parallel e�ciency results with �t=
0:001, 20 time steps, ovlp=10, 2048× 2048

mesh, speed-up= t(16)=t(np).

np Speed-up Parallel e�ciency

16 1.00 100
64 3.84 96
128 7.00 87
256 15.27 95

However, starting with 128 processors, the algorithm no longer has its speed-up advantage.
Corresponding parallel e�ciency results are reported in Table V. Our working hypothesis is
that the 1024× 1024 mesh is not �ne enough for the high number of processors. Thus, if
we re�ne the mesh, the linear speed-up behaviour, will be restored. In the right �gure we
show results obtained on a 2048× 2048 mesh. In this �gure, the bar height is calculated
using

t(16)=t(np)

since the problem is harder to solve with 8 processors due to the memory limitation. We
observe, that the linear speed-up is, indeed, restored on the �ner mesh.
The right �gure in Figure 5 shows that the CPU time scalability of the NKS-based solver

is quite good, even though the number of linear iterations based scalability is disappointing
according to Tables I and II. Table VI shows corresponding parallel e�ciency measurements.

5. CONCLUSIONS

A parallel Newton–Krylov–Schwarz-based non-linearly implicit algorithm is developed and
tested for a multimaterial radiation di�usion problem with a rather large in�ux boundary
condition in a two-dimensional domain. The parallel software is constructed using PETSc,
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and parallel results are obtained on an IBM SP system with up to 256 processors. The main
�ndings of our study can be summarized as follows:

• The number of non-linear iterations is not sensitive (within 20%) to the mesh size. The
number of non-linear iterations does not depend on the number of processors and the
overlapping size.

• The number of GMRES iterations for solving the Jacobian systems increases as the
number of subdomains increases or as the mesh is re�ned, no matter what the overlap
is. This seems to indicate that the usual additive Schwarz theory does not apply to the
radiation di�usion problem.

• The optimal overlapping size is not small.
• The algorithm=software is CPU-time scalable if the mesh is �ne enough. This is a very
important observation. It makes the method and the implementation suitable for solving
problems on large meshes and with large number of processors.

• It does not look like a coarse grid is necessary to achieve the CPU time scalability. This
suggests that the one-level NKS algorithm is potentially more attractive than multilevel
methods especially in the case of unstructured grids since obtaining a coarse one is often
di�cult.
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