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Abstract

The focus of this paper is on the numerical solution of large sparse
nonlinear systems of algebraic equations on parallel computers. These
nonlinear systems often arise from the discretization of nonlinear par-
tial differential equations, such as the Navier-Stokes equations for fluid
flows, using finite element or finite difference methods. A traditional
inexact Newton method, applied directly to the discretized system,
does not work well when the nonlinearities in the algebraic system be-
come unbalanced. In this paper we study some preconditioned inexact
Newton algorithms, including the single-level and multilevel nonlinear
additive Schwarz preconditioners. Some results for solving the high
Reynolds number incompressible Navier-Stokes equations will be re-
ported.

1 Introduction

Newton’s method is one of the most popular techniques for solving large
nonlinear systems of equations in engineering applications due to the fact
that the method is easy to implement and converges quickly if the starting
point is inside the domain of convergence. However, it is well-known that
the radius of the domain of convergence of Newton’s method is inversely
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proportional to the relative nonlinearity of the function; i.e., as the relative
nonlinearity increases the domain of convergence shrinks, and as a result,
finding a good starting point becomes very difficult [7]. Many globalization
techniques have been developed in order to find a good starting point, such
as the linesearch and trust region methods [7], continuation methods [13],
mesh sequencing methods [16], etc. In this paper, we present a different
approach that increases the domain of convergence of Newton’s method
by reducing the nonlinearity of the function. Consider a given nonlinear
function F' : ®" — R™. We are interested in calculating a vector u, € R",
such that

F(uy) =0, (1)
starting from an initial guess u(®) € R". Here F = (F,...,F,)", F; =
Fi(u1,...,up), and u = (u1,...,u,)’. Inexact Newton algorithms (IN)

[7, 10] are commonly used for solving such systems. In this paper, we work
in the framework of nonlinearly preconditioned inexact Newton algorithms
(PIN), recently introduced in [4]. In other words, we try to find the solution
u, of equation (1) by solving an equivalent system of nonlinear equations

F(uy) =0. (2)

(1) and (2) are equivalent in the sense that they have the same solution.
Other than having the same solution, the nonlinear functions F( ) and F( )
may have completely different forms.

2 Single-level nonlinear additive Schwarz precon-
ditioning
In this section, we describe a nonlinear preconditioner based on the additive
Schwarz method [2, 8]. Let
S=(1,...,n)
be an index set; i.e., one integer for each unknown u; and F;. We assume
that Si1,...,Sn is a partition of S in the sense that

N
JSi=5, and S; C S.
i=1



Here we allow the subsets to have overlap. Let n; be the dimension of S;;
then, in general,

N
Z n; > n.
=1

Using the partition of S, we introduce subspaces of " and the corresponding
restriction and extension matrices. For each S; we define V; C R" as

Vi ={vlv = (v1,...,v5)" € R", 0, =0, if k & 5}

and a n X n restriction (also extension) matrix Ig, whose kth column is
either the kth column of the n X n identity matrix I,v, if & € S; or zero
if & ¢ S;. Note that the matrix g, is always symmetric and the same
matrix can be used as both restriction and extension operator. Many other
forms of restriction/extension are available in the literature; however, we
only consider the simplest form in this paper.

Using the restriction operator, we define the subdomain nonlinear func-
tion as

Fg, = Ig,F.

We next define the major component of the algorithm, namely the nonlin-

early preconditioned function. For any given v € R", define T;(v) € V; as
the solution of the following subspace nonlinear system

Fs,(v — Ti(v)) = 0,

fori=1,..., N. We introduce a new function

N
FO () =Y Ti(w), (3)
i=1

which we will refer to as the nonlinearly preconditioned F'(u). The one-
level nonlinear additive Schwarz preconditioned inexact Newton algorithm
(ASPIN or ASPIN(1)) is defined as: Find the solution u* of (1) by solving
the nonlinearly preconditioned system

FD(w) =0 (4)

with an inexact Newton method using u(?) as the initial guess. As shown
in [4], ASPIN(1) is nonlinearly scalable, but the number of iterations in the
global linear solver increases as the number of subdomains (or the number
of processors as in our implementation) increases. A multilevel version of
ASPIN(1) is therefore introduced below, which is scalable both nonlinearly
and linearly.



3 Two-level nonlinear additive Schwarz precondi-
tioning

In this section, we describe a parallel nonlinear preconditioner based on the
two-level additive Schwarz method [2, 8]. The focus is on the construction
of the coarse space operator. We will refer to the nonlinear algebraic system
(1) as the fine system which has n unknowns and n equations. We also need
a coarse system,

F(ug) = 0, (5)

which is a nonlinear algebraic system with n¢ unknowns and n® equations.
The coarse and fine functions F'(u) and F¢(u®) approximate each other in a
certain sense.

We next define the grid transfer operators. Note that we definitions
are quite general, for example, the coarse and fine grids don’t need to be
nested. Let S¢ = (1,...,n°) an index set, i.e., one integer for each unknown
of the coarse system, and assume that S{,...,S% is a partition of S¢ in
the sense that Ui]\il S; = S°. For simplicity, we partition the fine and the
coarse systems into the same number of subsets. Also for simplicity, in our
parallel implementation, we will allocate the subsystems corresponding to
the index sets S; and S} to the same processor. We define the subdomain
fine to coarse restriction operator as R; : S; — S}, in the sense that for
each vector v; € V;, there is a unique vector v§ € V., such that

c __
v; = R,

where R; is a n; by n{ matrix. In a similar way, we can introduce an
extension operator from the coarse subspace Sf to the fine subspace S;,
E; : §; — S§. In practice, F; is usually taken as the transpose of the
matrix R;. Even though the subsets Si and S} may overlap each other,
the restriction operators R; and R; are consistent in the sense that for any
ve R, if ke 57N ST, then

(Riv)r = (Rjv)r,

where () indicates the value of the kth component of the vector. We define
a global fine to coarse restriction operator R¢ : % — R as follows: For
any v € R", the k component of R is defined as

(RC’U)k = (Rﬂ))k, if k e SZC



A global coarse to fine extension operator E¢ can be defined as the transpose
of R°. To define the coarse function Ty : R — R"™, we first introduce a
projection T¢ : R — R™ as follows: For any given v € R, T v satisfies
the coarse nonlinear system

F(T°(v)) = R°F(v). (6)

We assume (6) has a unique solution. Associated with T¢, we define an
operator Ty : " — R” by

To(v) = E°T(v). (7)

Suppose that Tp is given as in (7); it is easy to see that Tp(u.) can be
computed without knowing the exact solution wu, itself. In fact, from (6),
we have

TU(U*) = Ecuia
which is the exact solution of the coarse system (5). Throughout this paper,
we assume that the coarse solution uf is given, through a pre-processing
step. We can introduce a new nonlinear function ®” — R" by

N
FO(u) = Ty(u) — To(w) + 3. Ti(w), (8)

=1

which we will refer to as the nonlinearly preconditioned F'(u). The two-
level nonlinear additive Schwarz preconditioned inexact Newton algorithm
(ASPIN(2)) is defined as follows: Find the solution w, of (1) by solving the
nonlinearly preconditioned system

FO(u) =0 (9)

with an inexact Newton method using u(?) as the initial guess. A more
complete description of ASPIN(2) can be found in [5].

4 Brief review of inexact Newton methods

Consider a nonlinear system, for example (1). Suppose u(¥) is the current
approximate solution; a new approximate solution u**1) can be computed
through the following steps (IN):

Step 1: Find the inexact Newton direction p(¥) such that
1P () = F'(u®)pW|| < e F(u®)) (10)



Step 2: Compute the new approximate solution

w1 g B () (k) (11)

Here n; € [0,1) is a scalar that determines how accurately the Jacobian
system needs to be solved using, for example, Krylov subspace methods
(10, 11]. A% is another scalar that determines how far one should go in
the selected inexact Newton direction [7]. IN has two well-known features,
namely, (a) if the initial guess is close enough to the desired solution then
the convergence is very fast provided that the 7’s are sufficiently small, and
(b) such a good initial guess is generally very difficult to obtain, especially
for nonlinear equations that have unbalanced nonlinearities [14]. The step
length A(®) is often determined by the components with the strongest non-
linearities, and this may lead to an extended period of stagnation in the
nonlinear residual curve, [3, 16].

In this paper, we apply IN to systems (4) or (9), instead of (1). The line-
search parameter A(¥) is determined using the preconditioned merit function

1 2
S

which, by design, has more balanced nonlinearity than 1/2||F||?.

5 A driven cavity flow problem

In this section, we present some numerical results on the following two-
dimensional driven cavity flow problem [12], using the velocity-vorticity for-
mulation, in terms of the velocity u, v, and the vorticity w, defined on the
unit square = (0,1) x (0,1),

( ow
Ay — -2 =
u By 0
Y oae+ & - (12)
ox
ow ow
\ —ﬁAUJ‘i‘U%"‘Ua—y = 0.

Here Re is Reynolds number. The boundary conditions are:



e bottom, left and right: u =v =10
e top:r u=1,v=0

The boundary condition on w is given by its definition:

ou  Ov
w(z,y) = “ oy T o

We test several different Reynolds numbers in the experiments and the num-
bers are given in the tables below. The usual uniform mesh finite difference
approximation with the 5-point stencil is used to discretize the boundary
value problem. Upwinding is used for the divergence (convective) terms and
central differencing for the gradient (source) terms. To obtain a nonlinear
algebraic system of equations F', we use natural ordering for the mesh points,
and at each mesh point, we arrange the knowns in the order of w, v, and
w. The partitioning of F' is through the partitioning of the mesh points in
a checkerboard fashion for both the fine and the coarse grid. The coarse
to fine interpolation is defined using the coarse grid bilinear finite element
basis functions. overlap = 1 is used for all the calculations. The implemen-
tation is done using PETSc [1], and the results are obtained on a cluster of
DEC workstations. Double precision is used throughout the computations.
The initial iterate is zero for u, v and w. We report here only the machine
independent properties of the algorithms.
We stop the global PIN iterations if

IF @™ < 1070 F ()]

The same stopping condition is used for the coarse grid nonlinear systems,
which can be solved by either a Newton-Krylov-Schwarz method, or the
one-level ASPIN, based on the same mesh partition.

The Jacobian systems are solved with GMRES restarting at 30. The
global linear iteration for solving the global Jacobian system is stopped if
the relative tolerance

/

IF (™) = F @)pM | <1073 F (M)

is satisfied. We remark that, unlike the Jacobian matrix of F', the Jacobian
matrix F is usually not sparse and can not be computed explicitly. Follow-
ing the techniques developed in [4], we approximate F " on each subdomain
by Jgil,], where J = F' and Js; is the restriction of J on the subdomain S;.

7



Similarly on the coarse grid, we use JS_CIJ , where Jge is the restriction of
J on the coarse grid. We do not use any preconditioners when solving the
Jacobian problems.

At the kth global nonlinear iteration, nonlinear subsystems

Fs, (u(k) - g,(k)) =0,

have to be solved. We use the standard IN with a cubic line search for
such systems with initial guess gz%) = 0. The local nonlinear iteration in
subdomain S; is stopped if the following condition is satisfied:

I ()] < 10 s ()]

In Tables 1 and 2, we report the total number of global nonlinear itera-
tions, the total number of linear iterations, and the average number of linear
iterations per nonlinear iteration. For this particular test problem, the non-
linearity is determined mostly by the Reynolds number. As Re increases
the nonlinear system becomes harder and harder to solve with the regular
inexact Newton method [4]. However, as shown in Tables 1 and 2, ASPIN
is not very sensitive to the increase of Re.

As expected from the classical theory of additive Schwarz methods, the
one-level algorithm, ASPIN(1), is not scalable with respective to the number
of subdomains, which is the same as the number of processors in our parallel
implementation. This is reflected in the average number of global linear
iterations. By adding a coarse space, as in ASPIN(2), the number of global
linear iterations can be reduced. We observe that the size of the coarse grid
has to be sufficiently fine in order to remove the dependence on the number
of subdomains. This can be seen clearly by comparing the last row in Table
2 and 3. In practice, a good coarse grid size is usually not easy to determine
since it depends not only on the number of subdomains but also on the
Reynolds number.
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